	Doc# MAS-2014-0499-CR_to_Section_7_2_1_of_TR-0007_v2_0_1_(Rel-2_mirror_of_MAS-2014-0489).doc
Change Request
	[image: image4.png]

	

	CHANGE REQUEST

	Group Name:*
	WG5 (MAS)

	Source:*
	NEC-Europe (ETSI)

	Format:*
	Plenary

	Date:*
	2014-11-11

	Contact:*
	Joerg Swetina (joerg.swetina@neclab.eu)
Martin Bauer (martin.bauer@neclab.eu)

Ataru Kobayashi (a-kobayashi@df.jp.nec.com)

	Reason for Change/s:*
	This is a Rel-2 mirror CR to MAS-2014-0489

	CR against: Release*
	2

	CR against: TS/TR*
	TR-0007 - V-2.0.1

	Clauses/Sub Clauses*
	Section 7.2.1 Introduction to ETSI Semantic M2M System

	Type of change: *
	 FORMCHECKBOX
 Editorial change
 FORMCHECKBOX
 Bug Fix or Correction
 FORMCHECKBOX
 Change/correction to existing feature or functionality
 New feature or functionality

	Post Freeze checking:*
	This CR contains only essential changes and corrections
 YES FORMCHECKBOX
 NO FORMCHECKBOX

oneM2M Notice
The document to which this cover statement is attached is submitted to oneM2M. Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.
GUIDELINES for Change Requests:

Provide an informative introduction containing the problem(s) being solved, and a summary list of proposals.

Each CR should contain changes related to only one particular issue/problem.
Follow the principle of completeness, where all changes related to the issue or problem within a deliverable are simultaneously proposed to be made E.g. A change impacting 5 tables should not only include a proposal to change only 3 tables. Includes any changes to references, definitions, and acronyms in the same deliverable.
Follow the drafting rules.
All pictures must be editable.
Check spelling and grammar to the extent practicable.
Use Change bars for modifications.
The change should include the current and surrounding clauses to clearly show where a change is located and to provide technical context of the proposed change. Additions of complete sections need not show surrounding clauses as long as the proposed section number clearly shows where the new section is proposed to be located.
Multiple changes in a single CR shall be clearly separated by horizontal lines with embedded text such as, start of change 1, end of change 1, start of new clause, end of new clause.
When subsequent changes are made to content of a CR, then the accepted version should not show changes over changes. The accepted version of the CR should only show changes relative to the baseline approved text.
Introduction
Section 7.2.1 (Introduction to ETSI Semantic M2M System) gives a wrong impression that ETSI M2M already implements a semantic system. This section had been written with the intention to show how a REST / resource based M2M System (e.g. ETSI M2M) could be modified to implement a semantically enhanced M2M system.
Section 7.2.1 need to be partially rephrased to correct that impression.
-----------------------Start of change ---
7.2.1
 Enhancing a REST based (e.g. ETSI M2M) system into a Semantic M2M System
7.2.1.1
System Overview

Figure 12 [i.2] describes a high-level architecture of Semantic M2M with internal components. The architecture uses a REST / resource based M2M system, as e.g. specified by ETSI M2M, as a basis. Figure 12 [i.2] shows RESTful access of a typical ETSI M2M Application via the mIa reference point to a ETSI M2M Network Service Capability Layer (NSCL). Additionally to the ETSI architecture resources are enhanced (annotated with) semantic information and a Semantic engine is included into the ETSI M2M NSCL to process semantic queries that can be issued by applications that are capable to handle semantic information (Semantic Application).
Such a REST based M2M system that is enhanced with semantic capabilities will be called a Semantic M2M system.
[image: image1.png]reference

M2M
ontologies

reference

Semantic Typical M2M
Application Application
Home Automation Smart Building
A
mla (REST)
\ 4

Semantic engine (semantic
interworking, commands mapping,

discovery, etc.)

ETSI M2M NSCL
- Resources are annotated with semantic information

Figure 12: Semantic M2M system overview

Semantic engine:

Semantic engine plays a key role in Semantic M2M system. Similar to interworking proxy capabilities (xIP) in NSCL [i.1], semantic engine can be deployed in NSCL. For discovery, the engine receives a semantic query; handles the query and returns results.

Semantic engine provides functionalities as follows:

validate semantic attributes (according to semantic model, e.g. RDF and OWL, either defined by ETSI M2M or outside of ETSI M2M);
process semantic queries, for example decomposing a query into multiple sub-queries, aggregating the results from sub-queries.

