	Doc# ARC-2017-0304R01-Block_update_during_notification.doc
Change Request
	[image: image6.png]






	


	CHANGE REQUEST

	Meeting ID:*
	ARC30

	Source:*
	Josef Blanz, Qualcomm Inc., jblanz@qti.qualcomm.com 

	Date:*
	2017-07-11

	
	

	Reason for Change/s:*
	Need for blocking behavior for subscriptions in context of IPE-AEs 

	CR  against:  Release*
	Rel-3

	CR  against:  WI*
	 FORMCHECKBOX 
 Active WI-0056 “Evolution of Proximal IoT Interworking”
 FORMCHECKBOX 
 MNT maintenance / < Work Item number(optional)>
Is this a companion CR? Yes  FORMCHECKBOX 
 No  FORMCHECKBOX 

Companion CR number: (Note to Rapporteur - use latest agreed revision)Is this a mirror CR? Yes  FORMCHECKBOX 
 No  FORMCHECKBOX 

Mirror CR number: (Note to Rapporteur - use latest agreed revision)

 FORMCHECKBOX 
 STE Small Technical Enhancements / < Work Item number (optional)>
Only ONE of the above shall be ticked

	CR  against:  TS/TR*
	TS-0001 v3.6.0

	Clauses *
	9.6.8; 

	Type of change: *
	 FORMCHECKBOX 
 Editorial change
 FORMCHECKBOX 
 Bug Fix or Correction
 Change to existing feature or functionality
 FORMCHECKBOX 
 New feature or functionality
Only ONE of the above shall be ticked

	Impacted other TS/TR(s)
	TS-0004 v3.2.0, definition of new response status codes for successful response of a notification in combination with and without success of an IPE action; definition of additional eventNotificationType; modification of notification procedures. Additional test coverage.

	Post Freeze checking:*
	This CR contains only essential changes and corrections?  YES 
  NO 
This CR may break backwards compatibility with the last approved version of the TS?       YES 
  NO 


	Template Version: January 2017 (Do not modify)


oneM2M Notice

The document to which this cover statement is attached is submitted to oneM2M.  Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.

Introduction
Changes in R02:

· Text on what should happen with concurrent UPDATE or DELETE requests occurring while the UPDATE which triggered this type of subscription is blocked (resource type definition and procedure definition)
· Text describing that this type of subscription cannot be combined with regular type A (update)

· Correction of “Receveied” spelling

· Correction on condition for “Trigger Payload” content.

…

When using an IPE-AE via the Mca reference point to enable interaction between AEs compliant with oneM2M specifications and objects / things that are implemented with no oneM2M specific functionality – termed NoDN in oneM2M terminology – a common problem that is independent of the particular non-oneM2M technology used by the NoDN is that state information contained in the NoDN and state information contained in oneM2M compliant resource instances that are used to interact with the NoDN via an IPE-AE need to stay in tight synchronization. 

Assume for example an external light (e.g. KNY or OCF light) which shall be controlled by one or more oneM2M AEs via an IPE-AE. In that case, a oneM2M-compliant resource would need to be exposed to the authorized oneM2M AEs to switch on or off that light. For instance a resource structure compliant with the “deviceLight” mapping of the “Home Appliances Information Models” of TS-0023 could be used to do that exposure.
In that model, it is possible to switch on or off the light by modifying the custom attribute “powerState” in the <flexContainer> resource instance that is used to represent the binary switch actor for the light according to the “binarySwitch” model class.
If an AE that is allowed to control the light represented by this “deviceLight” resource instance (by appropriate access privilege settings) is modifying the custom attribute “poswerState” of the “binarySwitch” sub-resource, it would normally seem reasonable that the IPE-AE responsible for managing the interworking between oneM2M-compliant AEs and the light that is implemented using an external proximal technology (e.g. KNX or OCF), would do that by monitoring this resource with the subscription mechanism defined in oneM2M specifications. However, when a controlling AE is changing the state of that particular “powerState” custom attribute, it may happen that the attribute gets changed, the IPE-AE gets notified about that change, but the actual light can’t change its state accordingly, maybe because it was locked by some manual mechanism or because the IPE-AE was currently not able to access the light. This may lead to a situation where the state information in the “powerState” custom attribute and the actual state of the light are different. 

[image: image6.png]This could be a very serious problem: Who would need to change the “powerState” attribute back to the value that corresponds to the actual state of the light? Probably the IPE-AE would need to do so. But how much time would it be given to do so? How would the controlling AE actually learn about this failure? Would the controlling AE need to check the “powerState” attribute again after some time? How soon after the original operation would that need to happen? Would the controlling AE need to be able to support reception of notifications and subscribe to the “binarySwitch” attribute? What if other AEs are subscribed to this “binarySwitch” resource? They would get notified about the initial change of the “powerState” by the controlling AE and sometime later they would get notified again about a change back to the original state. That might trigger undesired consequences. This problem is summarized in Figure 1 below.

The main issue is the following: When replicating state information in attributes of resources to represent state of things controlled by some external technologies (KNX, OCF, or any other for that matter) and the same attribute is used as well for indicating attempts to modify the current state of the external “thing”, it will ultimately lead to such inconsistency problems if we can only use the existing subscription mechanism in oneM2M.

With an enhancement of the subscription mechanism in oneM2M this problem could be solved: If there was a subscription event category and respective procedure specifications that would pause the initial update operation until the response to the notification sent to the IPE-AE has been received including an indication of the success of the requested action, the Hosting CSE could either complete the requested update operation successfully or reject it. This concept is shown in Figures 2 and 3. 

[image: image1]

[image: image2]
In order to achieve this functionality – which may turn out to be quite essential for a variety of external technologies that oneM2M intends to interwork with – we would need to add some new behavour to the subscription mechanism specified so far. The new functionality would be characterized as follows: 
· Definition of a new notification event type in the notificationEventType tag of the eventNotificationCriteria attribute of a <subscription> resource is needed: A new allowed value “G” shall be added for blocking an update request to modify attributes of the subscribed-to resource while notifying a subscriber.

