	Doc# MAS-2017-0011R01-CR_TS-0012_Introduction_of_class_VariableConversion_to_support_device.doc
Change Request
	[image: image7.png]

	

	CHANGE REQUEST

	Meeting ID:*
	MAS#28

	Source:*
	Joerg Swetina, NEC, joerg.swetina@neclab.eu
Martin Bauer, NEC, martin.bauer@neclab.eu

	Date:*
	2017-02-13

	
	

	Reason for Change/s:*
	Introduction of class “VariableConversion” to support device abstraction

	CR against: Release*
	3

	CR against: WI*
	 FORMCHECKBOX
 Active WI 0063
Release 3 Enhancements on Base Ontology & Generic Interworking)
 FORMCHECKBOX
 MNT maintenance / < Work Item number(optional)>
Is this a companion CR? Yes FORMCHECKBOX
 No FORMCHECKBOX

Companion CR number: (Note to Rapporteur - use latest agreed revision)Is this a mirror CR? Yes FORMCHECKBOX
 No FORMCHECKBOX

Mirror CR number: (Note to Rapporteur - use latest agreed revision)

 FORMCHECKBOX
 STE Small Technical Enhancements / < Work Item number (optional)>
Only ONE of the above shall be ticked

	CR against: TS/TR*
	TS 0012 v3.1.0

	Clauses *
	6.1.17, new section 6.1.19, 6.2.22, 6.2.23, 5.2.1.2, 7.1.1.2

	Type of change: *
	 FORMCHECKBOX
 Editorial change
 FORMCHECKBOX
 Bug Fix or Correction
 Change to existing feature or functionality
 FORMCHECKBOX
 New feature or functionality
Only ONE of the above shall be ticked

	Impacted other TS/TR(s)
	TS 0030 contains the functional description of the “Abstraction Application Entity” (AAE) that makes use of the “VariableConversion”

	Post Freeze checking:*
	This CR contains only essential changes and corrections? YES
 NO
This CR may break backwards compatibility with the last approved version of the TS? YES
 NO

	Template Version: January 2017 (Do not modify)

oneM2M Notice

The document to which this cover statement is attached is submitted to oneM2M. Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.

GUIDELINES for Change Requests:

Provide an informative introduction containing the problem(s) being solved, and a summary list of proposals.

Each CR should contain changes related to only one particular issue/problem.
In case of a correction, and the change apply to previous releases, a separate “mirror CR” should be posted at the same time of this CR
Mirror CR: applies only when the text, including clause numbering are exactly the same.

Companion CR: applies when the change means the same but the baselines differ in some way (e.g. clause number).
Follow the principle of completeness, where all changes related to the issue or problem within a deliverable are simultaneously proposed to be made E.g. A change impacting 5 tables should not only include a proposal to change only 3 tables. Includes any changes to references, definitions, and acronyms in the same deliverable.
Follow the drafting rules.
All pictures must be editable.
Check spelling and grammar to the extent practicable.
Use Change bars for modifications.
The change should include the current and surrounding clauses to clearly show where a change is located and to provide technical context of the proposed change. Additions of complete clauses need not show surrounding clauses as long as the proposed clause number clearly shows where the new clause is proposed to be located.
Multiple changes in a single CR shall be clearly separated by horizontal lines with embedded text such as, start of change 1, end of change 1, start of new clause, end of new clause.
When subsequent changes are made to content of a CR, then the accepted version should not show changes over changes. The accepted version of the CR should only show changes relative to the baseline approved text.
Introduction
This CR introduces a new class “VariableConversion” for the purpose of describing the rules for converting one Variable into other Variable
Class “VariableConversion” only contains a comment as annotation that describes the rules in plain text how to convert the variables. It is not instantiated in oneM2M as a recource.
Such conversion can be used for
1. mapping input- and output parameters of the Command of a Function into Input- OutputDatapoints of the related Service and/or OperationInput / -Output of an Operation of the Service.
E.g. A “Dimming” Function of a lightbulb could have a Command “Set Light Level X Percent” where X would be an OperationInput parameter that can take values 0 – 100.
The Service in the lightbulb that exposes this Function is realized as an InputDatapoint of 3 bit size (integer range 0 – 7), therefore the value range 0-100 needs to be converted into the value range 0-7.
The class VariableConversion contains the rules (as plain text) for that conversion.
2. mapping Input- OutputDatapoints and/or OperationInput / -Output of the Operations of some Service to Input- OutputDatapoints and/or OperationInput / -Output of the Operations of another Service.
The second usage – describing conversion of variables for different Services – can be used for implementing abstraction. If one ontology describes the services of an abstraction layer (e.g. for Home Automation) and a second ontology describes the concrete technology (e.g. ZigBee) then a oneM2M Application can implement the Services of the abstraction layer.
In the example taken from 1.) that Application would e.g. offer an InputDataPoint “Set_Light_Level_X_Percent” for which values 0-100 can be set.
If the InputDataPoint is updated it calculates the correct value in the appropriate range (say 0-7) for ZigBee and invokes the related ZigBee Service via the Interworking Proxy Application (IPE) for the ZigBee Device.
-----------------------Start of change 1---
6.1.17
Class: Variable

