
	[image: image19.png]

	OneM2M

Technical Report

	Document Number
	oneM2M-TR-0007- Study_of_Abstraction_and_Semantics_Enablements -v-0.4.0

	Document Name:
	Study of Existing Abstraction & Semantic Capability Enablement Technologies for consideration by oneM2M

	Date:
	2013-August-15

	Abstract:
	Collect and study the state-of-the-art technologies that may be leveraged by oneM2M to enable its abstraction & semantics capability. This includes a collection of terminology and use cases considered by other standardization or industrial fora working on ontologies, semantics and abstraction, as well as relevant source material proposed by Partner Types 1 for transfer to oneM2M and contributions from Partner Types 2.
Evaluate the possibility of leveraging all or part of those technologies and/or solutions by oneM2M architecture and protocols to enable its abstraction & semantics capability.

oneM2M IPR and copyright statements
“Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of an agreement to be bound by all provisions of IPR policy of the admitting Partner Type 1 and permission that all communications and statements, oral or written, or other information disclosed or presented, and any translation or derivative thereof, may without compensation, and to the extent such participant or attendee may legally and freely grant such copyright rights, be distributed, published, and posted on oneM2M’s web site, in whole or in part, on a non-exclusive basis by oneM2M or oneM2M Partners Type 1 or their licensees or assignees, or as oneM2M SC directs.
Contents

2Contents

1
Scope
4
2
References
4
2.1
Normative references
4
2.2
Informative references
4
3
Definitions, symbols, abbreviations and acronyms
4
3.1
Definitions
4
3.2
Symbols
5
3.3
Abbreviations
5
3.4
Acronyms
5
4
Conventions
5
5
Introduction on Abstraction and Semantic Capability Enablement in oneM2M
5
5.1
Overview
6
5.2
Use Cases
6
5.2.1
An example of Home Environment Monitoring Service using semantic mash-up
7
5.2.1.1
Description
7
5.2.1.2
Source (as applicable)
7
5.2.1.3
Actors
8
5.2.1.4
Pre-conditions
8
5.2.1.5
Triggers (if any)
8
5.2.1.6
Normal Flow (as applicable)
8
5.2.1.7
Post-conditions (if any)
10
5.2.1.8
High Level Illustration (as applicable)
10
5.3
Benefits of Abstraction and Semantics
11
6
Abstraction Technologies
11
6.1
Overview
12
6.2
Introduction of Existing Technologies
12
6.2.1
Introduction to ETSI M2M Device Abstraction
12
6.2.1.1
Architecture
12
6.2.1.2
Interworking with legacy devices (d) through abstract devices
12
6.2.1.3
Gateway Resource Abstraction (GRA) Capability
14
6.2.1.4
Subscription of Abstract Resources
14
6.2.1.5
Mapping Principle
14
6.2.x
Introduction to Home Gateway Device Abstraction Concept
17
6.2.x.1
Architecture
17
6.2.x
Technology x
18
6.3
 Gap Analysis of Existing Abstraction Relevant Technologies
18
6.3.1
Abstraction Related Requirements Gap Analysis Reference
18
6.3.2
Requirement 1
19
6.3.2.1
Technology 1
19
6.3.2.2
Technology x
19
6.4
oneM2M Architectural Considerations for Abstraction
19
6.4.1
Introduction
19
6.4.2
Technology 1
19
6.4.3
Technology x
19
6.5
Evaluation
19
7
Technologies for Semantic M2M System
19
7.1
Overview
19
7.1.1
Introduction to Semantics technologies
19
7.1.2
Key functionalities for Semantics
19
7.1.2.1
Semantic Analysis and Query
20
7.1.2.2
Reasoning
20
7.1.2.3
Ontology Repository
20
7.1.2.4
Ontology Modelling
21
7.1.2.5
Semantic Mash-up
21
7.1.2.6
Semantic Annotation
21
7.1.2.7
Device Abstraction
21
7.1.2.8
Data Repository
21
7.1.2.9
M2M Data Collection
21
7.2
Introduction of Existing Technologies
22
7.2.1
Introduction to ETSI Semantic M2M System
22
7.2.1.1
System Overview
22
7.2.1.2
Semantic Annotation
22
7.2.1.3
Semantic Mashups for Virtual Things
25
7.2.2
Technology x
26
7.3
Gap Analysis of Existing Semantics Relevant Technologies
26
7.3.1
Semantics Related Requirements Gap Analysis Reference
26
7.3.2
Requirement 1
26
7.3.2.1
Technology 1
26
7.3.2.2
Technology x
26
7.4
oneM2M Architectural Considerations for Semantics
27
7.4.1
Introduction
27
7.4.2
Technology 1
27
7.4.3
Technology x
27
7.5
Evaluation
27
8
Conclusions
27
8.1
Conclusions for Abstraction
27
8.2
Conclusions for Semantics
27
Proforma copyright release text block
27
Annexes
27
Annex <y>: Bibliography
28
History
28

1
Scope

The present document describes and collects the state-of-art of the existing technologies on abstraction & semantics capability, evaluates if the technologies can match the requirements defined in oneM2M, analyzes how the technologies can leverage the design of the architecture of oneM2M.
2
References

References are either specific (identified by date of publication and/or edition number or version number) or non‑specific. For specific references,only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.

2.1
Normative references

As a Technical Report (TR) is entirely informative it shall not list normative references.
The following referenced documents are necessary for the application of the present document.
Not applicable.

2.2
Informative references
The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.
[i.1]
ETSI TS 102 690: "Machine-to-Machine communication (M2M): Functional architecture".

[i.2]
ETSI TR 101 584: "Machine-to-Machine communication (M2M): Study on Semantic support for M2M Data".
[i.3]
HGI02029: "Smart Home Architecture and System Requirements".
3
Definitions, symbols, abbreviations and acronyms
3.1
Definitions

Abstraction: The process of mapping between a set of Device Application Information Models and an Abstract Application Information Model according to a specified set of rules.