· The notificationURI of a subscription that uses this new notification event type must contain exactly one element and it needs to be a resource ID of an <AE> resource (which would be representing the IPE-AE).

· The scope of the subscription is an attempt to update attributes of the subscribed-to resource.

· This new notification event type shall trigger a notification in exactly the same way as is specified so far for notification event type “A” for update(s) to attributes of the subscribed-to resource, i.e. the sub-set of attributes that shall be in the scope of this subscription can be specified in the attribute tag of the eventNotificationCriteria attribute of the <subscription> resource or is the full set of attributes of the subscribed-to resource is in scope of the subscription.
· The triggering update request, however, shall be blocked by the Hosting CSE until a notification request is sent to the single AE that is indicated in the notificationURI and the corresponding response is received back from this particular AE. Depending on information about the success of the notification – including indication of success of the action to be completed – the triggering update request shall be completed with or with no success.
· Since this type of notification event is triggering a notification that results in blocking an update request for some time and possibly causes the update to be rejected (no success), the subscribing AE – i.e. the single entity indicated in the notificationURI needs to have update privileges to the subscribed-to resource. This would be needed in any case when an IPE-AE is the subscriber, since the IPE-AE would need to also reflect externally triggered state changes in the NoDN by changing the respective attributes of the subscribed-to resource.
· When multiple <subscription> child resources exist under the same subscribed-to resource to represent subscriptions which are blocking update requests while notifying the subscriber, the following rules shall apply: An update of a particular attribute of the subscribed-to resource shall at most trigger one blocking notification. In other words: The lists of attributes in the attribute tag of the eventNotificationCriteria attribute shall be non-overlapping. 
The following CR is aiming at adding this functionality to the subscription concept in the Functional Architecture TS-0001. When agreed, this will need to be followed up by corresponding CRs to TS-0004 and eventually by additional test coverage.
Some proposed changes are corrections to the subscription concept. If agreed a companion CR for Rel-2 will be produced as well that excludes the new functionality of blocking an update request but contains the other corrections.
-----------------------Start of change 1-------------------------------------------
9.6.8
Resource Type subscription
The <subscription> resource contains subscription information for its subscribed-to resource.

A subscription to a resource allows an entity in the oneM2M architecture to be notified about changes of the subscribed-to resource. The <subscription> resource shall represent a subscription to a subscribed-to resource. In order to establish a subscription, a <subscription> resource shall be created as a child resource of the subscribed-to resource. The <subscription> child resource contains information about the exact scope of the subscription and targets to be notified. For example, a <container> resource having a <subscription> resource as a child resource (see clause 9.6.6) shall result in notification(s) of target(s) configured in the <subscription> child resource when changes to the parent <container> resource matching with notification event criteria described by the child <subscription> resource occur. A <subscription> resource shall be deleted when the parent subscribed-to resource is deleted.

In general, an Originator shall be able to create a resource of <subscription> resource type when the Originator has RETRIEVE privilege to the subscribed-to resource. The Originator which creates a <subscription> resource becomes the resource subscriber. The Originator shall only be able to create a resource of <subscription> resource type with event notification criteria conditions set to establish notification event type of “Update to attributes of the subscribed-to resource with blocking of the triggering UPDATE operation” – see the details of eventNotificationCriteria conditions below – when the Originator has UPDATE privilege to the subscribe-to resource.
Each <subscription> may include notification policies that specify which, when, and how notifications are sent. These notification policies may work in conjunction with CMDH policies.
When a <subscription> resource is deleted, a Notify request shall be sent to the target indicated by the attribute subscriberURI if it is provided by the Subscriber.


[image: image3.emf]<subscription>

<notificationTargetMgmtP

olicyRef>

0..1

0..1

expirationCounter

1 (L)

notificationURI

0..1

batchNotify

0..1

rateLimit

0..1

pendingNotification

0..1

notificationStoragePriority

0..1

latestNotify

0..1

notificationEventCat

0..1

subscriberURI

0..1

eventNotificationCriteria

0..1

notificationForwardingURI

0..1

preSubscriptionNotify

1

notificationContentType

0..1

groupID

<

notificationTargetSelfRefer

ence

>

0..1

<schedule>

0..1


Figure 9.6.8-1: Structure of <subscription> resource

The <subscription> resource shall contain the child resources specified in table 9.6.8-1.

Table 9.6.8-1: Child resources of <subscription> resource

	Child Resources of <subscription>
	Child Resource Type
	Multiplicity
	Description

	notificationSchedule
	<schedule>
	0..1
	In the context of the <subscription> resource, the notificationSchedule specifies when notifications may be sent by the Hosting CSE to the notificationURI(s). See clause 9.6.9.

	[variable]
	<notificationTargetMgmtPolicyRef>
	0..n
	See 9.6.31 for this type of resource. 

	nstr
	<notificationTargetSelfReference>
	1
	See 9.6.34 for this type of resource.


The <subscription> resource shall contain the attributes specified in table 9.6.8-2.

Table 9.6.8-2: Attributes of <subscription> resource

	Attributes of <subscription>
	Multiplicity
	RW/

RO/

WO
	Description

	resourceType
	1
	RO
	See clause 9.6.1.3.

	resourceID
	1
	RO
	See clause 9.6.1.3.

	resourceName
	1
	WO
	See clause 9.6.1.3.

	parentID
	1
	RO
	See clause 9.6.1.3.

	expirationTime
	1
	RW
	See clause 9.6.1.3.

	creationTime
	1
	RO
	See clause 9.6.1.3.

	lastModifiedTime
	1
	RO
	See clause 9.6.1.3.

	labels
	0..1 (L)
	RW
	See clause 9.6.1.3.

	accessControlPolicyIDs
	0..1 (L)
	RW
	See clause 9.6.1.3.


