Doc# ARC-2017-0131R02- Modbus_Introduction.doc

	Input Contribution

	Meeting ID*
	ARC#28

	Title:*
	Modbus Introduction

	Source:*
	Qiuting Li, ZTE, li.qiuting@zte.com.cn

	Date:*
	2017-03-20

	Input related to*
	WI-0072

	Intended purpose of

document:*
	 FORMCHECKBOX
 Decision

 FORMCHECKBOX
 Discussion

 Information

 Other <specify>

	Impacted other TS/TR(s)
	

	Decision requested or recommendation:*
	New clause as introduction to Modbus is basic information for oneM2M and Modbus interworking.

	Template Version: January 2017 (Do not modify)

oneM2M Notice

The document to which this cover statement is attached is submitted to oneM2M. Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.

Introduction

This contribution is proposal for modbus introduction, including background, key feature, and architecture and protocol stack, as a base for oneM2M and modbus interworking. Additionally, informative refereces about Modbus and oneM2M are listed.

2
References
2.2
Informative references

[i.1]
oneM2M Drafting Rules.
[i.2]
Modbus website, http://www.modbus.org/
[i.3]
Modbus_Application_Protocol_V1_1b3, Modbus Organization
[i.4]
Modbus_Messaging_Implementation_Guide_V1_0b, Modbus Organization
[i.5]
Modbus_over_serial_line_V1_02, Modbus Organization
[i.6]
oneM2M TR-0009: "Protocol_Analysis".
5 Introduction

5.1 Background

Modbus was first introduced by Modicon® (now part of Schneider Electric®) for process control systems. It is used to establish master-slave/client-server communication between intelligent devices and sensors and instruments. It is a de facto standard, truly open and the most widely used network protocol in the industrial manufacturing environment.

Modbus is easy to deploy and maintain, and used across a wide range of industries. It is also an ideal protocol for remote terminal unit (RTU) applications where wireless communication is required. Modbus is not only an industrial protocol. Building, infrastructure, transportation and energy applications also make use of its benefits.
Originally, Modbus was implemented as an application level protocol intended to transfer data over serial port, it has expanded to include implementations over serial, TCP/IP, and UDP. Today, it is a common protocol used by countless devices for simple, reliable, and efficient communication across a variety of networks. Modbus was designed as a request-response protocol with a flexible data and function model that are part of the reason it is still in use today. In addition, support for the simple and elegant structure of Modbus continues to grow.
5.2 Architecture and protocol stack

The Modbus protocol follows a master and slave architecture where a master transmits a request to a slave and waits for the response (as shown in figure5.2-1). This architecture gives the master full control over the flow of information, which has benefits on older multidrop serial networks. Even on modern TCP/IP networks, it gives the master a high degree of control over slave behavior, which is helpful in some designs.
[image: image1.png]Send Request

E— N Read Response

Master Slave

Figure 5.2-1 The Master-Slave, Request-Response Relationship of Modbus device

The Modbus protocol allows an easy communication within all types of network (as shown in Figure 5.2-2). Every type of devices (such as PLC, Driver, Motion control, I/O Device…) can use Modbus protocol to initiate a remote operation.
The same communication can be done as well on serial line as on an Ethernet TCP/IP networks. Gateways allow a communication between several types of buses or network using the Modbus protocol.

[image: image2.emf]Gateway

PLC

I/O

Device

HMI

Gateway

Device

I/O

Device I/O

Modbus on TCP/IP

Modbus on RS

485

Modbus on MB

+

Server Server

Modbus communication

Figure 5.2-2 Modbus Network Architecture

There are many variants of Modbus protocols:
· Modbus RTU — This is used in serial communication & makes use of a compact, binary representation of the data for protocol communication. Modbus RTU is the most common implementation available for Modbus. A Modbus RTU message must be transmitted continuously without inter-character hesitations.
· Modbus ASCII — This is used in serial communication and makes use of ASCII characters for protocol communication.
· Modbus TCP/IP or Modbus TCP — This is a Modbus variant used for communications over TCP/IP networks. It does not require a checksum calculation as lower layers already provide checksum protection.

· Modbus over TCP/IP or Modbus over TCP or Modbus RTU/IP — This is a Modbus variant that differs fromModbus TCP in that a checksum is included in the payload as with Modbus RTU.
· Modbus over UDP — Some have experimented with using Modbus over UDP on IP networks, which removes the overheads required for TCP.
· Modbus Plus (Modbus+, MB+ or MBP) — Modbus Plus is proprietary to Schneider Electric® and unlike the other variants, it supports peer-to-peer communications between multiple masters. It requires a dedicated co-processor to handle fast HDLC-like token rotation. It uses twisted pair at 1 Mbit/s and includes transformer isolation at each node, which makes it transition/edge triggered instead of voltage/level triggered.
At present, Modbus TCP is more efficient networking through the use of dedicated connections and identifiers for each request and response. Modbus RTU and Modbus ASCII are older serial ADU formats with the primary difference between the two being that RTU uses a compact binary representation while ASCII sends all requests as streams of ASCII characters.
The Modbus protocol defines a simple protocol data unit (PDU) independent of the underlying communication layers. The mapping of Modbus protocol on specific buses or network can introduce some additional fields on the application data unit (ADU). The Modbus frame is as shown in figure 5.2-3.

