Doc# MAS-2015-0564R01-oneM2M_base_ontology_proposal

	Input Contribution

	Meeting ID*
	MAS16

	Title:*
	oneM2M base ontology proposal

	Source:*
	Omar Elloumi, Alcatel-Lucent (ATIS), omar.elloumi@alcatel-lucent.com
Mahdi Ben Alaya, LAAS-CNRS (ETSI), ben.alaya@laas.fr
Khalil Drira, LAAS-CNRS (ETSI), khalil@laas.fr
Thierry Monteil, LAAS-CNRS (ETSI), monteil@laas.fr
Nicolas Seydoux, LAAS-CNRS (ETSI), nseydoux@laas.fr

	Uploaded Date:*
	2015-06-02

	Document(s)

Impacted*
	WI-0005, TS-0012

	Intended purpose of

document:*
	 FORMCHECKBOX
 Decision

 Discussion

 Information

 Other <specify>

	Decision requested or recommendation:*
	Include this contribution to TS-0012

	Template Version:23 February 2015 (Dot not modify)

oneM2M Notice

The document to which this cover statement is attached is submitted to oneM2M. Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.

5.2
Insights into the Base Ontology
5.2.1
General design principles of the Base Ontology
5.2.1.1
General Principle

oneM2M base ontology is designed to ensure semantic interoperability between applications using the oneM2M system. It allows:

· formal description of concepts and relationships represented in oneM2M CSEs

· semantic discovery of resources and associated services and operations
oneM2M base ontology is designed in a way that allows domain specific ontologies to be used to extend the basic concepts and relationships to domain specific knowledge. In addition oneM2M base ontology may reuse existing ontologies (i.e. sameAs relationship) when necessary.
The way the ontology is used is described in TS-0001 where different resource may have a semanticDescriptor sub-resource that provides a semantic description of that resource according to the oneM2M base ontology enhanced with domain specific ontologies. Through this mechanism, there is no need of a priori knowledge of the application data stored under oneM2M CSEs (as per oneM2M R1). Instead, applications can discover the meaning of the data and associated services and operations through their semantic description stored in semanticDescriptor sub-resources.
5.2.1.2
Classes and Properties needed for semantic interoperability
[image: image1.png]-
———,,,\ hasLocation
o
‘ \l subClass 0 seEVes

|
controls

subClass

" b -
CTlOl’l

N expe@By
~hasOperation ~

asURI -has lsGroyﬂIn

Figure 1: oneM2M base ontology
Figure 1 shows the main Classes and Properties of the Base Ontology that are required for semantic interoperability. The nodes (bubbles) denote Classes whereas edges (arrows) denote Object Properties. Data Properties are not shown in this figure.

The graph in Figure 1 can be read as follows:

· A Location : defines the physical spaces where devices are located.
· A Device is a tangible object designed to accomplish a particular task. In order to accomplish this task, the device performs one or more functions. For example, a washing machine is designed to wash (task) and to accomplish this task it performs the start and stop function.
· A Function represents the particular use for which a Device is designed. A device can be designed to perform more than one function.
· A Service is a representation of a function to a network that makes the function discoverable, registerable, remotely controllable by other devices in the network. A service can represent one or more functions. A Service is offered by a device that wants (a certain set of) its function(s) to be discoverable, registerable, remotely controllable by other devices in the network.
· An Area Network: is a collection of devices that communicate in an autonomous fashion to perform discovery, message routing and data exchange. A spefic device or set of devices may control the Area Network for e.g. the purpose of its configuration.
· A Sensor: A sensor can do (implements) sensing: that is, a sensor is any entity that can follow a sensing method and thus observe some QuantityKind (defined below)

· A QuantityKind (source: www.qudt.org): A Quantity Kind is any observable property that can be measured and quantified numerically. Familiar examples include physical properties such as length, mass, time, force, energy, power, electric charge, etc. Less familiar examples include currency, interest rate, price to earning ratio, and information capacity.
· An Actuator: can act on a mechanism or system by adjusting it modifiable properties : QuantityKind

· A State: A State represents the state in which a device can be found, e.g, ON/OFF/STANDBY, or ONLINE/OFFLINE, etc.
· An Operation: allows to trigger a specific action on a resource

· TBC
5.2.1.3
An instance exemple illustrating the use of the Base Ontology

[image: image2.png]instance

sseice | observ
instance
hasFunction

lance —hasMethod msta}%
_ pa—__ &
B

isGyoundedIn

Figure 3

Figure 3 provides an example of instance of the base ontology for a thermostat connected via an 802.15.4 network and allows to retrieve temperature through a containter resource.
5.2.2
Use of ontologies for Generic Interworking with Area Networks
5.2.2.1
General Principle

Interworking with Area Networks is accomplished in oneM2M through functionality provided by Interworking Proxy Entities (IPE).

[image: image3.emf]oneM2M Solution

Area Network

(e.g. KNX)

real Devices in Area Network

“proxied” Devices in own

oneM2M System technology

oneM2M

Application

REST

-

ful

Resource access

Inter

working

Proxy

Entity

AE

AE

AE

AE

AE

AE

Figure 1
The IPE creates “proxied” devices as oneM2M Resources (e.g. AEs) in the oneM2M Solution that can be accessed by oneM2M Applications in the usual way.

To accomplish the creation of “proxied” devices the IPE uses an ontology that describes the the type of interworked Area Network and its entities (device types, their Input/Output operations and –data, etc.).
For example, in figure 1 an ontology that describes a KNX Area Network and its entities would be needed.

