
The importance of the collection
pattern for OneM2M architecture

Mahdi Ben Alaya
ben.alaya@laas.fr

04/09/2014
1

Thierry Monteil
monteil@laas.fr

Outline

• Introduction
• Collection is a pattern for RESTful architecture
• Collection enhances system performance
• Collection solves the resource type technical problem
• The Collection resource structure
• Impact on ARC
• Impact on PRO
• Conclusion

2

• Collection is a pattern for RESTful architecture.

• Clarifications about collections:
• Collections URIs are short and non hierarchal.
• Collections resources do not cause a rigidness to the tree structure.
• Collections do not overload the server.

• Collection provides essential features with a direct impact on the OneM2M
architecture design, implementation, and performance.
1. Design:

• Collection simplifies the resource structure and make it easy to consume
• Collection URIs are required for POST request to be compliant with REST/HATEOAS constraints.

2. Performance:
• Collection decreases resource representation size and response time.
• Collection removes redundant resource type tags
• Collection size is controlled by paging links.

3. Implementation:
• Collections provides separate URIs for each resource type, thus the server knows the resource

type just by looking to the request URI.

Introduction

3

Design (1/4)
Collection is a pattern for RESTful architecture

• REST/HATEOAS constraint decouples client and server in a way that allows the
server functionality to evolve independently.

• Hypermedia and links should be used to find your way through the API. (Follow-

Your-Nose strategy). Servers must instruct clients on how to construct appropriate
URIs without using out-of-band information.

• Leonard Richardson, inventor of HATEOAS, and author of “RESTful Web APIs” book
dedicated the chapter 6 of his book to the collection pattern: Collection is a well
known pattern for RESTful API.

• Example of existing HATEOAS media type supporting the collection pattern:
Collection+JSON, AtomPub, HAL, JSON-LD, Siren

4

N Request Response
1) GET /csebase <cse>

…
<link rel=“applications" href=“/a" />
<link rel=“containers" href=“/c" />
<link rel=“subscriptions" href=“/s” />

</cse>

2) GET /a <collection>
…
<items rel=“application”>

 <link href=“/a/a1" />
 <link href=“/a/a2" />
 <link href=“/a/a3" />

<items>
</collection>

3) GET /a/a1

<application>

…
<link rel=“containers" href=“/a/a1/c" />
<link rel=“groups" href=“/a/a1/g" />
<link rel=“subscriptions" href=“/a/a1/s" />

</application>

4) GET /a/a1/c

<collection>

…
<items rel=“container”>

 <link href=“/c/c1" />
 <link href=“/c/c2" />
 <link href=“/c/c3" />

<items>
</collection>

5) GET /c/c1

<container>

…
<link rel=“instances" href=“/c/c1/i" />
<link rel=“subscriptions" href=“/c/c1/s" />

</container>

Design(2/4)
Flexible resource tree with short and flat URIs

• Example 1: The client GET a Container
resource starting from the CSEBase URI
making use of Collections pattern.

• Resource representation are small so it
is easy for the client to use provided
links to change the application state.

• Collection URIs are short and flat.
Resource tree is flexible.

• An optional resource type prefix is used
to identify resources e.g. “/a/a1” and
“/c/c1”.

– We have a unique resource name per
each resource type.

– For All requests, the server knows the
resource type just by looking to the URI.

5

N Request Response
1) GET /c/c1 <container>

…
<link rel=“instances" href=“/c/c1/i"/>
<link rel=“subscriptions" href=“/c/c1/s"/>

</container>

2) POST /c/c1/i
<instance>
 <content>xxx
 </content>
</instance>

Location: i/i5
<instance>

<content>xxx</content>
<link rel=“subscriptions" href=“/i/5/s"/>
…

</instance>

3) GET /i/i5

<instance>

<content>xxx</content>
<link rel=“subscriptions" href=“/i/5/s"/>
…

</instance>

Design(3/4)
Collection URIs are required for POST request

• Example 2: The client POST a
ContentInstance resource on the
retrieved container making use of
Collections pattern.

• The server use collections URIs to
instruct the client on how to CREATE a
new resource.

• The server return back a flat and short
URI for the new application.

6

Design(4/4)
Flat URIs without resource type prefixes

Example 2
2

N Request Response
1) GET /csebase <cse>

…
<link rel=“applications" href=“/a" />
<link rel=“containers" href=“/c" />
<link rel=“subscriptions" href=“/s” />

</cse>

2) GET /a <collection>
…
<items rel=“application”>

 <link href=“/a1" />
 <link href=“/a2" />
 <link href=“/a3" />

<items>
</collection>

3) GET /a1

<application>

…
<link rel=“containers" href=“/a1/c" />
<link rel=“groups" href=“/a1/g" />
<link rel=“subscriptions" href=“/a1/s" />

</application>

4) GET /a1/c

<collection>

…
<items rel=“container”>

 <link href=“/c1" />
 <link href=“/c2" />
 <link href=“/c3" />

<items>
</collection>

5) GET /c1

<container>

…
<link rel=“instances" href=“/c1/i" />
<link rel=“subscriptions" href=“/c1/s" />

</container>

N Request Response
1) GET /c1 <container>

…
<link rel=“instances" href=“/c1/i"/>
<link rel=“subscriptions" href=“/c1/s"/>

</container>

2) POST /c1/i
<instance>
 <content>xxx
 </content>
</instance>

Location: /i5
<instance>

<content>xxx</content>
<link rel=“subscriptions" href=“/i5/s"/>
…

</instance>

3) GET /i5

<instance>

<content>xxx</content>
<link rel=“subscriptions" href=“/i5/s"/>
…

</instance>

• No prefix is used to identify resources
e.g. “/a1” and “/c1”.

