	Doc# oneM2M-MAS-2013-0110-Information_Models_for_interworking_and_abstraction.doc
Input Contribution
	[image: image3.png]

	INPUT CONTRIBUTION

	Group Name:*
	MAS 7.1

	Title:*
	Abstraction …

	Source:*
	Joerg Swetina, NEC, joerg.swetina@neclab.eu

	Contact:
	<name>, <company>, <contact info> (if different to the source)

	Date:*
	2013-10-14

	Abstract:*
	This contribution discusses interworking and abstraction. It suggests to use a uniform format (XSD) to describe Information Models and to annotate oneM2M Resources with references to their information models.

The contribution provides a proposal how to map such Information Models into oneM2M Resources. Additionally it is proposed to plan for semantic annotations (through RDF(S) and OWL) of oneM2M Resources.

	Agenda Item:*
	<Agenda item reference>

	Work item(s):
	oneM2M-WI-0005-Abstraction_&_Semantics_Capability_Enablement

	Document(s)

Impacted*
	oneM2M-TR-0007-Study_on_Abstraction_and_Semantics_Enablement

V0_3_0

	Intended purpose of

document:*
	 FORMCHECKBOX
 Decision

 FORMCHECKBOX
 Discussion

 Information

 Other <specify>

	Decision requested or recommendation:*
	It is proposed to include the contents of this contribution into

oneM2M-TR-0007-Study_on_Abstraction_and_Semantics_Enablement

oneM2M Notice
The document to which this cover statement is attached is submitted to oneM2M. Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.
6
Abstraction Technologies
Editor’s Note: The chapter is to introduce abstraction technologies.
6.1
Overview

Editor’s Note: The section provides an overview of technologies used for abstraction capability.
New text:
Device Abstraction is a M2M Service that allows an M2M Application to use a generic, “abstract” interface to access the functions a set of devices irrespective of the specific technology they support.

The following requirements on Abstraction can be found in TS 0002

	Requirement ID
	Description
	Release

	ABR-001

	The M2M system shall provide a generic structure for data representation.
	

	ABR-002

	The M2M system shall be able to provide translation mechanisms among Information Models (including meta-data) used by M2M Applications, M2M Devices/Gateways, and other devices.
Editor’s Note: need definition for Information Model and Meta-data.
	

	ABR-003

	The M2M System shall provide capabilities to represent Virtual Devices and Things, (which are not necessarily physical devices.)
	

Table 3 Abstraction Requirements

6.1.1
Basics about Interworking and Abstraction
Many systems (standardized and proprietary) that have been defined outside of oneM2M will require interworking with the M2M System. For example in the area of Home Automation ZigBee Smart Energy (SE2.0) and BACnet provide standards that describe devices and functionality to manipulate electrical machines in the home. OneM2M will need to interwork with both.
Interworking

Interworking the oneM2M System with these external systems/technologies allows am M2M Application to use devices from other technologies (e.g. ZigBee or BACnet) that are attached to the M2M System. Interworking is accomplished by Interworking Proxy functions, located in XXX CSE, that map the native interface of the device (e.g. ZigBee, BACnet,…) into oneM2M resources that can be accessed by M2M Applications. These resources are called a oneM2M Representation of the Information Model of the native device.
Therefore, for interworked devices the M2M Application does not have to communicate with the device via its native interface but via interfaces (X and Y) provided by oneM2M – the oneM2M Representation. Still, the M2M Application needs to understand the information model and the semantics of the native interface, even if the external (non-oneM2M) devices can be accessed through oneM2M mechanisms.
Abstraction

In addition to interworking the target of Abstraction is to enable an M2M Application to access the external (non-oneM2M) devices without the need to understand the information model and the semantics of the native interface. To meet that goal “abstract” devices are created in the oneM2M System. These Abstract Devices are M2M Applications or functions, located in a CSE, that translate access to its interfaces into access to interfaces of a native device. An Abstract Device can do this translation to devices from a multitude of external technologies.
Instead communicating with the native device – or, to be more precise, with the related Interworking Proxy function – the M2M Application communicates with the Abstract Device and only needs to understand the information model of the Abstract Device.
The following figure gives an overview on Interworking and Abstraction.