Attribute: (also called “property”, “characteristics”, “characteristics”)
Example: Name, Time, Location
Ontology : An ontology is a formal specification of a conceptualization, that is defining Concepts as Objects with their properties and relationships versus other Concepts.

Physical entity: a tangible element that is intrinsic to the environment, and that is not specific to a particular M2M application in this environment.

Depending on the environment, the physical entity may be an appliance, a piece of furniture, somebody, a room of a building, a car, a street of a city, etc. To be part of the M2M/IoT architecture, a physical entity does not need to be connected through a direct network interface, or even to be identified through a universal identification scheme such as RFID/EPC global, provided it can be sensed by sensors that are supposed to be deployed in this environment, and possibly acted upon by actuators.

Relation : (also called “interrelation”) stating a relationship among Concepts
Example: “is-part-of”, “is-subtype-of”

Thing: an element of the environment that is individually identifiable in the M2M system.

Thing Representation: It is the instance of the informational model of the Thing in the M2M System. A Thing Representation provides means for applications to interact with the Thing.

3.2
Symbols

Clause numbering depends on applicability.

For the purposes of the present document, the [following] symbols [given in ... and the following] apply:

Symbol format

<symbol>
<Explanation>

<2nd symbol>
<2nd Explanation>

<3rd symbol>
<3rd Explanation>

3.3
Abbreviations

Abbreviations should be ordered alphabetically.

Clause numbering depends on applicability.

For the purposes of the present document, the [following] abbreviations [given in ... and the following] apply:

Abbreviation format

<ABBREVIATION1>
<Explanation>

<ABBREVIATION2>
<Explanation>

<ABBREVIATION3>
<Explanation>

3.4
Acronyms

Acronyms should be ordered alphabetically.

Clause numbering depends on applicability.

For the purposes of the present document, the [following] abbreviations [given in ... and the following] apply:

Acronym format

<ACRONYM1>
<Explanation>

<ACRONYM2>
<Explanation>

<ACRONYM3>
<Explanation>

4
Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [1].
5
Introduction on Abstraction and Semantic Capability Enablement in oneM2M
Editor’s Note: The chapter is to introduce concepts, use cases, benefits, etc.
5.1
Overview

While M2M systems benefit from the variety of existing connectivity technologies to make any M2M Service work in almost any environment, M2M Applications developers don’t expect to get into deep knowledge of each of these technologies for developing their applications. The abstraction of the technologies aims at hiding the complexity of the specific technologies by providing a single format to represent devices and unified methods directly usable by the applications.
Through Abstraction means, a M2M System decouples M2M applications from specific end device implementations – e.g. allows Home control Service to access a ‘switch’, whatever specific technology is used by the switch (be it KNX, or ZigBee, or DECT-ULE, or …) because the ‘switch’ interface is abstracted from any specific technology.

Going further in simplifying the life of the Application developer and of the end-user, Semantics approach consists in getting information on the ‘meaning’ of M2M data. Semantic mechanisms enable an application to find suitable M2M data / devices and use them (if permitted), and encourage the creation of an open market for M2M data. Moreover, Semantic is essential if the M2M System is expected to interact with real world entities (“things”) since a key role of Semantic is to provide a description of the relationship between things / data / information.

The semantics of specific M2M data can be provided by the industry segment that uses these data.This is the reason why oneM2M expects a lot of synergy with vertical domain industries when analysing possible solutions to provide Semantic support to M2M applications data thanks to their semantic description.

Figure 1 is an illustrated example of what is meant by both Abstraction and Semantics in this oneM2M TR.

[image: image2.emf]1. Application-level command

e.g. “lower the living room temperature ”

2. Abstract device -level command

e.g. "switch off the radiator with ID=00007 “

3. Techno-specific device-level command

e.g. "send the command < ZigBeeSpecific

Command> to endpoint ID=< ZigBeespecific ID>"

Application

translation

into

Semantic support

Abstract Information

Model

mapping

into

(syntacticsupport)

helps understanding the original data,

and the relationships between things, data, …

Abstraction of the specifictechnologies

1. Application-level command

e.g. “lower the living room temperature ”

2. Abstract device -level command

e.g. "switch off the radiator with ID=00007 “

3. Techno-specific device-level command

e.g. "send the command < ZigBeeSpecific

Command> to endpoint ID=< ZigBeespecific ID>"

Application

translation

into

Semantic support

Abstract Information

Model

mapping

into

(syntacticsupport)

helps understanding the original data,

and the relationships between things, data, …

Abstraction of the specifictechnologies

Figure 1 – Abstraction versus Semantic for oneM2M

5.2
Use Cases
Editor’s Note: The section is to introduce several use cases for abstraction&semantics.
Editor’s Note: It is FFS whether to keep use cases in this TR or oneM2M use case collection TR.

5.2.1
An example of Home Environment Monitoring Service using semantic mash-up
5.2.1.1
Description

Semantic mash-up provides functionalities to support new services through the creation of new virtual devices, which do not exist in physical world, by obtaining semantic information through semantic descriptions from existing M2M resources in the M2M System.

Semantic mash-up function in the M2M system may have the following advantages:

· Communication efficiency: By using virtual devices created through mash-up, M2M Applications can obtain necessary information by using only a single query to M2M system. It reduces communication overload between the M2M System and the applications.

· Reusability: Virtual devices created by mash-up can be used by multiple M2M applications. It can improve a reusability of information.

· Authentication/security: When a mash-up needs information of devices residing in several M2M systems, authentication/security issues can be solved by M2M systems rather than applications.

For mash-up, abstract device is defined as follows:

· Abstract device: a resource represented in the M2M System through the abstraction of either a physical device or a functionality implemented as a software.
Virtual device is a new resource created by a mash-up of multiple abstract devices. Additionally, it also includes a composite virtual device created by the mash-up of either other abstract devices or existing virtual devices. It is manipulated as a general M2M resource.

Virtual devices can provide new information which the existing resources do not contain.