[image: image3.png]Additional address

Error check

Figure 5.2-3 Modbus Frame

A Modbus frame or Modbus Application Data Unit (ADU) consists of the following:
· Additional address field: A field containing additional addresses used by the underlying communication protocol. It is 1 byte slave address over serial links (such as RS 232, RS 485). For Modbus TCP, it is called Modbus Application Protocol (MBAP) Header that include transaction identifier, protocol identifier, length and unit identifier.

· Modbus PDU: It is independent of underlying communication layer and consists of two parts: 1) 1-byte Function code to indicate identity of the requested service, 2) Variable length data field containing payload of the requested service. There are three types of Modbus PDUs: Modbus Request, Modbus Response and Modbus Exception.
· An optional error check field. Modbus TCP is not needed.

5.3 Key features

There are many devices and gateways that support Modbus, as it is a very simple protocol and convenient to transmit and understand. Specially, Modbus TCP/IP simply takes the Modbus instruction set and wraps TCP/IP around it. If you already have a Modbus driver and you understand Ethernet and TCP/IP sockets, you can have a driver up and running and talking to a PC in a few hours. Development costs are exceptionally low. Minimum hardware is required, and development is easy under any operating system. The following are key features of Modbus:
· Communication mode
Modbus uses master-slave/client-server communication mode, Master issues a unicast request and slave responds to that. In serial and MB+ networks, only the node assigned as the Master may initiate a command. On Ethernet, any device can send out a Modbus command, although usually only one master device does so. Modbus also supports broadcast mode where master’s request is sent to all the slaves but no slave responds to broadcast request.
· Data model
Modbus manages the access of data simply and flexibly. Modbus data are divided into four ranges, they are that these types of data can be provided/alterable by I/O system or an application program. In most cases, slaves store each type of data that it supports in separate memory, and limits the number of data elements that a master can access.
· Function code
There are three categories of Modbus Function codes, including Public Function codes, User-Defined Function codes and Reserved Function codes. Public Function codes can satisfy common operations, such as accessing data in device by reading and writing data model, and simply diagnosing device. Function code is flexibility that user can select and implement a function code by self-defining User-Defined Function codes according to service requirements.

· Availability of many devices
Interoperability among different vendors' devices and compatibility with a large installed base of Modbus-compatible devices makes Modbus an excellent choice.
5.4 Data model
The Modbus standard defines bit-addressable and 16-bit word addressable input and output data items. Modbus bases its data model on a series of tables that have distinguishing characteristics. The four primary tables for data model are as following:
Table 5.4-1 Modbus data model table
	Primary tables
	Object type
	Type of access
	Comments

	Discretes Input
	Single bit
	Read-Only
	This type of data can be provided by an I/O system, e.g. read the status of switch

	Coils
	Single bit
	Read-Write
	This type of data can be alterable by an application program, e.g. switch on a transducer

	Input Registers
	16-bit word
	Read-Only
	This type of data can be provided by an I/O system, e.g. read temperature on a sensor

	Holding Registers
	16-bit word
	Read-Write
	This type of data can be alterable by an application, e.g. set value to a controller.

There are two ways of organizing the data in device. Each device can have its own organization of the data according to its application. The figure 5.4-1 below shows an example for data organization in a device having digital and analog, inputs and outputs. Data block (device application memory) is accessible with different Modbus functions, such as read coils, write holding registers. All the data elements handled via Modbus can be located in device application memory by reference numbers form 1to n. The pre-mapping between the Modbus data model and the device application is totally vendor device specific.

[image: image4.emf]Coils

Input

Registers

Holding

Registers

Discretes

Input

Separate or

overlapping

blocks of

memory

Deviceapplication

memory

Modbus Device

Modbus Request

Read Input

Read Coils

Read Registers

Write Registers

Figure 5.4-1 Implementation example of Modbus data model
© 2017 oneM2M Partners

Page 1 (of 2)

Gateway
PLC
I/O
Device
HMI
Gateway
Device
I/O
Device
I/O
Modbus on TCP/IP
Modbus on RS485
Modbus on MB+
Server
Server
Modbus communication

_1552418278.vsd
�

Coils

Input Registers

Holding Registers

Discretes
Input

Separate or overlapping blocks of memory

Device application memory

Modbus Device

Modbus Request

Read Input

Read Coils

Read Registers

Write Registers