If no accessControlPolicyIDs value is configured, the accesControlPolicyIDs of the parent resource shall be applied for privilege checking.

	dynamicAuthorizationConsultationIDs
	0..1 (L)
	RW
	See clause 9.6.1.3.

	creator
	0..1
	WO
	See clause 9.6.1.3.

	eventNotificationCriteria
	0..1
	RW
	This attribute (notification policy) indicates the event criteria for which a notification is to be generated. When no eventNotificationCriteria attribute is present in a <subscription> resource, the Hosting CSE shall trigger notifications for this subscription when any of the attributes of the subscribed-to resource is modified.

	expirationCounter
	0..1
	RW
	This attribute (notification policy) indicates that the subscriber wants to set the life of this subscription to a limit of a maximum number of notifications. When the number of notifications sent reaches the count of this counter, the <subscription> resource shall be deleted, regardless of any other policy.

	notificationURI
	1 (L)
	RW
	This attribute shall be configured as a list consisting of one or more targets that the Hosting CSE shall send notifications to. A target shall be formatted as a oneM2M compliant Resource-ID as defined in clause 7.2 or as an identifier compliant with a oneM2M supported protocol binding (e.g. http, coap, mqtt). 

If a target is formatted as a oneM2M compliant Resource-ID, then the target shall be formatted as a structured or unstructured CSE-Relative-Resource-ID, SP-Relative-Resource-ID, and/or Absolute-Resource-ID of an <AE> or <CSEBase> resource. A Hosting CSE shall use this information to determine proper pointOfAccess, requestReqchability and/or pollingChannel information needed to send a notification to the target. The following is an example.

· /CSE0001/AE0001

For a target that is formatted as an identifier compliant with a oneM2M supported protocol binding, the details of this format are defined by the respective oneM2M protocol specification. The following is an example of an HTTP URI compliant with oneM2M HTTP protocol binding.

· https://172.25.30.25:7000/notification/handler
For a subscription to a <fanoutpoint> resource, if <subscription> resource in request contains a notificationForwardingURI, then the group hosting CSE shall configure the notificationURI of the fanout subscription request with a Resource-ID specified by the group Hosting CSE.
For a subscription configured with a notificationEventType tag of value “Update to attributes of the subscribed-to resource with blocking of the triggering UPDATE operation” in the eventNotificationCriteria attribute, the notificationURI shall only contain a single target formatted as an oneM2M-compliant Resource-ID of an <AE> resource. In that case the subscription can only be established if the AE represented by the single <AE> Resource-ID in the notificationURI has UPDATE privilege for the subscribed-to resource. 

	groupID
	0..1
	RW
	The ID of a <group> resource in case the subscription is made through a group. This attribute may be used in the Filter Criteria to discover all subscription resources created via a <fanOutPoint> resource to a specific groupID.

	notificationForwardingURI
	0..1
	RW
	The attribute is a forwarding attribute that shall be present only for group related subscriptions. It represents the resource subscriber notificationtarget. It shall be used by group Hosting CSE for forwarding aggregated notifications. See clauses 10.2.7.11 and 10.2.7.12.
This attribute shall be configured with target of the subscriber. The target is used by the Hosting CSE to determine where to send aggregated notifications. A target shall be formatted as a oneM2M compliant Resource-ID as defined in clause 7.2 or as an identifier compliant with one of the oneM2M supported protocol bindings (the detailed format of which are defined by each respective oneM2M protocol binding specification).

	batchNotify
	0..1
	RW
	This attribute (notification policy) indicates that the subscription originator wants to receive batches of notifications rather than receiving them one at a time. This attribute includes : the number of notifications to be batched for delivery and the duration. When only the number is specified by the subscription originator, the Hosting CSE shall set the default duration given by M2M Service Provider. 
If batchNotify is used simultaneously with latestNotify, only the latest notification shall be sent and have the Event Category set to "latest".

	rateLimit
	0..1
	RW
	This attribute (notification policy) indicates that the subscriber wants to limit the rate at which it receives notifications. This attribute expresses the subscriber's notification policy and includes two values: a maximum number of events that may be sent within some duration, and the rateLimit window duration. When the number of generated notifications within the rateLimit window duration exceeds the maximum number, notification events are temporarily stored, until the end of the window duration, when the sending of notification events restarts in the next window duration. The sending of notification events continues as long as the maximum number of notification events is not exceeded during the window duration. The rateLimit policy may be used simultaneously with other notification policies.

	preSubscriptionNotify
	0..1
	WO
	This attribute (notification policy) indicates that the subscriber wants to be sent notifications for events that were generated prior to the creation of this subscription. This attribute has a value of the number of prior notification events requested. If up-to-date caching of retained events is supported on the Hosting CSE and contains the subscribed events then prior notification events will be sent up to the number requested. The preSubscriptionNotify policy may be used simultaneously with any other notification policy.

	pendingNotification
	0..1
	RW
	This attribute (notification policy), if set, indicates how missed notifications due to a period of no connectivity are handled (according to the reachability and notification schedules). The possible values for pendingNotification are:

· "sendLatest";
· "sendAllPending".

This policy depends upon caching of retained notifications on the hosted CSE. When this attribute is set to "sendLatest", only the last notification shall be sent and it shall have the Event Category set to "latest". If this attribute is not present, the Hosting CSE sends no missed notifications. This policy applies to all notifications regardless of the selected delivery policy (batchNotify, latestNotify, etc.) Note that unreachability due to reasons other than scheduling is not covered by this policy.

	notificationStoragePriority
	0..1
	RW
	Indicates that the subscriber wants to set a priority for this subscription relative to other subscriptions belonging to this same subscriber. This attribute sets a number within the priority range. When storage of notifications exceeds the allocated size, this policy is used as an input with the storage congestion policy (notificationCongestionPolicy) specified in clause 9.6.3 to determine which stored and generated notifications to drop and which ones to retain.

	latestNotify
	0..1
	RW
	This attribute (notification policy) indicates if the subscriber wants only the latest notification. If multiple notifications of this subscription are buffered, and if the value of this attribute is set to true, then only the last notification shall be sent and it shall have the Event Category value set to "latest".