In general, the virtual devices are created in the M2M System by a query from a M2M Application. They can be created through the composition of other existing virtual devices as well as physical and abstract devices. The M2M System manages the created virtual devices.

For example, if a user in a home requests home environment information like Discomfort Index (DI) or Air Pollution Index (API), new virtual device (i.e., ‘Home Environment Management’) is created through mash-up of data from home appliances (e.g., heater, air conditioner, humidifier, air cleaner, etc.) equipped with environment sensors (e.g., sensors for temperature, humidity, CO2 level, VOC(Volatile Organic Compound) level, etc.) in the home. The virtual device-‘Home Environment Management’ provides users with DI or API calculated using average values of temperature, humidity, CO2 level or VOC level based on collected data from various environment sensors.

5.2.1.2
Source (as applicable)

Modacom (TTA)

5.2.1.3
Actors

· M2M Application: An application to provide a M2M application service based on M2M resources to M2M application service users.

· M2M System: A system to provide M2M service functions.
· Physical Device: A physical M2M appliance equipped with environment sensors (e.g., fan/heater, air conditioner, composite sensor, humidifier, air cleaner, etc.)

5.2.1.4
Pre-conditions

· A M2M System has capabilities for semantic processing.

· Physical devices and abstract devices for home appliances equipped with environment sensors are registered in a M2M System.

· A M2M resource has semantic description for semantic based searching and discovery.

5.2.1.5
Triggers (if any)

none
5.2.1.6
Normal Flow (as applicable)

The following figure shows the procedure for creation and execution of a virtual device for the request in case that a M2M Application sends a semantic query for DI or API.

[image: image3]
1. A M2M Application sends a semantic query to a semantic engine in a M2M System (e.g., What’s DI or API inside home?).
2. The Semantic Engine discovers virtual device which can meet the semantic query in a CSE.
3. The CSFs return the result that there is no appropriate resource (Not Found).
4. The Semantic Engine determines semantic description to create a virtual device (e.g., i) information of temperature and humidity required for calculating DI, ii) the method for calculating DI from data on temperature and humidity, etc.).

5. The Semantic Engine discovers related member resources (i.e., abstract devices).
6. The CSFs return URIs of discovered member resources.
7.The Semantic Engine requests to create a virtual device and associate member resources with the virtual device.
8. The CSFs return information for created virtual device.
9. The Semantic Engine starts to run the virtual device.
10. The Semantic Engine collects M2M data based on information from member resources of the virtual device (e.g., values of temperature and humidity obtained from sensors in a home, etc.) .
11. The CSFs return the result.
12.The Semantic Engine applies a service logic using the collected values (e.g., the calculation of average temperature and humidity in a home, the calculation of DI value, etc.).
13. The Semantic Engine returns the result to the M2M Application (e.g., the current DI value inside home).

5.2.1.7
Post-conditions (if any)

none
5.2.1.8
High Level Illustration (as applicable)

In case that a M2M Application requests the information for DI or API, a M2M System creates a new virtual device (i.e., ‘Home Environment Management’) through mash-up of related data after analysing the request and identifying required data. DI and AI are created as new attributes inside the ‘Home Environment Management’ virtual device. To find a DI value, a Semantic Engine inside the M2M System calculates average values of temperature and humidity from the data obtained through mash-up. After that, the DI value calculated from the average values is provided to the M2M Application. Similarly to DI, the API value is also calculated through mash-up of data for CO2, VOC level and is provided to the M2M Application.

[image: image4]
5.3
Benefits of Abstraction and Semantics
By hiding the complexity of underlying networks, the Abstraction feature simplifies M2M for users and Applications developers. As services become independent of the various specialized technologies, it gives the opportunity to the Applications developers to focus on innovation of new services, which eventually fosters the development of the M2M market.
Semantic support for M2M, by describing the meaning of M2M data, that will also re-use existing semantics from vertical domains, is a way to enhance interoperability between initially “siloed” applications. Another key benefit from Semantic is that it enables Applications to directly interact with real-world entities, through their virtual annotated-representation..

6
Abstraction Technologies
Editor’s Note: The chapter is to introduce abstraction technologies.
6.1
Overview

Editor’s Note: The section provides an overview of technologies used for abstraction capability.
6.2
Introduction of Existing Technologies
Editor’s Note: The section provides existing technologies that can be used for providing abstraction capability enablement in oneM2M..All the description in this section is the introduction to the currently existing technology. The relation between the technology and oneM2M is not covered in this section.
6.2.1
Introduction to ETSI M2M Device Abstraction
6.2.1.1
Architecture
Native devices (type d) can host several applications. For example, a ZigBee device can have several on/off switches. Each switch is a distinct application and needs to be registered to the Gateway as well as the Network. As specified in the TS 102 690 [i.1] section 6.1, the GIP capability provides interworking between non ETSI compliant devices and the GSCL.

Figure 6.1 [i.2] shows a high-level architecture for supporting device abstraction. Native devices (e.g. ZigBee devices) are first registered in the GSCL as native applications through the GIP capability. These native applications are then abstracted in corresponding abstract resources through a capability supporting device abstraction, which is called the Gateway Resource Abstraction (GRA) capability. Both native and abstracted applications are then registered (or announced) to the NSCL via mId interface. Both GSCL and NSCL have abstract resources in their resource tree.

This architecture provides both legacy M2M applications, which have access network specific knowledge, and standard M2M applications to have an access to native resources. The legacy M2M applications can access through the native applications while the standard M2M applications do through the abstracted resources.

[image: image5.png]
Figure 6.1: High-level architecture for supporting device abstraction

6.2.1.2
Interworking with legacy devices (d) through abstract devices
The following figure provides a resource-entity model that represents an M2M area network. In this model, each device in the network has native data and methods which are provided via access network-specific interfaces to applications. In order to provide interworking with M2M network applications that do not understand access specific technologies, the model defines an abstract application and linked it to its native application.

Since not all native applications are directly mapped to an abstracted application, the model provides 1 (native application) to 0..n (abstract application) relationship. All child entities of both native and abstract application such as interface, data field and method have the same 1 to 0.n relationship.