M2M ontologies:

M2M ontology is a formal description of M2M resources, of the structures of things, properties, processes and their relationships in a domain. Within a Semantic M2M system M2M ontologies can be referenced by SCLs and Applications.
7.2.1.2
Semantic Annotation

Semantic annotation of M2M resources is a method for adding semantic information to M2M resources so that provides consistent data translation and data interoperability to heterogeneous M2M applications. Semantically annotated M2M resources can be contacted by an M2M application that understands what data are provided by the resources and what these data means. These annotations provide more meaningful descriptions and expose M2M data than traditional M2M system alone.

In brief, M2M resources usually consist of sensor devices monitoring and reporting a specific data and actuators executing a given command. Comparing with other semantic services, such as Semantic Web and Semantic Sensor Web, semantic M2M needs to provide semantic information for both data and commands.

In many cases, M2M resources are annotated with semantic information using RDF because RDF provides a general, flexible way to decompose any knowledge into discrete pieces and can be stored in many different formats. In addition, RDF is useful to encode information about relations between things which includes a lot of semantic information. A triple store is usually selected in order to store and retrieve such relational information. However, ETSI M2M uses a hierarchical resource tree to store resource information and provide discovery of these resources.

The first step towards a semantic M2M system is to annotate semantic information to its managing resources. Semantic information is retrieved from the relations between M2M resources and can be annotated as an attribute of the resources. The ETSI M2M system uses a hierarchical tree structure to store and represent its resources. Thus, in the ETSI M2M system, semantic information can be retrieved from the relations between M2M resources and embedded as an attribute of the resources.

· The semanticInfo attribute contains the semantic description of the thing that is represented by the annotated resource in the M2M system. The semantic description is a reference to a concept within an ontology. This ontology shows what is the meaning of the thing. Since a concept with the same name might appear in another ontology too this semantic description is expressed with namespace prefix to avoid name conflicts.
· To describe relationships with other things, the relations attribute can be introduced, this attribute can have a pair format, i.e. <relation : link to other thing>. For example, a Zigbee temperature sensor that is controlled by a Zigbee controller 1 can be described in the following format:

EXAMPLE 1:
"m2m:isControlled - Zigbee-Controller-1"..

These senaticInfo and relations attributes are a available for resource discovery so that any applications can easily discover ETSI M2M resources without any domain specific expert knowledge.

The object of relation, i.e. link to other thing, can be any type of resources. All type of things in ETSI M2M, physical thing, abstract devices and virtual things, can be used as a link to other thing. This field should be an (absolute or relative) URI pointing to another ETSI M2M resource. In the previous example, the Zigbee controller 1 is an actual thing that exists in the ETSI M2M system. Virtual things can be used to add more semantic information to the actual things.

For example, if a sensor is deployed in a room-1, semantic annotation between the sensor and the room-1 can add semantic information about the location. In this example, room-1 is not a physical object but a virtual thing. Through annotating the relationship between the sensor and room-1, user can discovery the sensor when asking sensors in the room-1. The relationship can be described in the following format:

EXAMPLE 2:
"m2m:isDeployed - room-1".

A new semantic information can be easily created, updated and deleted through using ETSI M2M supported RESTful commands, CREATE, UPDATE and DELETE, respectively. In order to avoid name conflicts between vocabularies used in semanticInfo and relations, namespace prefix and the namespace URI are also defined. For example, isDeployed could be defined differently in two different domains: sns:isDeployed and m2m:isDeployed. This means that other could define isDeployed with other namespace prefix. If semantic information is provided together with this namespace prefix, a reader could be able to understand that they are different semantic information even though they have the same name.

The namespace URI can also be introduced as an attributed. The following figure shows how semantinInfo, relations and namespaceURI can be expressed within the ETSI M2M resource tree. In this case, <namespaceURIs> contains a list of namespace URIs. For example:

<m2m=http://www.m2m-semantic.org/sensor#>

<sns=http://www.homeautomation.org/sensor#>

[image: image2]
Figure 13: An example of Namespace URI as part of a sub-resource of the application resource

The attributes used for annotating semantic information are described in Table 5: Attributes for annotating semantic information.

Table 5: Attributes for annotating semantic information

	Name
	Description

	semanticInfo
	This attribute contains the semantic description of the thing. This ontology shows what is the meaning of the thing.

	Relations
	This attribute is used to describe the relationships with other things. This attribute can have a pair format, i.e. <relation : link to other thing>.