	notificationContentType
	1
	RW
	Indicates a notification content type that shall be contained in notifications. The allowed values are:
· "modified attributes";
· "all attributes";
· "ID" of the resource indicated in the notificationEventType condition.
· Trigger Payload
If it is not given by the Originator at the creation procedure, default is "all attributes".
The value “Trigger Payload” for this attribute is only valid when at least one “notificationEventType” tag in the eventNotificationCriteria attribute contains the event “Trigger Received targeting the MN/ASN-AE associated with the <AE> parent resource”. 

	notificationEventCat

	0..1
	RW
	This attribute (notification policy) indicates the subscriber's requested Event Category to be used for notification messages generated by this subscription.

	subscriberURI
	0..1
	WO
	This attribute shall be configured with the target of the subscriber. The target is used by the Hosting CSE to determine where to send a notification when the subscription is deleted. A target shall be formatted as a oneM2M compliant Resource-ID as defined in clause 7.2 or as an identifier compliant with one of the oneM2M supported protocol bindings (the detailed format of which are defined by each respective oneM2M protocol binding specification).


Table 9.6.8-3 describes the eventNotificationCriteria conditions.

Table 9.6.8-3: eventNotificationCriteria conditions

	Condition tag
	Multiplicity
	Matching condition

	createdBefore
	0..1
	The creationTime attribute of the resource is chronologically before the specified value.

	createdAfter
	0..1
	The creationTime attribute of the resource is chronologically after the specified value.

	modifiedSince
	0..1
	The lastModifiedTime attribute of the resource is chronologically after the specified value.

	unmodifiedSince
	0..1
	The lastModifiedTime attribute of the resource is chronologically before the specified value.

	stateTagSmaller
	0..1
	The stateTag attribute of the resource is smaller than the specified value.

	stateTagBigger
	0..1
	The stateTag attribute of the resource is bigger than the specified value.

	expireBefore
	0..1
	The expirationTime attribute of the resource is chronologically before the specified value.

	expireAfter
	0..1
	The expirationTime attribute of the resource is chronologically after the specified value.

	sizeAbove
	0..1
	The contentSize attribute of the <contentInstance> resource is equal to or greater than the specified value.

	sizeBelow
	0..1
	The contentSize attribute of the <contentInstance> resource is smaller than the specified value.

	notificationEventType
	0..6
	The type of event that shall trigger a notification. If multiple notificationEventType tags are present, a notification shall be triggered if any of the configured events occur. Note that not all permutations of event type are meaningful. Possible notification event type values are: 
A. Update to attributes of the subscribed-to resource
B. Deletion of the subscribed-to resource ,
C. Creation of a direct child of the subscribed-to resource , 
D. Deletion of a direct child of the subscribed-to resource
E. An attempt to retrieve a <contentInstance> direct-child-resource of a subscribed-to <container> resource is performed while this <contentInstance> child resource is an obsolete resource or the reference used for retrieving this resource is not assigned. This retrieval is performed by a RETRIEVE request targeting the subscribed-to resource with the Result Content parameter set to either "child-resources" or "attributes+child-resources". This value for the eventNotificationType tag implies that the subscribed-to resource shall be an <constainer> resource. Otherwise this setting is not valid.
F.  
Trigger Received targeting the MN/ASN-AE associated with the <AE> parent resource. This implies that the subscribed-to resource shall be an <AE> resource instance. Otherwise this setting is not valid.
G. Update to attributes of the subscribed-to resource with blocking of the triggering UPDATE operation. For this eventNotificationType value setting, only one single Notification Target shall be present in the notificationURI attribute – see notificationURI attribute definition. This value for the eventNotificationType tag shall not be combined with any other eventNotificationType tag value. This value for notificationEventType establishes a subscription that is triggered for the same events as for the value “Update to attributes of the subscribed-to resource”. However, upon occurrence of a triggering UPDATE operation that has been validated and results in an authorized UPDATE operation, the triggering UPDATE operation shall be blocked by the Hosting CSE until a notification request was sent out and a corresponding response message was received or a timeout happens. When the response status code of the notification response message indicates a successful notification reception in combination with a successful notification action taken by the Notification Target entity, the triggering UPDATE operation shall be completed with a successful update of the targeted attribute(s). If the notification response message indicates an unsuccessful notification reception or a successful notification reception with unsuccessful notification action by the targeted entity or times out, the blocked UPDATE operation shall be completed with no success and no change of the targeted attribute(s). When multiple subscriptions are established for the same subscribed-to resource with this setting of eventNotificationType,  each of them shall include an attribute condition tag and the specified subsets of attributes in each of the attribute tags shall be non-overlapping. When an UPDATE operation has been blocked due to triggered this type of notification, any other occurring UPDATE or DELETE requests to the same resource shall be handled only after the blocked UPDATE operation has been completed.
The other conditions in eventNotificationCriteria conditions apply within the scope of the selected notificationEventType.
For example, if notificationEventType is "Creation of a direct child of the subscribed-to resource" then other eventNotificationCriteria conditions is applied to the direct child resources of the subscribed-to resource.
If this condition is not specified, the default value is "Update to attributes of the subscribed-to resource".
The notion of "obsolete resource" is defined in clause 9.6.1.3.2 (Common attributes).

	operationMonitor
	0..n
	The operations and/or the Originators accessing the subscribed-to resource matches with the specified value. It allows monitoring which operation and/or which Originator is attempting to the access subscribed-to resource regardless of whether the operation is performed. This feature is useful to detect AEs that send requests to a subscribed-to resource and that result in a successful or failure response. Possible arguments are operation(s) (e.g: CREATE, RETRIEVE, UPDATE, DELETE, NOTIFY) and/or Originator identifier(s). 
If a set of Originator identifier(s) is included in this tag and no operations are listed, any operations initiated from any of the indicated Originator(s) shall trigger a notification. 
If a set of operation(s) is included in this tag and no Originator identifier, any of the listed operations shall trigger a notification.
If both, a set of Originator identifiers and a set of operations are listed, then any of the listed operations initiated from any of the listed Originators shall trigger the notification.