[image: image6]
Figure 6.2: Generic entity-relation diagram for an M2M Area Network and its resources

This entity-relation diagram is applicable to the following M2M Area Networks:

· ZigBee

· DLMS/COSEM

· Zwave

· BACnet

· ANSI C12

· mBus

Native resource.
Native resource is an Application resource specified in the TS 102 690 that shall store network specific information about the Application. Same as application resource, native resource is created as a result of successful registration of an Application with the local SCL. M2M network applications that understand network specific information can interwork with legacy devices (d) through this native resource.

Abstract resource.
An abstracted resource shall point to the native resource hosted in another SCL or in the same SCL. The abstracted resource is a virtual resource which consists of a set of generalized attributes instead of local area network specific attributes, such as, the searchStrings, the abstractLink to the original resource, a set of genericCommands, which are visible to applications (e.g. toggle, on and off), and the accessRight. The purpose of the abstracted resource is to represent the original resource without any network-specific information, so that the issuer does not need to know about any prior knowledge of the used underlying network technology. An abstracted resource itself shall be considered the same as other native resources that are located in the same SCL. When an abstracted resource is discovered, it returns a direct reference to the native resource.

6.2.1.3
Gateway Resource Abstraction (GRA) Capability
At start-up of forming a local area network, the GIP capability detects new devices that have joined the network and creates original M2M resources on GSCL, which are specific to the local network technology. When the GIP capability creates the original resources, the GRA capability detects new resources, creates their corresponding abstract resources and registers them in proper SCLs.

The GRA Capability in the M2M Gateway is an optional capability, i.e. deployed when needed/required by policies.

The GRA Capability provides the following functionalities:

· Detects any additions of new native resources in the GSCL.

· Generates an abstracted resource from the native resource, which is non ETSI compliant resource.

· Links native resources to their corresponding abstract resources.

· Registers abstract resources to the NSCL.

· Subscribes to native resources to be notified any updates.

· Synchronize abstracted resources to their native resources.

· Provides functional mapping between the abstracted information (i.e. generic attributes and commands) and the underlying network specific information.

· GRA may either be an internal capability of GSCL or an application communicating via reference point dIa with GSCL. GRA can also be merged with the xIP (i.e. GIP, NIP and DIP) capability, so that provides resource abstraction and interworking capabilities together.
6.2.1.4
Subscription of Abstract Resources
Any xA in the ETSI M2M architecture should be able to create a subscription to an abstract resource. The xSC is responsible for managing the subscription. Any xA that subscribes to an attribute value can be notified when the value changes.
6.2.1.5
Mapping Principle
This section describes the mapping principles that are used to map a generic M2M abstract resource into a native M2M resource. There exist two ways of describing an abstract device. The first one is to consider each abstract device as an application. The second mapping method uses the subcontainers resource so that each abstract device is considered as a container resource and registered to the network application where they are belonging to.

Representing the M2M Area Network using Link: Each abstract application belonging to a Device (N.B.: they are not ETSI M2M Applications) is modeled with an ETSI M2M <abstract-application> resource. The URI used to access this <abstract-application> resource has the following format:

<sclBase>/applications/<networkX_deviceY_abstract-applicationZ>

The <abstract-application> resource contains an ETSI M2M <container> sub resource. The URI used to access this <container> resource has the following format:

<sclBase>/applications/<networkX_deviceY_abstract-applicationZ>/containers/descriptor

The <container> resource contains one or more <contentInstance> sub resource. The “content” attribute of this sub resource contains the representation of the Application. In particular, since an Application can implement several Interfaces, each of them modeled with ETSI M2M resources (see next bullet for description), the “content” attribute of the <contentInstance> resource may contain the URIs of the ETSI M2M resources representing these Interfaces. The URI used to access the <contentInstance> resource containing the current representation of the Application has the following format:

<sclBase>/applications/<networkX_deviceY_abstract-applicationZ>/containers/descriptor/contentInstances/latest

The <contentInstance> resource pointed by the “latest” attribute of the contentInstances resource contains always the current representation of the Device.

Each Data Field and each Method belonging to an Abs_Interface is generalized from their corresponding native Data Field and method. Same as to the native one, they can be mirrored or retargeted.

If the Data Field or the Method is mirrored the ETSI M2M <abstract_application> resource modeling the Application contains an ETSI M2M <container> sub resource for each interface element mirrored (either Data Field or Method). The URI used to access this <container> resource has the following format:

<sclBase>/applications/<networkX_deviceY_abstract-applicationZ>/containers/<abs_interfaceW_datafieldN>

or

<sclBase>/applications/<networkX_deviceY_abstract-applicationZ>/containers/<abs_interfaceW_methodM>

The <container> resource contains one or more <contentInstance> sub resource. The “content” attribute of this sub resource contains the representation of the Data Field or the Method; for the Data Field it is its value, for the Method it is the actual parameters used for a Method invocation or the result of a Method invocation. The URI used to access the <contentInstance> resource containing the current representation of the Data Field or the Method has the following format:

<sclBase>/applications/<networkX_deviceY_abstract-applicationZ>/containers/<abs_interfaceW_datafieldN>/contentInstances/latest

or

<sclBase>/applications/<networkX_deviceY_abstract-applicationZ>/containers/<abs_interfaceW_methodM>/contentInstances/latest

The ETSI M2M <abstract_application> also has a link to its native <application>. The URI used to access the <native_application> resource containing the native representation of the resource has the following format:

<sclBase>/applications/<networkX_deviceY_native-applicationZ>

Figure 6.3 provides an overview of the resources used to model an example of an abstract device.

[image: image1.png][image: image15.png]
[image: image7]
Representing abstract device using subcontainers:In this representation method, the “subcontainers” resource can be used instead of the link. The subcontainers resource is a resource that is used to represent a collection of sub-container <container> resources. Since the subcontainers resource links a <container> resource with sub-container <container> resources, e.g. ../containers/<parentcontainer>/subcontainers/<container>, all abstract devices and original devices are represented as a container.