• We must have a global unique resource
name per CSE.

• For GET, PUT, and DELETE requests, the
server must check the resource ID before
to find the resource type.

• For POST requests, the server uses the
Collection URI to find the resource type.

7

Example 1

• In the current architecture, the resource representation contains big number of links
to all child resources which considerably increases the size of the payload.

• Collections organize resources of the same type in separate representations. The
resource representation become small because it contains only few collections links
instead of big number of mixed resource links.

Without Collection With Collection
<cse>

…
<link rel=“application" href=“/a1" />
<link rel=“application" href=“/a2" />
<link rel=“application" href=“/a3" />
…
<link rel=“container" href=“/c1" />
<link rel=“container" href=“/c2" />
…
<link rel=“subscription" href=“/s1” />
<link rel=“subscription" href=“/s2” />

</cse>

<cse>
….
<link rel=“applications" href=“/a" />
<link rel=“containers" href=“/c" />
<link rel=“subscriptions" href=“/s” />

</cse>

Performance (1/3)
Collections reduce the representation size

8

• In the current architecture, a resource contains mixed resources types, so each
resource link must contain its own type tag, with increase the payload size.

• Collections contain resources of the same type, so all redundant type tags can be
factorized in one tag: the collection type tag, with decrease the payload size.

Without Collection With Collection
<cse>

…
<link rel=“application" href=“/a1" />
<link rel=“application" href=“/a2" />
<link rel=“application" href=“/a3" />
<link rel=“application" href=“/a4" />
…
<link rel=“application" href=“/an" />

</cse>

<collection>
…
<items rel=“application”>

 <link href=“/a/a1" />
 <link href=“/a/a2" />
 <link href=“/a/a3" />
 <link href=“/a/a4" />
…
<link href=“/a/an" />

<items>
</collection>

Performance (2/3)
Collection remove redundant resource type tags

9

• Collections are designed to contain a big number of items. To limit collections size, it
is recommenced to use collection paging.

• Technically the server returns the representation including a limited number of
items, with "next" and "previous“ links. Example:

 <collection>
 …
 <items rel=“application”>

<link href=“/a/a5" />
 <link href=“/a/a6" />
 <link href=“/a/a7" />
 <link href=“/a/a8" />
 <link href=“/a/a9" />

 <items>
 <link rel="next" href=“/a?start=10"/>
 <link rel="previous" href=“a?start=0"/>

 </collection>

Performance (3/3)
Collection size can be controlled with paging links

10

• When the server receives a resource representation, it validates it using the specific
XSD schema file, if succeeded, it parses to check access right, mandatory
attributes, performing the request, notification, etc.

• In the current architecture, we define the same URI to create resources of different
type. In the following examples, “/CSEBase” is the same URI for the 3 requests:

• To create a AE, the client send POST to /CSEBase with AE representation.
• To create a Container the client send POST to /CSEBase with AE representation.
• To create a Goup, the client send POST to /CSEBase with AE representation.

• The server will not be able to determine the type of the received resource. There is
two possible workarounds:

1. The server will look inside the received representation to find the resource type tag, before validating
the representation. (overload)

2. The server will try the XSD schemas one by one till it finds the correct one, if validation is ok, then it
parses the representation. (overload)

• With collections, we have separate links for each resource type. The server knows
the resource type just by looking to the request URI.

Implementation (1/2)
Resource type technical problem

11

• With collections, we have separate links for each resource type. Let’s consider the
CSEBase representation:
<cse>

…
<link rel=“applications" href=“/a" />
<link rel=“containers" href=“/c" />
<link rel=“subscriptions" href=“/s” />

</cse>

• We have now a different URI for each resource creation request:

• To create a AE, the client send POST to /a with AE representation.
• To create a Container the client send POST to /c with Container representation.
• To create a Goup, the client send POST to /g with AE representation.

• The server knows the resource type just by looking to the request URI. This is the
natural way to solve the resource type issue.