When the notificationEventType tag is present in the eventNotificationCriteria, the value of the operationsMonitor tag is ignored if present in the eventNotificationCriteria attribute.

	attribute
	0..1 (L)
	A list of attribute names of a subscribed-to resource. This list is only applicable when notificationEventType has a value of "Update to attributes of the subscribed-to resource" or “Update to attributes of the subscribed-to resource with blocking of the triggering UPDATE operation”.

If this list is present, then it is used to specify a subset of a subscribed-to resource's attributes for which updates shall result in a notification. If ANY attribute specified on this list is updated, then a notification shall be generated. If an attribute that is not specified in this list is updated, then a notification shall not be generated. 

If this list is not presented, then the default attribute list is the full set of a subscribed-to resource's attributes. If ANY attribute of a subscribed-to resource is updated, then a notification shall be generated.

	resourceType
	0..1 (L)
	A list of resource types. This list is only applicable when notificationEventType has a value of "Creation of a direct child of the subscribed-to resource ".

If this list is present, then it is used to specify a subset of resource type for direct child resource of which creation shall result in a notification. If ANY resource type specified on this list is created, then a notification shall be generated. If a resource type that is not specified in this list is created, then a notification shall not be generated. 

If this list is not present, then the default resource type list is the full set of a direct child resource. 

	missingData
	0..1
	The missingData includes two values: a minimum specified missing number of the Time Series Data within the specified window duration, and the window duration. The condition only applies to subscribed-to resources of type <timeSeries>.
The first detected missing data point starts the timer associated with the window duration. 

The window duration is restarted upon its expiry until such time as the entire subscription is terminated or not refreshed. More details about NOTIFICATIONS related to data reporting is found in section 10.2.39

	filterOperation


	0..1
	Indicates the logical operation (AND/OR) to be used for the condition tags createdBefore, createdAfter, modifiedSince, unmodifiedSince, stateTagSmaller, stateTagBigger, expireBefore, expireAfter, sizeAbove, sizeBelow. The default value is logical AND.


The rules when multiple conditions are used together shall be as follows:

· Different condition tags shall use the "AND/OR" logical operation based on the filterOperation specified;

· Same condition tags shall use the "OR" logical operation. 

· No mixed AND/OR filter operation will be supported
-----------------------End of change 1---------------------------------------------

-----------------------Start of change 2-------------------------------------------

10.2.10.1
Introduction

An Originator may create a <subscription> resource as a child resource of a subscribed-to resource on a Hosting CSE in order to instruct the Hosting CSE to send notifications to the Subscriber(s) of the subscribed-to resource when the subscribed-to resource is modified. After successful <subscription> resource creation, the Hosting CSE shall notify the Subscriber(s) of a modification of the subscribed-to resource that meets conditions configured in the <subscription> resource.

A subscription shall be represented by a <subscription> resource (see clause 9.6.8). This allows manipulation of the subscription in a resource oriented manner, e.g. the conditions of a subscription may be modified by modifying a <subscription> resource, or a resource subscriber may unsubscribe by deleting the <subscription> resource.

The following clauses describe procedures for Creation, Retrieval, Update and Deletion of a <subscription> resource.

10.2.10.2
Create <subscription>
This procedure shall be used to request the creation of a new <subscription> resource to instruct the Hosting CSE to send notifications to configured Subscriber(s) for modifications of a subscribed-to resource. The generic create procedure is described in clause 10.1.2.

Table 10.2.10.2-1: <subscription> CREATE

	<subscription> CREATE 

	Associated Reference Point
	Mca, Mcc and Mcc'

	Information in Request message
	All parameters defined in table 8.1.2-3 apply with the specific details for:

Content: The resource content shall provide the information as defined in clause 9.6.8

	Processing at Originator before sending Request
	According to clause 10.1.2 with the following additions:

The Request shall address a subscribable resource

The Request shall include a <subscription> resource representation with the attribute notificationURI
If the notificationURI attribute includes Notification Target(s) which is/are not targeting the Originator, the Originator should send the request as non-blocking request (see clauses 8.2.2 and 9.6.12)

	Processing at Receiver
	According to clause 10.1.2 with the following

Which is also the Hosting CSE shall validate the followings:

· Check if the subscribed-to resource, addressed in the To parameter in the Request, is a subscribable resource

· Check if the Originator has  privileges for retrieving the subscribed-to resource
· In case a <subscription> resource representation is provided with a notificationEventType tag equal to “Update to attributes of the subscribed-to resource with blocking of the triggering UPDATE operation” in the eventNotificationCriteria attribute, check that only one entity is targeted by the notificationURI attribute and check that this entity has privileges for updating the subscribed-to resource. 
· If an entity listed in the notificationURI is not the Originator, the Hosting CSE may send a Notify request to that entity to verify this <subscription> creation request. If the Hosting CSE initiates the verification, it shall check if the verification result in the Notify response is successful or not. If any of the entities listed in the notificationURI attribute fails verification then the <subscription> create process fails

If any of the checks above fails, the Hosting CSE shall send an unsuccessful response to the Originator with corresponding error information. Otherwise, the Hosting CSE shall create the <subscription> resource and send a successful response to the Originator. Upon successful creation of a <subscription> resource, the Hosing CSE shall evaluate subsequent operations on the subscribed-to resource and trigger notifications in line with the notification policies provisioned in the created <subscription> resource.

	Information in Response message
	All parameters defined in table 8.1.3-1 apply with the specific details for:

· Content: address of the created <subscription> resource, according to clause 10.1.2

	Processing at Originator after receiving Response
	According to clause 10.1.2

	Exceptions
	According to clause 10.1.2


-----------------------End of change 2---------------------------------------------

-----------------------Start of change 3-------------------------------------------

Update <subscription>
This procedure shall be used to update an existing subscription, e.g. extension of its lifetime or the modification of the list of Notification Targets provided in the notificationURIattribute. The generic update procedure is described in clause 10.1.4.