[image: image2.emf]Variable

describes

rdfs:Literal

Aspect

Legend: … an OWL class

… an Object Property

… a Data Property

… indicates an inheritance (sub-Class / sub-Property)

is-a

dataProperty

objectProperty

Class

Class: Variable

Input

DataPoint

rdf: PlainLiteral

oneM2M

Method

Output

DataPoint

Thing

Property

Operation

Output

Operation

Input

hasMetaData

MetaData

oneM2M

TargetURI

SimpeType

Variable

rdfs:Literal

hasValue

has

SubStructure

is-a

Variable

Conversion

hasConversion

convertsTo

Figure 1: Variable

Description

· A Variable (Class: Variable) constitutes a super class to the following classes: ThingProperty, OperationInput, OperationOutput, OperationState, InputDataPoint, OutputDataPoint, SimpleTypeVariable. Its members are entities that store some data (e.g. integers, text, etc., or structured data) that can change over time.
These data of the Variable usually describe some real-world Aspects (e.g. a temperature) and can have MetaData (e.g. units, precision, etc.)

Object Properties

This Class is the domain Class of Object Property:

· hasMetaData (range Class: MetaData)

· describes (range Class: Aspect)

· hasConversion (range Class: VariableConcersion)
· hasSubStructure (range Class: Variable)

If a Variable has a sub structure for which certain parts (i.e. Variables of the sub-straucture) are mandatory then the related Object Property (hasSubStructure) shall have a Property Restriction with cardinality “min 1”.
This Class is the range Class of Object Property:

· hasSubStructure (domain Class: Variable)
· convertsTo (domain Class: VariableConversion)
Data Properties

· oneM2MMethod (range datatype: rdf:PlainLiteral)
This data property contains a oneM2M Method through which the oneM2M instantiation of the value of the Variable can be manipulated by the communicating entity:

· It contains the string "RETRIEVE" for retrieving the variable when the oneM2M resource is of type <container> or <flexContainer>. This applies to sub-classes: OperationOutput, OutputDatapoint, ThingProperty and OperationState.

· It contains the string "CREATE" for updating the variable when the oneM2M resource is of type <container>. This applies to sub-classes: OperationInput, InputDatapoint, ThingProperty.

· It contains the string "UPDATE" for updationg the variable when the oneM2M resource is of type <flexContainer>. This applies to sub-classes: OperationInput, InputDatapoint, ThingProperty.

· oneM2MTargetURI (range data type: rdfs: Literal)
This data property contains the URI of a oneM2M resource (<container> or <flexContainer>) through which the oneM2M instantiation of the value of the Variable can be manipulated by the communicating entity. It can contain an absolute address or an address relative to the <semanticDescriptor> resource that holds the RDF description of the Variable.
That address could be e.g. the value of the parentID for the <container> or <flexContainer> of a Input- or OutputDataPoint which has child-resource of type <semanticDescriptor> that holds the RDF description of the DataPoint.