For example, in the representation using subcontainers, each device regardless of type (i.e. abstract or original) is described as a container and included in the subcontainers of the M2M Area Network application resource. The URI used to access the <container> resource of an abstract device Y has the following format:

<sclBase>/applications/<networkX >/subcontainers/<networkX_deviceY_abstract_container>

while the <container> resource of an original device Y has the following format:

<sclBase>/applications/<networkX >/subcontainers/<networkX_deviceY_container>

The <subcontainers> resource contains one or more containers for devices. Figure 6.2 provides an overview of the resources used to model an example of an abstract device using the subcontainers resource:

[image: image8]
6.2.x
Introduction to Home Gateway Device Abstraction Concept
6.2.x.1
Architecture

Smart Home Abstraction Layer (SHAL) maps appliances to a common representation independent of the home automation technology. SHAL translates protocol-independent requests from applications to protocol-specific ones and then forwards them to the appropriate driver. SHAL represents an Abstract Application Interface for appliances – a technology agnostic description of appliances. The following Figure shows a high-level conceptual architecture for Home Gateway device abstraction technology. [i.3]

[image: image9.emf]Smart Home Abstraction Layer (SHAL)IF4/IF1AppN

D1D2D3D4D5DMSmart home busses connecting to smart home devices and sensors

Cloud Services

IF1IF2Home Gateway EnvironmentIF4 IF0

Repository

Middleware Framework(e.g. like oneM2M CSE)

DriversIF3

Figure 2 A high-level conceptual HGI architecture
IF1 Abstraction Application Interface: provides a common representation of appliances in the Home Domain to the Execution Environment, so that HG Applications can be independent of the different home automation technologies. For example a ZigBee lamp and a ZWave lamp are represented in the same way through an OSGi Service, so that an application can switch both off without dealing with Zigbee/ZWave specifics.

IF2 Device Application Interface: In some cases (mainly for management purposes) it is useful to have direct access to the home automation protocol, in order to do for example protocol-specific configuration or troubleshooting.

IF3: provides “higher-level” service application interface
IF4 Remote Representation: defines the representation of the abstract application interfaces for the backend over a remote protocol. The data corresponds to the data available through IF1, 2 and 3. This reference point also maps remote protocol events to a suitable local notification service for the HG apps.

IF0 External Reference Point: defines the external reference point with bindings to selected protocols.

SHAL Middleware translates ALL of protocol and data models into IF1 primitives what is needed by local networked Appliances. The Home Gateway supports the Cloud protocol(s) over IF4, providing required handshaking and (proxied) status information from Appliances. There is a need to extract the data and commands from the Cloud protocol and translate ALL aspects to primitives on IF1 software interface. Each driver for a local network technology MUST properly translate IF1 primitives into the (proprietary or standardized) signalling on the local network.
Main goals of SHAL are as follows:
1. To provide unified APIs for application developers to command, control and query home appliances

2. Independence of underlying HAN technologies so that an application developer doesn’t need to know anything about Zigbee, Z-Wave, wireless m-bus etc.

3. To enable applications to be portable across different HGI compliant devices

4. To enable extending the system with additional HAN technology support without service interruption

5. Application should be able to use a pass-through mechanism to use technology-specific functions

The abstract appliance interface descriptions should be mappable to various environments such as Java and/or OSGi, other execution environments (i. e. iOS, Android), REST APIs and other remote protocols (SOAP, CORBA etc.)

[image: image10]
6.2.x
Technology x
Editor’s Note: The section provides a potential technology.

6.3
 Gap Analysis of Existing Abstraction Relevant Technologies
Editor’s Note: The section lists all the requirements related to abstraction in oneM2M and analyzes how the proposed architectures can fulfil the requirements and identifies potential gaps.The section also gives reference to the specification of the analysed technologies.
6.3.1
Abstraction Related Requirements Gap Analysis Reference
Editor’s Note: The table below gives cross reference to the requirements and the technologies. The matrix represents whether or not the technology can fulfil the requirement. At the same time, in the following sections, detailed description of the depth of how well the technology can fulfil the requirement should be shown.
	
	Technology 1
	Technology x
	

	DSR-XX1
	
	
	

	DSR-XX2
	
	
	

	
	
	
	

Table 1 Requirements fulfilment reference
6.3.2
Requirement 1
Editor’s Note: The section gives descriptions in depth how the technologies can fulfil each abstraction related requirements defined in oneM2M.

6.3.2.1
Technology 1

6.3.2.2
Technology x

6.4
oneM2M Architectural Considerations for Abstraction
6.4.1
Introduction

This section analyzes whether utilisation of the analysed abstraction technologies, to fulfil the oneM2M abstraction related requirements, results in any architectural recommendations for, or potential constraints to, the oneM2M architectural design. This section also highlights any restrictions that the oneM2M arhctecture potentially places on utilisation of the analysed abstraction technologies within oneM2M.
6.4.2
Technology 1

6.4.3
Technology x
6.5
Evaluation

Editor’s Note: The section evaluates the discussed architectural considerations for abstraction.
7
Technologies for Semantic M2M System
Editor’s Note: The chapter is to introduce technologies that enable adding semantics to the M2M system.
7.1
Overview

7.1.1
Introduction to Semantics technologies

Editor’s Note: TBD

7.1.2
Key functionalities for Semantics
Figure 7.1 shows a generic functional model to support semantics for various M2M applications. The functionalities of Figure 7.1 are logically composed of three main parts:

· Service access which provides an interface with various M2M applications;
· Abstraction & semantics which perform main functionalities for semantics to M2M data and resources;
· Data access which provides connections with a device and/or a gateway for accessing M2M data.