Table 10.2.10.4-1: <subscription> UPDATE

	<subscription> UPDATE

	Associated Reference Point
	Mca, Mcc and Mcc'



	Information in Request message
	All parameters defined in table 8.1.2-3 apply with the specific details for:

Content: attributes of the <subscription> resource as defined in clause 9.6.8 which need be updated

	Processing at Originator before sending Request
	According to clause 10.1.4

	Processing at Receiver
	According to clause 10.1.4
· If the notificationURI attribute contains Notification Target(s) that is/are not the Originator, see applicable processing in table 10.2.10.2-1 in clause 10.2.10.2

· If the latestNotify attribute is set during this UPDATE operation, the Hosting CSE shall assign Event Category parameter of value 'latest' of the notifications generated pertaining to the subscription created and remove all buffered pending notifications for this subscription except for the latest one.
Upon successful updating of a <subscription> resource, the Hosing CSE shall evaluate subsequent operations on the subscribed-to resource and trigger notifications in line with the new notification policies provisioned in the created <subscription> resource.

	Information in Response message
	According to clause 10.1.4

	Processing at Originator after receiving Response
	According to clause 10.1.4

	Exceptions
	According to clause 10.1.4


-----------------------End of change 3---------------------------------------------

-----------------------Start of change 4-------------------------------------------

10.2.10.6
Notification procedures 
This procedure shall be used to notify Notification Targets of modifications of a resource for an associated <subscription> resource and notify about a <subscription> resource deletion. Also, this procedure shall be used to request resource subscription verification to Notification Target(s) which is/are not the Originator.
When the notification is forwarded or aggregated by transit CSEs, the Hosting CSE or an transit CSE shall check whether there is a latestNotify notification policy to enforce between subscription resource Hosting CSE and the notification target. In that case, the transit CSE as well as the Hosting CSE shall process notification(s) by using the corresponding policy and send processed notification(s) to the next CSE with notification policies related to the enforcement so that the transit CSE is able to enforce the policy defined by the Originator. The notification policies related to the enforcement at this time is verified by using the subscription reference in the Notify request message. If any transit CSE doesn't recognize the attribute, then it should ignore it.
A notifier can request verification of a Notification Target by including the Originator ID of the subscription creator in the notify request that it generates towards the Notification Target for that purpose. In this case, the Notification Target shall check if both the Notify Originator and the corresponding <subscription> creation Originator have NOTIFY privilege.
· If either of the two checks are not successful, the Receiver shall return an unsuccessful response to the Originator with subscription verification failure information.
· Otherwise, the Receiver shall send successful response to the Originator.
If the Notification Target wants to remove itself from the Notification Target list (i.e. notificationURI attribute of the corresponding <subscription> resource), it shall follow one of the procedures below:

· The Notification Target shall set in a  Notify response the 'targetRemoval' indicator to  TRUE after receiving a Notify request.
NOTE:
In this case the Notification Target will not know the outcome of its removal request immediately.

· The Notifciation Target shall send a Delete Request to the < notificationTargetSelfReference > virtual resource subordinated as a child resource to the corresponding <subscription> resource.
For either of the above procedures, the  Notifier shall handle that according to the action attribute defined in the corresponding <notificationTargetPolicy> resource for the Notification Target.

