Doc# MAS-2014-0403R01-Overview_of_Modelling_Aspects.doc

	INPUT CONTRIBUTION

	Group Name:*
	WG#5

	Title:*
	MAS-2014-0403-Overview_of_Modelling_Aspects

	Source:*
	NEC (ETSI, TTC)

	Contact:
	Martin Bauer, NEC, martin.bauer@neclab.eu
Joerg Swetina, NEC, joerg.swetina@neclab.eu
Ataru Kobayashi, NEC, a-kobayashi@df.jp.nec.com

	Date:*
	2014-06-09

	Abstract:*
	Updates to section 8.2, should be inserted before current Section 8.2.1 Device and Device Template Modelling Using Ontologies.
Current section 8.2.1 is renumbered 8.2.3

Note that contribution MAS-2014-0404 (Modelling of Devices and Things) introduces a new section 8.2.2

	Agenda Item:*
	TBD

	Work item(s):
	oneM2M-WI-0005-Abstraction_&_Semantics_Capability_Enablement

	Document(s)

Impacted*
	oneM2M-TR-0007-Study_on_Abstraction_and_Semantics_Enablement

V0_9_0

	Intended purpose of

document:*
	 FORMCHECKBOX
 Decision

 FORMCHECKBOX
 Discussion

 Information

 Other <specify>

	Decision requested or recommendation:*
	

oneM2M Notice
The document to which this cover statement is attached is submitted to oneM2M. Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.
New section 8.2.1

8.2
Modeling aspects for abstraction and semantics in oneM2M

Editor’s Note: should contain issues related to semantic modeling.

Editor’s Note: This section has been moved from 7.6 “Approaches for oneM2M”

8.2.1
Overview of modelling aspects
In Release 1, the oneM2M System enables applications to interact with each other using opaque, application specific containers, based on the resource concept. In order to enable interaction between applications that use similar data (e.g. temperature) but employ different encoding for these data a common abstraction layer can be built that provides services to convert the data into a abstracted, common format. With such an abstraction layer, regarding communication, application developers do not have to consider the underlying heterogeneity of their communication partners as this is abstracted away. However, applications in most cases still need to know a priori their communication partners as the Rel-1 discovery functionality is very limited and does not allow discovering other applications based on their semantics, e.g. the services they support. Data is treated as a black box without providing information about its structure and semantics. Thus this information needs to be known in advance by the respective applications and cannot be discovered. For a more flexible system that allows the reuse of information and functionality by different applications the structure and semantics of application data exchanged in the oneM2M System can be made explicit. Providing common abstractions not just for the purpose of interaction, but also for sharing information about the provided functionality is one aspect of it.

M2M allows applications to extend their reach into the physical world. Devices enable the sensing of, as well as the actuation on relevant aspects of the physical world. The physical world is populated by Things in a broad sense, including buildings, rooms, windows, roads, bottles etc. Ultimately, the applications interact with these Things, using the Devices for mediating this interaction. Figure 8.1 shows the underlying domain model.

[image: image1.emf]Device

Application

Thing

Sense /

Actuate

Interact

Execute

Command

Figure 8.1 Domain Model
Whereas the oneM2M Services are directly involved in the communication between application and Device, they nevertheless should model and provide support for real-world aspects as ultimately M2M is about supporting a mediated interaction between the applications and Things.

In the following subsections we want to further discuss how Devices and Things can be modelled in an appropriate way, how they can be represented and how the respective models can be used in future releases of the oneM2M System.

End of New section 8.2.1

Renumbering current section 8.2.1 to 8.2.3
8.2.3
Device and Device Template Modelling Using Ontologies

In this section we show an approach of how device types and device instances can be modelled in a homogeneous way using ontologies. The focus is on explaining the approach, not on completeness of the device types and device instance aspects being modelled. Due to their relevance for creating resource structures for representing devices in the oneM2M platform, the focus is on modelling input-output operations, but also the modeling of some manufacturer-specific aspects like manufacturere name and product identifier is shown.

The modelling follows a two-layer approach. The upper layer is for modelling device types, the lower layer for modelling device instances. The upper layer provides a given device type template that is modelled as classes and properties of an ontology. The device types are then modelled as instances of the classes and properties of this ontology. In the lower layer, the same device types that were modelled as instances of the template classes in the upper layer are now interpreted as the classes of the device ontologies. The actual individual devices can then be modelled by creating instances of these classes. The dual character of instance and class can, for example, be modelled in the OWL Full variant of the Web Ontology Language (OWL) [i.33].In the following we show an example of how a device type can be modelled based on a device type template and an individual device based on a device type.

[image: image2.emf]Device Type Template Device Type

(by manufacturer)

individual Device

DeviceType

•

Operation

•

Parameter

•

Datatype

•

Manufacturer

•

Product ID

•

…

R2D2_Temperature_Sensor

•

R2D2_TempReading

•

R2D2_Temperature

•

double

•

R2D2_Enterprises

•

R2D2_4711

Resource:My_SensorNo_3

•

OntRef =>

R2D2_Temperature_Sensor

•

Resource:

R2D2_TempReading

•

Res:

R2D2_Temperature

•

12.345

instance instance

Upper Layer Lower Layer

Figure 7.X: Modelling of device type templates, device types and individual devices

Figure 7.X shows the three parts that make up the upper and lower layer, each consisting of classes and the corresponding instances. There are three and not four parts due to the dual character of the device type, which makes up an instance in the upper layer, but provides the class structure for the lower layer.