[image: image1.emf]N

ative

device

Interworking

Proxy function

Interworking

Proxy function

N’

ative

device

Abstract

M2M Device

Native

System

(Technology)

other Native

System

oneM2M System

<xml>

Description

of data and

procedures

of

N

device

Data: XYZ

procedure: xyz

(params)

Data: ABC

procedure: abc

(params)

<xml>

Description of

data and

procedures of

N’

device

Representation

creation

<xml>

Description of

data and

procedures of

Abstract

device

Abstraction:

(manual)mapping

data and procedures

between Native and

Abstract devices

Information

Models of

devices

Representations of

Information model

Abstraction:

(manual)mapping

data and procedures

between Native and

Abstract devices

interworking interworking

Systems

(standardized or

proprietary)

Example:

ZigBee On/Off

Switch in a

ZigBee network

ZigBee On/Off

Switch inter-

worked in

oneM2M

Abstract Binary

Device in

oneM2M

BACnet Binary

Input Object

interworked in

oneM2M

BACnet Binary

Input Object in

a BACnet nwk

Representation

creation

Representation

creation

6.1.2
Information models for Interworking
In general, it is not necessary for an M2M Application to reveal to the M2M System (i.e. to CSEs via the X reference point) the internal – application specific – structure of the data it wants to exchange with other M2M Applications. In this case the interface to other M2M Applications would consist of a “Container” sub-resource. The M2M System would not know about the internal structure of this container, it even could be encrypted.

However, in the case of interworking of external systems / devices with the M2M System such information is required by the M2M System to be able to realize the related Interworking Proxy functions.
The information on the structure of an interface to an entity (e.g. application, device..) is called it’s “Information Model”. It describes the names of parameters, its value ranges, substructures, etc. If the interface is using procedure calls it must contain information about whether parameters are input- or output-parameters.
Note, however, that the Information Model of an interface is independent of any concrete system to which it may apply (e.g. ZigBee, oneM2M ..). It is merely describing what data are transferred across an interface. The system specific implementation of the Information Model in a specific system is called the “Representation” of the Information Model in that system.
For example, the Information Model of a ZigBee On/Off Switch has (naturally) a Representation in a ZigBee network, but can also have a Representation in the M2M System (for the purpose of interworking with ZigBee).

It should be possible to describe the Information Model of any kind of interface - whether it observes REST principles or is procedure based – in a common format. In addition the format in which Information Models are described should be machine readable to enable automatic creation of a Representations of the Information Model in the target system.
A natural choice for such a format would be XML. More specifically, since an Information Model contains only the structure and not the actual values of an interface it can be described as an XML Schema, as an XSD file [see http://www.w3.org/XML/Schema].

Examples for existing XML Schemas are:
· XSD for BBF’s TR-069 CWMP data model for device management:
http://www.broadband-forum.org/cwmp/cwmp-datamodel-1-1.xsd

· ...
A shortcoming of existing published XML Schemas is that they usually describe only data and do not contain a description of procedures. The difference in describing procedures as compared with other data structures is that:

· Input- and output-parameters need to be clearly separated from each other

· While the input parameters of a procedure can be individually set, one at a time, this setting of parameters does not yet imply that the procedure is executed. Only “invoking” the procedure executes it.
· A procedure may take some time to execute, so after invocation the output, relating to that invocation, may not be available until the procedure has finished.

· After invocation, a procedure may have different states (e.g. “invoked”, “started”, “paused”, “finished”..) that may be relevant (e.g. to interrupt procedure execution).

For that reason it is important that an Information Model clearly distinguishes between data and procedures.

In the past, several attempts have been made also to describe procedures in XML, e.g. XML-RPC [http://en.wikipedia.org/wiki/XML-RPC] , which later evolved into SOAP/WSDL.
The xsd for a procedure could look like:
<?xml version="1.0"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="procedure" type="procedureType"/>

 <xsd:complexType name="procedureType">

 <xsd:sequence>

 <xsd:element name="procedureName" type="xsd:string"

 minOccurs="1" maxOccurs="1"/>

 <xsd:element name= name="methodCall" type="methodCallType"

 minOccurs="0" maxOccurs="1"/>

 <xsd:element name= name="methodResponse" type="methodResponseType"

 minOccurs="0" maxOccurs="1"/>

 </xsd:sequence>

 </xsd:complexType>

<xsd:element name="methodCall" type="methodCallType"/>

 <xsd:complexType name="methodCallType">

 <xsd:sequence>

 <xsd:element name="params" type="paramsType"

 minOccurs="0"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="paramsType">

 <xsd:sequence>

 <xsd:element name="param" type="paramType"

 minOccurs="1"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="paramType">

 <xsd:sequence>

 <xsd:element name="value" type="valueType"

 minOccurs="1" maxOccurs="1"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="valueType">

 <!--

 Here the data types from other XSDs can be included

 -->
 </xsd:complexType>

<xsd:element name="methodResponse" type="methodResponseType"/>

 <xsd:complexType name="methodResponseType">

 <xsd:sequence>

 <xsd:element name="params" type="paramsType"

 minOccurs="0"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="paramsType">

 <!--

 Here the data types from other XSDs can be included

 -->

 </xsd:complexType>

</xsd:schema>
6.1.2.1
Mapping Information Models into oneM2M Resources:

For interworking purposes for a given Information Model oneM2M Resources need to be created according to the structure given by the Information model.
In particular, when the Information Model is specified by an XSD file the following rules should apply:
· Attribute names shall be the same ones as given in the element name of the XSD description
· Simple atomic attribute types (like “Boolean”, “integer”, “string”..) shall be indicated in the Description of the resource.
· Attributes of type “sequence” shall be mapped into a Collection Resource with the same name as the element name of the XSD description.