For example, if a zibgee sensor is controlled by a Zigbee controller #1, <m2m:controlledBy - URI to Zigbee controller #1> can be a way of expressing a relationship to Zigbee controller.

	namespaceURIs
	This attribute is used to describe namespace URIs. This attribute contains the information about namespace prefix and the namespace URI.
For example, the m2m namespace with the URI http://www.etsi-m2m.org can be expressed as follows:

m2m=http://www.etsi-m2m.org/sensor#.

Now semantic information of resources is stored in the ETSI M2M system. However, since legacy M2M systems do not support semantic queries, such as SPARQL, they need to provide a way to deliver semantic queries to the ETSI M2M system. For this purpose, the semantic M2M system should provide a capability to provide a unified access point of a semantic query to M2M applications.

When a semantic query arrives at the semantic engine, it parses the query and generates RESTful sub-queries. The engine then processes the RESTful queries and gets resources from SCLs. The returned resources are checked for semantic information.

7.2.1.3
Semantic Mashups for Virtual Things

In the domain of Web Service, mashup is a method composing web data from more than one web resources to create a new service. Examples include metacrawlers that blends web search results from multiple search engines and news aggregators that aggregate integrated web contents in a single location. Similarly, the mashup technique can be used to create a new M2M resource in the M2M System.

In the Semantic M2M System, a M2M application can publish "virtual things" that act similar to physical resources and provide new information such as: number of vehicles that passed during the last minute/hour, average speed of vehicles, etc. These "virtual things" can be searched and discovered in the M2M System same as other M2M resources. However, in contrast to the physical things, virtual things are only implemented as software and do not require a network connectivity.

When a new virtual thing is registered (or published) to the Semantic M2M system, a list of member M2M resources is stored together as an attribute of the thing. If the virtual thing collects information dynamically at the time of receiving a query, a pre-programmed query that collects member resources is also stored along with other information.

Once a virtual thing is added to the NSCL, it is handled and processed the same as all other M2M resources. This means that virtual things are exposed to M2M applications to be discovered. An example of the semantic virtual mashup process is shown in figure 14.

 SHAPE * MERGEFORMAT

Figure 14: Semantic virtual mashup procedure

Step 1: M2M application sends a semantic query to the Semantic M2M system, for example, "Get the temperature of the room 1".

Step 2: semantic engine handles this like a normal semantic query so that sends a discovery request to the NSCL.

Step 3: the NSCL returns the URI of a virtual thing that provides the temperature of the room 1.

Step 4: semantic engine sends a request to the NSCL to retrieve the information of the virtual thing, i.e. service logic, mashup type (either static or dynamic) and pre-programmed queries.

Step 5: the NSCL returns the requested information.

Step 6: semantic engine instantiates the virtual thing. For a virtual thing that is frequently requested, it can be cached in semantic engine and handles the request directly.

Step 7: the virtual thing at semantic engine collects required data from its member resources using the pre-programmed query.

Step 8: the NSCL returns the results from member resources.

Step 9: the virtual thing applies its service logic (e.g. calculating the average value) to the received data and calculates the results.

-----------------------End of change ---

CHECK LIST

· Does this change request include an informative introduction containing the problem(s) being solved, and a summary list of proposals?
· Does this CR contain changes related to only one particular issue/problem?
· Does this change request make all the changes necessary to address the issue or problem? E.g. A change impacting 5 tables should not only include a proposal to change only 3 tables. Includes any changes to references, definitions, and acronyms in the same deliverable?
· Does this change request follow the drafting rules?
· Are all pictures editable?
· Have you checked the spelling and grammar?
· Have you used change bars for all modifications?
· Does the change include the current and surrounding clauses to clearly show where a change is located and to provide technical context of the proposed change? (Additions of complete sections need not show surrounding clauses as long as the proposed section number clearly shows where the new section is proposed to be located.)
· Are multiple changes in this CR clearly separated by horizontal lines with embedded text such as, start of change 1, end of change 1, start of new clause, end of new clause?
<application>

k

containers

1

groups

1

accessRights

1

"attribute" (including semantic information)

1

subscriptions

1

notificationChannels

1

M2M

Application

Semantic Engine

NSCL

1. Semantic query (e.g., average temperature in room 1)

2. Discover a virtual thing satisfying the query

3. Return the URI of the virtual thing

4. Request the information of the virtual thing

5. Return the requested information

7. Collect data from member M2M resources

8. Return the results

6. Locate virtual thing in Semantic Engine

9. Apply service logic to the results

10. Response the results

© 2014 oneM2M Partners
 Page 1 (of 7)

[image: image4.png]