[image: image11.wmf]Semantic Analysis and Query

Semantic Annotation

Ontology

Modeling

Semantic Mash

-

Up

Reasoning

Service

Access

Abstraction

&

Semantics

Data

Access

M2M Data Collection

Device Abstraction

M2M Applications

Ontology

Repository

Data

Repository

Figure 7.1: Generic functional model for supporting semantics

7.1.2.1
Semantic Analysis and Query
In semantic analysis and query, the requests from an M2M application are analyzed semantically. Based on the analysis, it creates semantic query messages and sends the messages to functional components (e.g., ontology repository, reasoning, semantic mash-up, etc.) in abstraction and semantics for requesting semantic information. After obtaining the requested information, it responds to the M2M application.
7.1.2.2
Reasoning

Reasoning is a mechanism to derive a new implicit knowledge from semantically annotated data and to answer complex user query. It can be implemented as a piece of software to be able to infer logical consequences from a set of asserted facts or axioms.

7.1.2.3
Ontology Repository

Ontology repository is storage of resources defined based on Ontology.

Ontology repository provides a way for storing, retrieving and maintaining of knowledge (i.e., ontology) which is described as OWL or RDF. It should be able to handle large-scale data sets with a lot of concepts for various purposes (e.g., publishing, sharing, indexing, searching, reuse of ontology, etc.). It support languages for query (e.g., RDF Data Query Language(RDQL), QWL Query Language(QWL-QL), SPARQL Protocol And RDF Query Language(SPARQL), etc.).

7.1.2.4
Ontology Modelling
Ontology is a formal specification of a conceptualization that is defining concepts as objects with their properties and relationships versus other concepts. Therefore, Ontology can be defined as a linguistic artifact that defines a shared vocabulary of basic concepts for discourse about a piece of reality (subject domain) and specifies those concepts including operations. Ontology modeling is the process for building an ontology which is used to model a domain and support reasoning about concepts. Examples of languages for ontology modeling are XML-based RDF, RDF Schema(RDFS), OWL, etc.

7.1.2.5
Semantic Mash-up

Semantic mash-up provides functionalities to support new services through the creation of new virtual devices, which do not exist in physical world, by obtaining semantic information through semantic descriptions from existing M2M resources in the M2M System.
7.1.2.6
Semantic Annotation

Semantic annotation of M2M resources is a method for adding semantic information to M2M resources so that it provides consistent data translation and data interoperability to heterogeneous M2M applications. Semantically annotated M2M resources can be contacted by an M2M application that understands what data are provided by the resources and what these data means. These annotations provide more meaningful descriptions and expose M2M data than traditional M2M system alone. Semantic information is annotated using Resource Description Framework(RDF) or Web Ontology Language(OWL).

7.1.2.7
Device Abstraction
Device abstraction is a process of mapping between a set of Device Application Information Models and an Abstract Application Information Model according to a specified set of rules. It allows to communicate with multiple, different but semantically similar devices through a virtual device that offers the functionality of the abstracted Application Information Model.

7.1.2.8
Data Repository
Data repository basically stores new data. In addition, it also provides functions to support the search, modification and deletion of the stored data.
7.1.2.9
M2M Data Collection
From devices with sensors and/or gateways, raw data are collected and stored in data repository.
7.2
Introduction of Existing Technologies
Editor’s Note: The section provides existing technologies that can be used for providing semantics capability enablement in oneM2M.. All the description in this section is the introduction to the currently existing technology. The relation between the technology and oneM2M is not covered in this section.
7.2.1
Introduction to ETSI Semantic M2M System
7.2.1.1
System Overview
Figure 7.1 [i.2] describes a high-level architecture of Semantic M2M with internal components.

[image: image12.png]
Figure 7.1: Semantic M2M system overview

Semantic engine:

Semantic engine plays a key role in Semantic M2M system. Similar to interworking proxy capabilities (xIP) in NSCL [i.1], semantic engine can be deployed in NSCL. For discovery, the engine receives a semantic query; handles the query and returns results.

Semantic engine provides functionalities as follows:

· validate semantic attributes (according to semantic model, e.g., RDF and OWL, either defined by ETSI M2M or outside of ETSI M2M),

· process semantic queries, for example decomposing a query into multiple sub-queries, aggregating the results from sub-queries.

M2M ontologies:

M2M ontology is a formal description of M2M resources, of the structures of things, properties, processes and their relationships in a domain.

7.2.1.2
Semantic Annotation
Semantic annotation of M2M resources is a method for adding semantic information to M2M resources so that provides consistent data translation and data interoperability to heterogeneous M2M applications. Semantically annotated M2M resources can be contacted by an M2M application that understands what data are provided by the resources and what these data means. These annotations provide more meaningful descriptions and expose M2M data than traditional M2M system alone.

In brief, M2M resources usually consist of sensor devices monitoring and reporting a specific data and actuators executing a given command. Comparing with other semantic services, such as Semantic Web and Semantic Sensor Web, semantic M2M needs to provide semantic information for both data and commands.

In many cases, semantic information is annotated using RDF because RDF provides a general, flexible way to decompose any knowledge into discrete pieces and can be stored in many different formats. In addition, RDF is useful to encode information about relations between things which includes a lot of semantic information. A triple store is usually selected in order to store and retrieve such relational information. However, ETSI M2M uses a hierarchical resource tree to store resource information and provide discovery of these resources.

The first step towards a semantic M2M system is to annotate semantic information to its managing resources. Semantic information is retrieved from the relations between M2M resources and can be annotated as an attribute of the resources. The ETSI M2M system uses a hierarchical tree structure to store and represent its resources. Thus, in the ETSI M2M system, semantic information can be retrieved from the relations between M2M resources and embedded as an attribute of the resources.

The semanticInfo attribute contains the semantic description of the thing. This ontology shows what is the meaning of the thing. This semantic description is expressed with namespace prefix to avoid name conflicts.
To describe relationships with other things, the relations attribute can be introduced, this attribute can have a pair format, i.e. <relation : link to other thing>. For example, a Zigbee temperature sensor that is controlled by a Zigbee controller 1 can be described in the following format:

“m2m:isControlled – Zigbee-Controller-1” – (example 1)

These senaticInfo and relations attributes are a subject for resource discovery so that any applications can easily discover ETSI M2M resources without any domain specific expert knowledge.