Implementation (2/2)
Collection URIs solve the resource type problem

12

13

Collection

items

next 0..1

0..1

prev
0..1

 <collection>
 …
 <items rel=“resource-type”>

 <link href=“uri" />
 <link href=“uri " />
 …

 <items>
 <link rel="next" href=“uri"/>
 <link rel="previous" href=“uri"/>

 </collection> <Item>
0..n

Attribute 0..1

Collection resource type structure Collection resource XML example

The Collection resource structure

• The Collection resource could have a specific structure depending on the items
type. (Example ETSI M2M collections)

• The collection could also have a generic structure supporting all item types.
Example:

14

<resourceType>

0..1

0..1

<childResourceType1>

OR
Name of childResource1 (if fixed)

<childResourceTypeN>

OR
Name of childResourceN (if fixed)

Name of Resource Specific Attribute1

Name of Resource Specific AttributeN

0..n

0..n

<CSEBase>

cseType1

CSE-ID1

supportedResource
Type

1

pointOfAccess
0..n

0..n
<remoteCse>

1
<node>

0..n
<AE>

0..n
<container>

0..n
<group>

0..n

0..n
<subscription>

0..n

0..n

0..n
<statsConfig>

Trigger-Recipient-ID
0..1

nodeLink
0..n

<mgmtCmd>

<accessControlPolicy>

<locationPolicy>

0..n
<statsCollect>

Resource
Type Short Description Child Resource Types

Parent
Resource

Types
Clause

Content
Instance

Represents a data instance in the container resource subscription container 9.6.7

AE Stores information about the AE. It is created as a result
of successful registration of an AE with the registrar CSE

subscription, container, group,
accessControlPolicy, mgmtObj,
commCapabilities, pollingChannel

remoteCSE,
CSEBase

9.6.5

container Shares data instances among entities. Used as a
mediator that takes care of buffering the data to
exchange "data" between AEs and/or CSEs.(…)

container, contentInstance,
subscription,

application,
container,
remoteCSE,
CSEBase

9.6.6

CSEBase The structural root for all the resources that are residing
on a CSE. It shall store information about the CSE itself

remoteCSE, node, application,
container, group,
accessControlPolicy, subscription,
mgmtObj, mgmtCmd,
locationPolicy, statsConfig

None 9.6.3

Table 9.6-1 Resource Summary

Figure 9.6.3-1: Structure of <CSEBase> resource Figure 9.5-1: <resourceType> representation convention

Impact on ARC
Child resource types must

contain collections resources
(e.g. AEs, Containers, etc.)

Collection
cardinality must

set to 1.

RemoteCses
1

1

1

1

1

1

1

1

1

1

AEs

Containers

Groups

AccessPolicies

Subscriptions

MgmtCmd

LocationPolicies

StatsConfigs

StatsCollects

CSEBase resource
including collections

example

15

Table 7.3.2.1-4: Reference of child resources

Child Resource Type
Name

Multiplicity Ref . to in Resource
Type Definition

remoteCse(variable) 0..n 7.3.1
node(variable) 0..n
AE (variable) 0..n 7.3.3
container(variable) 0..n 7.3.4
group(variable) 0..n 7.3.11
accessControlPolicy 0..n
subscription(variable) 0..n 7.3.6
mgmtCmd(variable) 0..n 7.3.13
locationPolicy(variable) 0..n 7.3.8
statsConfig(variable) 0..n 7.3.29
statsCollect(variable) 0..n 7.3.31

C.2. Container resource that conforms to the
Schema in C.1 C.1.XML Schema for container resource type

Impact on PRO
Child resource types must

contain collections resources
(e.g. AEs, Containers, etc.)

XSDs and XML file must
be updated to have

collection .

• The collection pattern should be integrated into the OneM2M platform to
be compliant with REST architecture constraints, improve system
performance and solve the resource type technical problem.

• To integrate collections to OneM2M, several changes should done on ARC
and PRO specifications:
– For each resource, same type child resources must be replaced with

one collection link.
– A new Collection resource must be defined. The collection structure

can be generic.

16

Conclusion

References

• « RESTful Web APIs » book - Leonard Richardson, Mike Amundsen, Sam Ruby
• Leonard Richardson Maturity Model

(http://martinfowler.com/articles/richardsonMaturityModel.html)
• REST APIs must be hypertext-driven – Roy T. Fielding

(http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven)
• HATEOAS and the PayPal REST Payment API

(https://developer.paypal.com/docs/integration/direct/paypal-rest-payment-
hateoas-links)

17

http://martinfowler.com/articles/richardsonMaturityModel.html

Tank you for your attention

18

Does the discovery mechanism
solve the problem ?!

• The discovery mechanism cannot solve this architectural
problem:
– Discovery enables only to find URIs of a specific resources quickly based on some

filter criteria, like a search engine. But, starting from the discovered link, a client
should be able to traverse the API by reading media type and following link.

– Rely only on the discovery mechanism to use the API is not HATEOAS or even
REST.

– In addition, to be HATEOAS, servers must instruct clients on how to construct
appropriate URIs to perform discovery request by he mean of URI template, et.

19

	The importance of the collection pattern for OneM2M architecture
	Outline
	Slide Number 3
	Design (1/4)�Collection is a pattern for RESTful architecture
	Design(2/4)�Flexible resource tree with short and flat URIs
	Slide Number 6
	Slide Number 7
	Performance (1/3)�Collections reduce the representation size
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	References
	Tank you for your attention
	Does the discovery mechanism �solve the problem ?!