Superclass-subclass Relationships

This Class is sub-class of:

· none

This Class is super-class of:

· ThingProperty
· OperationInput, OperationOutput
· OperationState
· InputDataPoint
· OutputDataPoint
· SimpleTypeVariable
Restrictions

· hasSubStructure only Variable
-----------------------End of change 1---

-----------------------Start of change 2---

6.1.19
Class: VariableConversion

[image: image3.emf]Variable

Legend: … an OWL class

… an Object Property

… a Data Property

… indicates an inheritance (sub-Class / sub-Property)

is-a

dataProperty

objectProperty

Class

Class: VariableConversion

Variable

Conversion

hasConversion

convertsTo

Figure 2: VariableConversion
Description

· A VariableConversion (Class: VariableConversion) represents a conversion rule from the value range of one Variable into the value range of another Variable. The plain text specification of that rule is contained in the annotation property rdfs:comment.
Object Properties

This Class is the domain Class of Object Property:

· convertsTo (range Class: Variable)

This Class is the range Class of Object Property:

· hasConversion (domain Class: Variable)

Data Properties

· none

Annotation Properties

· rdfs:comment (range: string)
This OWL pre-defined annotation property shall be used to contain a textual specification of the rules to conver the variable in the domain class of Object Property: hasConversion to the variable in the range class of Object Property: convertsTo.
Superclass-subclass Relationships

This Class is sub-class of:

· none

This Class is super-class of:

· none

-----------------------End of change 2---

6.2.22
Object Property: hasConversion
Description

· A Variable (in the domain of Object Property: hasConversion) can have a conversion rule (the VariableConversion in the range of Object Property: hasConversion) to convert the value range of the Variable into the value range of another Variable.
Domain Class

· Variable
Range Class

· VariableConversion
6.2.23
Object Property: convertsTo
Description

· The conversion rule (the VariableConversion in the domain of Object Property: hasConversion) converts the value range of a given Variable (see 6.2.22 Object Property: hasConversion) into the value range of another Variable (the Variable in the range of Object Property: convertsTo)
Domain Class

· VariableConversion
Range Class

· Variable
-----------------------End of change 3---
-----------------------Start of change 4---

5.2.1.2
Essential Classes and Properties of the Base Ontology

[image: image5.emf]Device

hasService hasFunction

Operation

Input

refersTo

Controlling

Function

consistsOf

Operation

Output

Operation

State

hasOperation

State

exposes

Function

Interworked

Device

Thing

hasThingProperty

hasThingRelation

Thing

Property

is-a

is-a

Variable

Output

DataPoint

is-a

is-a

Function Service

Operation

hasOperation

Command

hasCommand

is-a

Aspect

Meta

Data

Area

Network

isPartOf

hasOutput

hasInput

hasMetaData

describes

SimpleType

Variable

Measuring

Function

Input

DataPoint

exposes

Command

is-a

The oneM2M Base Ontology

GET_

Input

DataPoint

is-a

SET_

Output

DataPoint

Variable

Aspect

hasOutput

DataPoint

hasInput

DataPoint

hasSub

Service

hasOutputDataPoint

is-a

hasInputDataPoint

Variable

Legend: A class shown with grey

shading indicates that the same

class appears multiple times in the figure

Variable

hasSub

Structure

Variable

Conversion

hasConversion

is-a

convertsTo

Figure 1: The oneM2M Base Ontology

Figure 1 shows the essential Classes and Properties of the Base Ontology. The nodes (bubbles) denote Classes whereas edges (arrows) denote Object Properties.

The graph in figure 1 can be read as follows:

· A Thing in oneM2M (Class: Thing) is an entity that can be identified in the oneM2M System.
A Thing may have properties (Object Property: hasThingProperty).
A Thing can have relations to other things (Object Property: hasThingRelation).
E.g. A room that is modelled in oneM2M would be a Thing that could have a room-temperature as a ThingProperty (via hasThingProperty) and could have a hasThingRelation "isAdjacentTo" to another room.
In general it isassumed that a Thing is not able to conmmunicate electronically with its environment. However, the sub-class of Thing that is able to interact electronically is called a "Device".