The object of relation, i.e. link to other thing, can be any type of resources. All type of things in ETSI M2M, physical thing, abstract devices and virtual things, can be used as a subject for link to other thing. This field should be an (absolute or relative) URI pointing to another ETSI M2M resource. In the previous example, the Zigbee controller 1 is an actual thing that exists in the ETSI M2M system. Virtual things can be used to add more semantic information to the actual things.

For example, if a sensor is deployed in a room-1, semantic annotation between the sensor and the room-1 can add semantic information about the location. In this example, room-1 is not a physical object but a virtual thing. Through annotating the relationship between the sensor and room-1, user can discovery the sensor when asking sensors in the room-1. The relationship can be described in the following format:

“m2m:isDeployed – room-1” – (example 2)

A new semantic information can be easily created, updated and deleted through using ETSI M2M supported Restful commands, CREATE, UPDATE and DELETE, respectively. In order to avoid name conflicts between vocabularies used in semanticInfo and relations, namespace prefix and the namespace URI are also defined. For example, isDeployed could be defined differently in two different domains: sns:isDeployed and m2m:isDeployed. This means that other could define isDeployed with other namespace prefix. If semantic information is provided together with this namespace prefix, a reader could be able to understand that they are different semantic information even though they have the same name.

The namespace URI can also be introduced as an attributed. The following figure shows how semantinInfo, relations and namespaceURI can be expressed within the ETSI M2M resource tree. In this case, <namespaceURIs> contains a list of namespace URIs. For example:

<m2m=http://www.m2m-semantic.org/sensor#>
<sns=http://www.homeautomation.org/sensor#>

[image: image13]
Figure 7.2: An example of Namespace URI as part of a sub-resource of the application resource
The attributes used for annotating semantic information are described in the following table.

Table 7.1: Attributes for annotating semantic information

	Name
	Description

	semanticInfo
	This attribute contains the semantic description of the thing. This ontology shows what is the meaning of the thing.

	Relations
	This attribute is used to describe the relationships with other things. This attribute can have a pair format, i.e. <relation : link to other thing>.

For example, if a zibgee sensor is controlled by a Zigbee controller #1, <m2m:controlledBy – URI to Zigbee controller #1> can be a way of expressing a relationship to Zigbee controller.

	namespaceURIs
	This attribute is used to describe namespace URIs. This attribute contains the information about namespace prefix and the namespace URI.

For example, the m2m namespace with the URI http://www.etsi-m2m.org can be expressed as follows:

m2m=http://www.etsi-m2m.org/sensor#

Now semantic information of resources is stored in the ETSI M2M system. However, since legacy M2M systems do not support semantic queries, such as SPARQL, they need to provide a way to deliver semantic queries to the ETSI M2M system. For this purpose, the semantic M2M system should provide a capability to provide a unified access point of a semantic query to M2M applications.

When a semantic query is arrived at the semantic engine, it parses the query and generates RESTful sub-queries. The engine then processes the RESTful queries and gets resources from SCLs. The returned resources are checked for semantic information.

7.2.1.3
Semantic Mashups for Virtual Things
In the domain of Web Service, mashup is a method composing web data from more than one web resources to create a new service. Examples include metacrawlers that blends web search results from multiple search engines and news aggregators that aggregate integrated web contents in a single location. Similarly, the mashup technique can be used to create a new M2M resource in the M2M System.

In the M2M System, a M2M application can publish “virtual things” that act similar to physical resources and provide new information such as: number of vehicles that passed during the last minute/hour, average speed of vehicles, etc. These “virtual things” can be searched and discovered in the M2M System same as other M2M resources. However, in contrast to the physical things, virtual things are only implemented as software and do not require a network connectivity.

When a new virtual thing is registered (or published) to the M2M system, a list of member M2M resources is stored together as an attribute of the thing. If the virtual thing collects information dynamically at the time of receiving a query, a pre-programmed query that collects member resources is also stored along with other information.
Once a virtual thing is added to the NSCL, it is handled and processed the same as all other M2M resources. This means that virtual things are exposed to M2M applications to be discovered. An example of the semantic virtual mashup process is shown in the following Figure 7.3:

[image: image14]
Figure 7.3: Semantic virtual mashup procedure
· Step 1: M2M application sends a semantic query to the M2M system, for example, “Get the temperature of the room 1”.

· Step 2: semantic engine handles this like a normal semantic query so that sends a discovery request to the NSCL.

· Step 3: the NSCL returns the URI of a virtual thing that provides the temperature of the room 1.

· Step 4: semantic engine sends a request to the NSCL to retrieve the information of the virtual thing, i.e., service logic, mashup type (either static or dynamic) and pre-programmed queries.

· Step 5: the NSCL returns the requested information.

· Step 6: semantic engine instantiates the virtual thing. For a virtual thing that is frequently requested, it can be cached in semantic engine and handles the request directly.

· Step 7: the virtual thing at semantic engine collects required data from its member resources using the pre-programmed query.

· Step 8: the NSCL returns the results from member resources

· Step 9: the virtual thing applies its service logic (e.g., calculating the average value) to the received data and calculates the results.
7.2.2
Technology x
Editor’s Note: The section provides a potential technology.

7.3
Gap Analysis of Existing Semantics Relevant Technologies
Editor’s Note: The section lists all the requirements related to semantics in oneM2M and analyzes how the proposed architectures can fulfill the requirements and identifies potential gaps. The section also gives reference to the specification of the analysed technologies.
7.3.1
Semantics Related Requirements Gap Analysis Reference
Editor’s Note: The table below gives cross reference to the requirements and the technologies. The matrix represents whether or not the technology can fulfil the requirement. At the same time, in the following sections, detailed description of the depth of how well the technology can fulfil the requirement should be shown.

	
	Technology 1
	Technology x
	

	DSR-XX1
	
	
	

	DSR-XX2
	
	
	

	
	
	
	

Table 2 Requirements fulfilment reference
7.3.2
Requirement 1

Editor’s Note: The section gives descriptions in depth how the technologies can fulfil each semantics related requirements defined in oneM2M.