10.2.10.7
Notification message handling procedure
When a Hosting CSE receives a <subscription> creation request which requires verification (see clause 10.2.10.2), the Hosting CSE may send a notification to perform subscription verification. In this case, the notification shall include the ID of the Originator of the <subscription> resource creation.
When there is an event for a <subscription> resource that triggers a notification, the <subscription> Hosting CSE shall include in the notification the creator if the <subscription> resource has creator attribute.
When a subscription shall be established that sends notifications upon update of attributes of the subscribed-to resource while blocking the triggering UPDATE operation until the result of the notification is received, the value of the eventNotificationType tag in the notificationEventCriteria attribute shall be set to “Update to attributes of the subscribed-to resource with blocking of the triggering UPDATE operation”, see clause 9.6.8. For this eventNotificationType value setting, only one single Notification Target shall be present in the notificationURI attribute – see notificationURI attribute definition in clause 9.6.8. A subset of attributes of the subscribed-to resource that are triggering a notification when modified can be specified in the attribute tag of the notificationEventCriteria attribute. If the attribute tag is not present, all attributes of the subscribed-to will trigger a notification when modified. Upon occurrence of a triggering UPDATE operation that has been validated and results in an authorized UPDATE operation for any of the triggering attributes of the subscribed-to resource, the triggering UPDATE operation shall be blocked before modifying the targeted attributes by the Hosting CSE until a notification request was sent out and a corresponding response message was received or a timeout happens. While such an UPDATE request is pending, no other UPDATE or DELETE requests to the same resource instance shall be processed, i.e. if they occur while the UPDATE operation that triggered this type of subscription is blocked, they need to be delayed until the blocked UPDATE has been completed. When the response status code of the notification response message indicates a successful notification reception by the Notification Target in combination with a successful notification action taken by the Notification Target, the blocked UPDATE operation shall be completed with a successful update of the targeted attribute(s). If the notification response message indicates an unsuccessful notification request reception or a successful notification request reception with unsuccessful notification action by the Notification Target or when the reception of a response message times out, the blocked UPDATE operation shall be completed with no success and no change of the targeted attribute(s). When multiple subscriptions are established for the same subscribed-to resource with this setting of eventNotificationType,  each of them shall include an attribute condition tag in the notificationEventCriteria attribute and the specified subsets of attributes in each of the attribute tags shall be non-overlapping.
Further details of Hosting CSE related notification policies follow:
The expirationCounter shall be decreased by one when the Hosting CSE successfully sends the notification request to Receiver(s). If the counter reaches zero, the corresponding subscription resource shall be deleted.
In the case an Originator wants to create batches of notifications rather than have the Hosting CSE send notifications one by one, it may set the batchNotify attribute to express its notification policy. The batchNotify attribute (notification policy) is based on two values, the number of notifications to be batched for delivery, and/or a duration. When the Hosting CSE generates a notification event it checks the batchNotify policy, if a duration value is specified then a timer is started which expires after the duration value. If a number of notifications is specified then notification events are accumulated until the accumulated notification events reaches the specified number. If only the duration is specified, then the accumulated notifications are sent as a batch when the timer expires. If both values are set then accumulated notifications are sent as a batch when either the timer expires or the number is reached whichever happens first. When the first notification event is generated then a timer shall be started and keep batching notifications for the duration. After the duration, batched notification shall be sent and a timer shall be set again at the next notification event. For example, a batchNotify policy having a duration of 10 minutes and a number of 20 notifications will accumulate notifications which is sent when the first of these two conditions are satisfied. The sending order is first-in first out (FIFO). The batch timer shall be reset once the batched notifications are being sent. notificationEventCat is checked at the time of batch transmission and applied to each notification individually in the batch. Stored notification events may be dropped according to the notificationStoragePriority and the notificationCongestionPolicy (see clause 9.6.3). When the batchNotify and latestNotify attributes (notification policies) are used together, they enable two ways of sampling notification events for notification generation. If the number of notification is set high then the duration value will drive the policy, and the latestNotify policy will cause a single event notification every duration period, e.g. send the latest event notification every hour. If the duration value is set high then the number of notifications will drive the policy, and the latestNotify policy will cause a single notification for every specified number of notifications, e.g. send the latest event notification for every 500 events notifications generated. The scope of the batchNotify policy is the Hosting CSE for the one subscription it is set in, and does not extend to transit CSEs.
In the case when an Originator wants to limits the rate at which notifications are sent, it may set the rateLimit attribute (notification policy) to express its notification policy. The rateLimit policy is based on two values, a maximum specified number of events (e.g. 10, 000) that may be sent within some specified rateLimit window duration (e.g. 60 seconds), and the rateLimit window duration. When the Hosting CSE generates a notification event it checks the rateLimit policy and whether the current total number of events sent is less than the maximum number of events within the current rateLimit window duration. If the current total is less than the maximum number then the notification may be sent. If it is equal or more then the notification is temporarily stored until the end of the current window duration, when the sending of notification events restarts in the next window duration. The sending of notification events continues as long as the maximum number of notification events is not exceeded within the window duration. The rateLimit windows are sequential (not rolling). The rateLimit policy may be used simultaneously with batchNotify and notificationStoragePriority policies. The scope of the rateLimit policy is the Hosting CSE for the one subscription it is set in, and does not extend to transit CSEs.
The pendingNotification attribute (notification policy) indicates the notification procedure to be followed following a connectionless period (due to lack of notification schedule or reachability schedule). When the Hosting CSE generates a notification with the pendingNotification, it shall check the notification schedule of the subscription and the reachability schedule associated with theNotification Target. If there is no restriction then the notification is immediately sent, otherwise the notification may be cached according to the pendingNotification. If caching of retained notifications is supported on the Hosting CSE and contains the subscribed events then pending notification (those that occurred during the connectionless period) will be sent to Notification Target per the pendingNotification policy. If it is set to the "sendLatest", most recent notification should be sent and it shall have the Event Category set to "latest". Figure 10.2.10.7‑1 illustrates an example for this case. If it is set to "sendAllPending", all the missed cached notifications should be sent in the order they occurred. Figure 10.2.10.7-2 illustrates an example of this case. The Hosting CSE may use the pendingNotification policy to determine whether and how many interim notifications to retain in its cache. The pendingNotification policy may be used simultaneously with any other notification policy, which would impact what would be sent during the connection period. The scope of the pendingNotification is the Hosting CSE for the one subscription it is set in, and does not extend to transit CSEs.


[image: image4.emf]time

Noti.1

becomes

eligible

1 2 n

∼ ∼

Connectionless

(Noti. can’t sent)

n

Connection

If the value of 

pendingNotificationis set 

to “sendLatest”, the 

notification n is only sent 

among pending 

notifications.

Noti.n is sent

Noti.2

becomes

eligible

Noti.n

becomes

eligible

n+1

n+1

Noti.n+1

becomes

eligible

Noti.n+1 is sent


Figure 10.2.10.7-1: Notification Mechanism when pendingNotification (sendLatest) is used

[image: image5.emf]time

Noti.1

becomes

eligible

1 2 n

∼ ∼

Connectionless

(Noti. can’t sent)

Connection

Noti.2

becomes

eligible

Noti.n

becomes

eligible

n+1

n+1

Noti.n+1

becomes

eligible

Noti.n+1 is sent

If the value of 

pendingNotificationis set to 

“sendAllPending”, the 

aggregated notification is sent.

1 2 n

Agg.

Noti.Agg. is sent


Figure 10.2.10.7-2: Notification Mechanism when pendingNotification (sendAllPending) is used

In the case an Originator wants (for example in the case where notification events occur on an irregular basis) that notifications are be sent for events generated prior to the creation of this subscription, it may set the preSubscriptionNotify attribute (notification policy) to express its notification policy. The preSubscriptionNotify policy is based upon a number of prior notifications that the Originator wants to be sent. When creating a subscription the Hosting CSE checks the preSubscriptionNotify policy. If caching of retained notifications is supported on the Hosting CSE and contains the subscribed events then prior notification events shall be sent to Receiver(s) up to the number requested by the preSubscriptionNotify policy. If caching of retained notifications is supported for the subscribed events but the available number of prior notification events is less than the number requested then the Hosting CSE shall send those notifications. If caching of retained notifications is not supported, then the response to the subscription creation request shall include a warning. The preSubscriptionNotify policy may be used simultaneously with any other notification policy. The scope of the preSubscriptionNotify policy is the Hosting CSE for the one subscription it is set in, and does not extend to transit CSEs.