· Resources that represent Procedures contain
· A sub-Resource which contains 0..1 sub-Resource "methodCall"
· A sub-Resource which is a collection of execution Instances.

· Each execution Instance contains 0..1 sub-Resource "methodResponse".
· A special attribute “execEnable”. An UPDATE on that attribute will trigger execution of the procedure with the current "methodCall" parameters
[image: image2.emf]

<procedure>

“attribute”

n

execInstances

1

subscriptions

1

procedureType

methodCall

execEnable

1

1

0::1

6.1.2.1
Proposal:

It is proposed that oneM2M should encourage external bodies, who wish to interwork with oneM2M, that similar approach should be taken and Information Models should be published as XSD files.

A convention how to express the xsd description of procedures – similar to the one given above – needs to be established.
6.1.3
Abstraction and Semantics
A common format for describing Information Models, as described above, facilitates creation of system specific interface Representation (e.g. as oneM2M Resources) for external systems/entities. This allows easy creation of Interworking Proxy functions.
However, from the oneM2M Resource representation it cannot be deduced that a particular resource has been built according to a published Information Model. E.g. although all the parameters in a resource are called exactly the same way as described in BBF’s TR-069 CWMP data model this still may have happened by coincidence.
If it is desired to indicate that Resources have been built according to a specified Information Model, these Resources should contain a special attribute that contains a link to the XSD of the Information Model. That way it is always possible to ensure compliance of the Resource structure with that Information Model
In addition, this link would allow to search for entities that comply with that Information Model (e.g. devices of a particular TR-069 Device Type).

Semantics
The Information Model (the XSD file as described above) only describes the structure of the interface to entities (oneM2M or external). However it does not describe any semantic (i.e. the meaning of data / behaviour of entity types). In particular semantic similarity of entity types cannot be described.

For example, within a home environment one light switch might be implementing the ZigBee protocol, another one the BACnet protocol. The first one would have a type “ZigBee On/Off Switch”, the type of the second one would be “BACnet Binary Input Object”. Only knowing their types and Information Model would not allow the conclusion that both are light switches.
This additional (semantic) information could be added by adding references to an ontology, that defines “ZigBee On/Off Switch” and “BACnet Binary Input Object” as sub-classes of “binary switch”.

Depending on how an the Information Model of an Abstract Device for a binary switch would in the future look like, another sub-class “ABSTRACT Binary Input Object” could be created in that ontology and would be a sub-class (or maybe an equivalent class) to “binary switch”.
Such semantic information, which basically would consist of vocabulary of class-type names and their relationship (e.g. sub-class of ..) can be formally described as RDF(S) or OWL files [XXX]. While vocabularies, classes and relationships constitute the basics of ontologies that can be described with RDF(S) or OWL these tools are much more powerful. In particular the capability to for semantic search (e.g. give me all instances of classes that are sub-classes of “binary switch”) will allow to satisfy the requirements for semantic search in oneM2M.
Abstraction

Also, ontologies, depending on the granularity of their entries, may contain information on the mapping between Abstract Device Information Models and ‘real’ Device Information Models. E.g. it could be stated that the “On” state of the ZigBee On/Off Switch corresponds to the “TRUE” state of the “ABSTRACT Binary Input Object”.

6.1.3.1
Proposal:

While for the purpose of abstraction it is not absolutely necessary that such semantic information is available in – or can be referenced from – the M2M System it should already now be foreseen in the design principles that entities in the oneM2M System can contain links to RDF / OWL files that describe semantic properties of these entities.
�From 228R02

�Replaced by 345R01

�From 345R01

© 2013 oneM2M Partners
 Page 2 (of 8)

[image: image3.png]

Native
device

Interworking Proxy function

Interworking Proxy function

N’ative device

Abstract M2M Device

Native System

(Technology)

other Native

System

oneM2M System

<xml>

Description of data and procedures of N device

Data: XYZ

procedure: xyz

(params)

Data: ABC

procedure: abc

(params)

<xml>

Description of data and procedures of N’ device

Representation creation

<xml>

Description of data and procedures of
Abstract device

Abstraction: (manual) mapping data and procedures between Native and Abstract devices

Information Models of

devices

Representations of Information model

Abstraction: (manual) mapping data and procedures between Native and Abstract devices

interworking

interworking

Systems

(standardized or proprietary)

Example:

ZigBee On/Off Switch in a ZigBee network

ZigBee On/Off Switch inter-worked in oneM2M

Abstract Binary Device in oneM2M

BACnet Binary Input Object interworked in oneM2M

BACnet Binary Input Object in a BACnet nwk

Representation creation

Representation creation

Representation creation

Representation creation

image1.png