7.3.2.1
Technology 1

7.3.2.2
Technology x

7.4
oneM2M Architectural Considerations for Semantics
7.4.1
Introduction

This section analyzes whether utilisation of the analysed semantics technologies, to fulfil the oneM2M semantics related requirements, results in any architectural recommendations for, or potential constraints to, the oneM2M architectural design. This section also highlights any restrictions that the oneM2M arhctecture potentially places on utilisation of the analysed semantics technologies within oneM2M.
7.4.2
Technology 1

7.4.3
Technology x
7.5
Evaluation

Editor’s Note: The section evaluates the discussed architectural considerations for semantics.
8
Conclusions
Editor’s Note: Based on the work in WG2, the chapter evaluates how the analyzed technologies can help the designing of the architecture in order to fulfill the requirements in oneM2M.
8.1
Conclusions for Abstraction
8.2
Conclusions for Semantics
Proforma copyright release text block

This text box shall immediately follow after the heading of an element (i.e. clause or annex) containing a proforma or template which is intended to be copied by the user. Such an element shall always start on a new page.

Notwithstanding the provisions of the copyright clause related to the text of the present document, OneM2M grants that users of the present document may freely reproduce the <proformatype> proforma in this {clause|annex} so that it can be used for its intended purposes and may further publish the completed <proformatype>.

<PAGE BREAK>

Annexes

Each annex shall start on a new page (insert a page break between annexes A and B, annexes B and C, etc.).

Use the Heading 9 style for the title and the Normal style for the text.
Annex <A>:
Title of annex (style H9)
<Text>

<PAGE BREAK>

Annex :
Title of annex (style H9)
<Text>

B.1
First clause of the annex (style H1)
<Text>

B.1.1
First subdivided clause of the annex (style H2)
<Text>

<PAGE BREAK>
Annex <y>:
Bibliography

The annex entitled "Bibliography" is optional.

It shall contain a list of standards, books, articles, or other sources on a particular subject which are not mentioned in the document itself.

It shall not include references mentioned in the document.

Use the Heading 9 style for the title and B1+ or Normal for the text.

· <Publication>: "<Title>".

OR

<Publication>: "<Title>".

<PAGE BREAK>

History

This clause shall be the last one in the document and list the main phases (all additional information will be removed at the publication stage).
	Publication history

	V.0.0.1
	22 03 2013
	Skeleton

	V.0.1.0
	18.04.2013
	Approved at MAS #4

	V.0.2.0
	07.05.2013
	Incorporate agreed contributions from MAS #4
- oneM2M-MAS-2013-0021R01-ETSI_style_device_abstraction
- oneM2M-MAS-2013-0022R01-ETSI_style_semantic_m2m

	V.0.3.0
	28.06.2013
	Incorporate agreed contributions from MAS #9 at TP#5 (Seoul)

- oneM2M-MAS-2013-0047R02-Home_Environment_Monitoring_Service_using_semantic_mash-up

	V.0.4.0
	15.08.2013
	Incorporate agreed contributions from MAS6.0 at TP6 (Toronto)

- oneM2M-MAS-2013-0069R01-oneM2M_Architectural_Considerations_for_Semantics
- oneM2M-MAS-2013-0075R01-A_device_abstraction_technology_in_Home_Gateway
- oneM2M-MAS-2013-0081R01-Input_to_TR0007

	Draft history (to be removed on publication)

	V.1.1.1
	<dd Mmm yyyy>
	<CR ID> applied – <Summary of changes>

	
	
	

	
	
	

	
	
	

	
	
	

M2M Area Network

d device

Native�Application

Native�Interface

Native�Data Field

Native�Method

1

1

1

1

1

n

n

n

n

n

Abstract�Application

Generic�Interface

Generic�Data Field

Generic�Method

m

1

1

1

n

n

n

n

m

n

m

n

m

n

1

n

Figure 6.3 Linking an abstract resource to its native resource based on the ETSI M2M resource architecture

containers

descriptor

contentInstances

latest

Last contentInstance of the container

<abs_interfaceW_datafieldN>

contentInstances

<current_value>

<abs_interfaceW_methodM>

contentInstances

<actual_parameters>

Links to the Interface Data Fields, Methods and the native application

latest

latest

Last contentInstance of the container

<sclBase>

applications

<abstract_application1>

Last contentInstance of the container

<Native_application1>�e.g. Zigbee_app1

<current_status>

Figure 6.� SEQ Figure * ARABIC �4� Mapping of an abstract device to the ETSI M2M resource architecture using the subcontainers resource

subcontainers

<NetworkX_deviceY_appZ_abstract_container>

<abs_interfaceW_datafieldN>

contentInstances

<current_value>

<abs_interfaceW_methodM>

contentInstances

<actual_parameters>

Links to the Interface Data Fields, Methods and the native application

latest

latest

Last contentInstance of the container

<NetworkX_application>

containers

<deviceY_abstract_container>

Last contentInstance of the container

<Native_application1>�e.g. Zigbee_app1

subcontainers

contentInstances

latest

Last contentInstance of the container

<current_status>

Figure � SEQ Figure * ARABIC �3� Abstract Interface Descriptions

Abstract Interface Descriptions

(e. g. XML)

SOAP

REST

<application>

k

containers

1

groups

1

accessRights

1

”attribute” (including semantic information)

1

subscriptions

1

notificationChannels

1

M2M

Application

Semantic Engine

NSCL

1. Semantic query (e.g., average temperature in room 1)

2. Discover a virtual thing satisfying the query

3. Return the URI of the virtual thing

4. Request the information of the virtual thing

5. Return the requested information

7. Collect data from member M2M resources

8. Return the results

6. Locate virtual thing in Semantic Engine

9. Apply service logic to the results

10. Response the results

© OneM2MPartners
Page 25 of 30

[image: image16.png][image: image17.png][image: image18.png]