The latestNotify attribute (notification policy) indicates if the Originator is only interested in the latest state of the subscribed-to resource. If the latestNotify attribute is set, the Hosting CSE shall assign  Event Category parameter of value 'latest' to the latest notifications generated pertaining to the subscription created. In the case the Receiver is a transit CSE which forwards or aggregates the notifications before sending them to the Originator or the other transit CSEs, upon receiving the notification with the Event Category set to 'latest', the transit CSE shall identify the latest notification with the same subscription reference while storing the notifications locally. When the Receiver as a transit CSE needs to send the pending notifications, it shall send the latest notification only for that subscription. The scope of the latestNotify policy is the Hosting CSE as well as transit CSEs.
The notificationContentType attribute (notification policy) indicates the notification content type that shall be contained in notifications. The notificationContentType values shall be "modified attributes" (i.e. send the modified attribute(s) only),  or "all attributes" (i.e. send all attributes of the subscribed-to resource), or "ID" of the resource indicated in the notificationEventType condition tag or the value “Trigger Paload”. If it is not given by the Originator at the creation procedure, the default is "all attributes". The scope of the notificationContentType policy is the Hosting CSE for all  Originator's subscriptions, and does not extend to transit CSEs. The value “Trigger Payload” for this attribute is only valid when at least one “notificationEventType” tag in the eventNotificationCriteria attribute is set to “Trigger Received targeting the MN/ASN-AE associated with the <AE> parent resource”.
The notificationEventCat attribute (notification policy) indicates an event category of the subscription that shall be included in the notification request to be able for the Notification Target to correctly handle the notification. When the notificationEventCat policy is not configured by the Originator, it shall be determined as a default value by the CMDH policy. The scope of the notificationEventCat policy is the Hosting CSE for all Originator's subscriptions, and does not extend to transit CSEs.
When the Hosting CSE receives unsuccessful Notify response with subscription verification failure information, the Hosting CSE shall send unsuccessful result to the Originator of the corresponding <subscription> creation procedure if it has not created the <subscription> resource, otherwise the Hosting CSE may delete the corresponding <subscription> resource.
Table 10.2.10.7-1: Notification Procedure
	Description

	Associated Reference Point
	Mca, Mcc and Mcc'

	Information in Request message
	According to clause 10.1.6 with the following additions:

Content:
· notification data that represents the content of subscribed-to resource may be included. The content is decided by notificationContentType attribute
· subscription reference (i.e. address of the corresponding <subscription> resource) that generates this notification shall be included
· notification event type shall be included
· monitored operation and its Originator information shall be included when operationMonitor condition in the eventNotificationCriteria attribute is configured
· notificationForwardingURI in case the subscriber intends the group to aggregate the notifications

	Processing at Originator before sending Request
	Notification is triggered regarding subscription information in a <subscription> resource

	Processing at Receiver
	According to clause 10.1.6

	Information in Response message
	According to clause 10.1.6

	Processing at Originator after receiving Response
	If the response includes 'targetRemoval' indicator which is set to TRUE, then the Notifier(i.e. the Originator of the Notify request) shall perform the procedure in clause 10.2.10.8 (Notification target removal handling procedure)

	Exceptions
	According to clause 10.1.6


-----------------------End of change 4---------------------------------------------

KNX, OCF, XYZ Light





IPE-AE





Controlling AE


 





[binarySwitch]





powerState = true





Update request: Set to “false”








KNX, OCF, XYZ Light





IPE-AE





Controlling AE


 





[binarySwitch]





powerState = false





Notification request to IPE-AE


Notification response: OK





5. Can’t switch off





KNX, OCF, XYZ Light





IPE-AE





Controlling AE


 





[binarySwitch]





powerState = true





Update request: Set to “true”


Update response: OK





Is IPE-AE responsible?�When to be done?


Multiple attempts before?





How does the AE learn about failure?�How soon need to check?


What happens with other subscribers?





2. Update response: OK








Figure � SEQ Figure \* ARABIC �1�. Issues with state information replicated in “action” attributes





KNX, OCF, XYZ Light





IPE-AE





Controlling AE


 





[binarySwitch]





powerState = true





Update request: Set to “false”





KNX, OCF, XYZ Light





IPE-AE





Controlling AE


 





[binarySwitch]





powerState = true





Notification request to IPE-AE





Can’t switch off





KNX, OCF, XYZ Light





IPE-AE





Controlling AE


 





[binarySwitch]





powerState = true





5. Notification Response: �Notification received, action not successful





Wait with response to update





Update response: No success





Figure � SEQ Figure \* ARABIC �2�. Subscription with “blocking update” effect, no success





KNX, OCF, XYZ Light





IPE-AE





Controlling AE


 





[binarySwitch]





powerState = true





Update request: Set to “false”





KNX, OCF, XYZ Light





IPE-AE





Controlling AE


 





[binarySwitch]





powerState = true





Notification request





Switching off is successful





KNX, OCF, XYZ Light





IPE-AE





Controlling AE


 





[binarySwitch]





powerState = false





5. Notification Response: �Notification received, action successful





Wait with response to update





Update response: Success





Figure � SEQ Figure \* ARABIC �3�. Subscription with “blocking update” effect, success








© 2017 oneM2M Partners
                                                                                                   Page 2 (of 23)



[image: image7.png]


_1560590068.vsd
time


Noti.1
becomes
eligible


1


2


n


∼


∼


Connectionless
(Noti. can’t sent)


n


Connection


If the value of pendingNotification is set to “sendLatest”, the notification n is only sent among pending notifications.


Noti.n is sent


Noti.2
becomes
eligible


Noti.n
becomes
eligible


n+1


n+1


Noti.n+1
becomes
eligible


Noti.n+1 is sent



_1560590069.vsd
time


Noti.1
becomes
eligible


1


2


n


∼


∼


Connectionless
(Noti. can’t sent)


Connection


Noti.2
becomes
eligible


Noti.n
becomes
eligible


n+1


n+1


Noti.n+1
becomes
eligible


Noti.n+1 is sent


If the value of pendingNotification is set to “sendAllPending”, the aggregated notification is sent.


1


2


n


Agg.


Noti.Agg. is sent



_1560590014.vsd