The device type template provides the structure that models a type of device, e.g. a manufacturer producing a temperature sensor can "fill out" the template by creating an ontology instance. In the case shown in figure 7.X RD2D_Enterprises manufactures an R2D2_Temperature_Sensor with the Product ID R2D2_4711. It has an operation called R2D2_TempReading, which in turn has a parameter R2D2_Temperature of type double. This information in turn serves as the structure for describing an individual temperature sensor of the type R2D2_Temperature_Sensor. It provides the basis for creating the resource structure representing the individual device in oneM2M, which is depicted on the right side of figure 7.X. The value of the R2D2_Temperature parameter, which refers to the temperature measured, is given as 12.345 represented as a double.

The example has been modelled as a set of OWL Full ontologies, using imports for including required classes and properties.

In the following tables, we describe the ontology classes (Table 7.X) and properties (Table 7.Y) for describing the device template in more detail. Where appropriate, subclasses can be used to model specialisations of common classes. In this case, this is done to distinguish different types of operations.

Table 7.X: Ontology Classes for Device Template

	Class => SubClass
	Explanation

	DeviceType
	Manufacturer defined name/ID for a class of alike devices
(= type) that are e.g. described in a product description

	Operation
	Identifies an operation of the device

	
=> OutputOperation
	The operation produces only an output message. The device does not expect correlated input/ack

	
=> InputOperation
	The operation consists of an input message only. The device does not produce correlated input/ack

	
=> In-OutOperation
	The operation receives an input message and produces a correlated output/ack

	Parameter
	Identifies a parameter of the operation

	DataType
	Identifies the datatype of the parameter (e.g. xsd: double)

	Manufacturer
	Name/ID of the manufacturer

	Product ID
	Manufacturer defined handle/ID to identify the type of the device, e.g. Type/Model-number.

Table 7.Y: Object and Datatype Properties for Device Template

	Domain
	Property
	Range
	

	DeviceType
	hasOperation
	Operation
	Object Properties

	Operation
	hasParameter
	Parameter
	

	Parameter
	hasParameterType
	Datatype
	

	DeviceType
	hasManufacturer
	xsd:string
	Datatype Properties

	DeviceType
	hasProductID
	xsd:string
	

In the following tables, we describe the ontology classes (Table 7.A) and properties (Table 7.B) for describing individual device instances of the R2D2_Temperature_Sensor. A hierarchy of superclasses may be defined, e.g.Temperature_Sensor and Device superclasses could be introduced, which could be useful for discovering different types of temperature sensors from different manufacturers. Also, an Abstract Temperature Sensor providing a standardized interface to applications could be introduced, either on the same level as the R2D2_Temperature_Sensor, i.e. as a subclass of TemperatureSensor, or in a separate hiereachy. In the latter case the link to the concrete temperature sensors has to be explicitly modelled.

Table 7.A: Ontology Classes for R2D2_Temperature_Sensor
	Class => SubClass
	Explanation

	Device

=> Temperature_Sensor

=>R2D2_Temperature_Sensor
	User defined name/ID for a specific instance of the R2D2_Temperature_Sensor instance., e.g. My_SensorNo_3

	R2D2_TempReading
	Specific operation of the instance of R2D2_Temperature_Sensor

	R2D2_Temperature
	Specific parameter of the instance of R2D2_TempReading

	Metadata
	Metadata related to the value of an R2D2_Temperature

Table 7.B: Object and Datatype Properties for R2D2_Temperature_Sensor

	Domain
	Property
	Range
	

	R2D2_Temperature_Sensor
	hasTemperatureOperation
	R2D2_TempReading
	Object Properties

	R2D2_TempReading
	hasTemperatureParameter
	R2D2_Temperature
	

	R2D2_Temperature
	hasMetadata
	Metadata
	

	R2D2_Temperature
	hasValue
	xsd:double
	Datatype Properties

	
	
	
	

The listing below gives an example of how an individual device instance of the R2D2_Temperature_Sensor is modelled in OWL, using the more concise and readable Turtle representation [i.36], instead of the more commonly used RDF/XML notation [i.37].

Device Instance (in OWL/Turtle)

@prefix : <http://InstanceOntology#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix dev: <http://DeviceOntology#> .

@prefix dev-temp: <http://DeviceTemplateOntology#> .

@base <http://InstanceOntology> .

<http://InstanceOntology>
rdf:type
owl:Ontology ;

owl:imports
<http://DeviceOntology>

:Resource:My_SensorNo_3
rdf:type
dev-temp:R2D2_Temperature_Sensor,

owl:NamedIndividual;

 dev:hasTemperatureOperation

:R2D2_TempReading .

:R2D2_TempReading

rdf:type
dev-temp:R2D2_TempReading ,

owl:NamedIndividual ;

dev:hasTemperatureParameter

:R2D2_Temperature .

:R2D2_Temperature

rdf:type dev-temp:R2D2_Temperature,
owl:NamedIndividual;
dev:hasValue

 “23.45"^^xsd:double .

End of Renumbering current section 8.2.1 to 8.2.3
© 2014 oneM2M Partners

Page 1 (of 8)

_1463230483.vsd
Device

Application

Thing

Sense / Actuate

Interact

Execute
Command