The creation of oneM2M resources (e.g. AEs), attributes, links, etc. follows a scheme that will be described in TS-0001.

Editor’s Note: TBD
For achieving the flexibility for the IPE to create “proxied” Devices for many different types of Area Networks each ontology that describe a specific type of interworked Area Network needs to be derived from the Base Ontology that is specified in the current TS.
E.g. the OWL representation of an ontology that describes the entities of an Area Network of type “KNX” needs to

a) contain an ‘include’ statement which includes Base Ontology

b) the Class of “KNX Nodes” needs to be a subclass of the “Device” Class of oneM2M’s Base Ontology

c) the Class of “KNX Communication Objects” needs to be a subclass of the “Service” Class of the Base Ontology

etc.

Note, that for fthe purpose of Generic Interworking with Area Networks the Base Ontology is only used to describe type information and not for describing instances of these types. E.g. the Base Ontology describes the type “Device”, but does not contain information about a specific Device.
The Base Ontology therefore only contains Classes and Prpoerties but not instances.

5.2.2.2
Classes and Properties needed for Generic Interworking

[image: image4.png]TnterworkingProxyEntity

providesTnterworkingWith(Subclass some)

hasInputOutputOperation(Subclass all)

offersStatelnformation(Subelass all

asDataFields(Subclass all

Figure 2
Figure 2 shows the main Classes and Properties of the Base Ontology that are required for Generic Interworking with Area Networks. The nodes (bubbles) denote Classes whereas edges (arrows) denote Object Properties. Data Properties are not shown in this figure.

The graph in Figure 2 can be read as follows:

· An Interworking Proxy Entity (Class: InterworkingProxyEntity) provides interworking with (Object Property: providesInterworkingWith) at least one Area Network (Class: AreaNetwork).

· An Area Network (Class: AreaNetwork) has a technology (Object Property: hasTechnology) of one type of Area Network technology (Class: AN_Technology).

· An Area Network (Class: AreaNetwork) has devices (Object Property: hasDevice) of type Device (Class: Device).

· A Device (Class: Device) can consist of (Object Property: consistsOf) sub-devices (Class: Device).

· A Device (Class: Device) has at least one function (Object Property: hasFunction) (Class: Function) that this device accomplishes.

· A Function (Class: Function) represents the functionality necessary to accomplish the task for which a Device is designed. A device can be designed to perform more than one function.
Note, the Class: Function exhibits the – human understandable – meaning what the device “does”.
E.g. considering a subclass “LightSwitch” of (Class: Device) then a related subclass of (Class: Function) could be “Turn_Light_On_or_Off”.
Similarly, considering a subclass “Watervalve” of (Class: Device) a subclass of (Class: Function) could be “Open_or_Close_Valve”.

· While (Class: Function) describes the meaning of the device’s functionality the (Class: Service) is used to describe how such functionality is represented in a communication network. A Service is a representation of a Function to a network that makes the Function discoverable, registerable, remotely controllable by other devices in the network. A service can represent one or more functions.
E.g. in KNX Services would be called “Functional Blocks”.

· As a Device (Class: Device) is always assumed to be able to communicate over a network – a plain lighswitch on the wall that is not remotely controllable would not qualify as a Device – every Device (Class: Device) must offer (Object Property: offers) at least one Service (Class: Service)

· A Service can either
(a) be remotely controlled by some interface over the network and/or
(b) controls (or provides data) via its interface some external entity over the network.
In other words a Service (Class: Service) steers or is steered (Object Property: steersOrIsSteeredThroughInterface) through an Interface (Class: Interface)

· A Service (Class: Service) can consist of (Object Property: consistsOf) other services Service (Class: Service)

· An Interface (Class: Interface) comes in two flavors: it is either a DataField (Class: DataField) or a Method (Class: Method). This class inheritance relationship – DataField and Method are subclasses of Interface – is shown in the graph by the arrow “has subclass”.

· A DataField (Class: DataField) contains data that are produced by the service or consumed by the service. A DataField may have a simple data type (boolean, string, byte ...), possibly within a given range, or can be structured.
In addition a DataField always has a direction of the data flow:
- "DataInput" for data that are consumed by the service
- "DataOutput" for data that are produced by the service
- "InOutData" for data that are consumed and produced by the service

Further, the data of a Data Field can be
 (1) polled from the Device (if the protocol supports some form of GET operation and the device supports it)
 (2) pushed to the Device (if the device supports SET)
 (3) polled by the Device (from another entity)
 (4) pushed by the Device (to another entity)

If no GET/SET is supported – e.g. if the communication happens via a bus – the device may still receive information by listening to the bus and or post information on the bus
 (5) autonomously published by the Device
 (3.a) driven by a Schedule (e.g. every 50 milliseconds)
 (3.b) Event driven (e.g. when a threshold has been reached)
 (6) autonomously gathered by the Device (e.g. by listening to a data bus)

The way how data may be exchanged depend on the Area Network technology.

· A Method (Class: Method), in contrast to DataField (Class: DataField), can be invoked.
It may or may not contain additional data (Class: DataField) that are sent or received at the invocation of the Method (Object Property: hasDataField).
Examples for a Method that can only be invoked but does not contain additional data would be a “reboot” method for rebooting a device or a “toggle” method for toggling a switch.

· A particular subclass of DataField (Class: DataField) is the state (Class: State) of a Service.
A Service (Class: Service) may offer information about its state (Object Property: offersStateInformation) as status data (Class: State).

© 2015 oneM2M Partners

Page 1 (of 2)