· A ThingProperty (Class: ThingProperty) denotes a property of a Thing. A Thing can be described with (the values of) ThingProperties, but in general the Thing cannot influence that value or being influenced by it. A human or a computer or a device could set the value of a Thing's ThingProperty and possibly read it. A ThingProperty be can be retrieved or updated by an entity of the oneM2M System.
E.g. the indoor temperature of the room could be a Value of a Thing "room", or the manufacturer could be a ThingProperty of a Thing "car".
A ThingProperty of a thing can describe a certain Aspect, e.g. the indoor temperature describes the Aspect "Temperature" that could be measured by a temperature sensor.
A ThingProperty of a Thing can have meta data

· Variable (Class: Variable) constitutes a super class to the following classes: ThingProperty, OperationInput, OperationOutput, OperationState, InputDataPoint, OutputDataPoint. Its members are entities that have some data (e.g. integers, text, etc., or structured data) that can change over time. These data of the Variable usually describe some real-world Aspects (e.g. a temperature) and can have MetaData (e.g. units, precision).
A Variable can be structured, i.e. it can consist of (sub-) Variables.
· VariableConversion (Class: VariableConversion) represents a conversion rule from the value range of one Variable into the value range of another Variable.
· One sub-class is defined in the base ontology:

· SimpleTypeVariable (Class: SimpleTypeVariable) is a sub-class of Variable that only consists of Variables of simple xml types like xsd:integer, xsd:string…, potentially including restrictions.

· MetaData (Class: MetaData) contain data (like units, precision-ranges, etc.) about the Values of a Thing or about an Aspect.
E.g. the indoor temperature could have meta data: "Degrees Celsius".

· A Device (Class: Device) is a Thing (a sub-class of class:Thing) that is designed to accomplish a particular task via the Functions the Device performs.
A Device can be able to interact electronically with its environment via a network.
A Device contains some logic and is producer and/or consumer of data that are exchanged via its Services with other entities (Devices, Things) in the network. A Device interacts through the DataPoints and/or Opertions of its Services.
In the context of oneM2M a Device is always assumed to be capable of communicating electronically via a network (oneM2M or interworked non-oneM2M network):

· In order to accomplish its task, the device performs one or more Functions (Object Property: hasFunction) (Class: Function).
These Functions are exposed in the network as Services of the Device.

· A Device can be composed of several (sub-) Devices (Object Property: consistsOf) (Class: Device).
=> consistsOf only Device.

· Each Device (including sub-Devices) needs to be individually addressable in the network.

E.g. a "lightswitch" would be a device, a combined fridge/freezer would be a device that consists of a sub-device fridge and a sub-device freezer.

· A Function (Class: Function) represents the Function necessary to accomplish the task for which a Device is designed. A device can be designed to perform more than one Function.
The Class: Function exhibits the - human understandable - meaning what the device "does":

· A Function refers to (e.g. observes or influences) a certain Aspect.

E.g. considering a "light switch" then a related Function could be "Controlling_ON_OFF".
These Functions would refer to an Aspect "lighting", that is influenced by the device "light switch".

· Two sub-classes of class Function are defined in the base ontology:

· ControllingFunction (Class: ControllingFunction) is a sub-class of Function that only controls/influences real world Aspects that the Function relates to.

· MeasuringFunction (Class: MeasuringFunction) is a sub-class of Function that only measures/senses real world Aspects that the Function relates to.

· An Aspect (Class: Aspect) describes the real-world aspect that a Function relates to. Aspect is also used to describe a quality or kind of OperationInput- or OperationOutput variables. The Aspect could be a (physical or non-physical) entity or it could be a quality.

· A Command (Class: Command) represents an action that can be performed to support the Function. An Operation exposes a Command to the network. OperationInput and OperationOutput of the related Operation can parameterize the command.
e.g. the Function "Dimming-Function" could have a Command "setPercentage", with a parameter that has values 0 - 100.

· A Service (Class: Service) is a representation of a Function to a network that makes the Function discoverable, registerable, remotely controllable in the network. A Service can represent one or more Functions. A Service is offered by a device that wants (a certain set of) its Functions to be discoverable, registerable, remotely controllable by other devices in the network:

· While a Function describes the meaning of the device's Function the Service (Class: Service) is used to describe how such Function is represented in a communication network and is therefore dependent on the technology of the network.

E.g. the Function: "turn_light_On_or_Off" could be exposed in the network by a Service "Binary Value Actuator".

· A Service may be composed of smaller, independent (sub)Services, e.g. re-usable servicemodules.

· An OutputDataPoint (class: OutputDataPoint) is a Variable of a Service that is set by a RESTful Device in its environment and that provides state information about the Service. The Device updates the OutputDataPoint autonomously (e.g. at periodic times). To enable a third party to retrieve the current value of a OutputDataPoint (out of schedule) devices often also offer a SET_OutputDataPoint Operation to trigger the device to update the data of the OutputDataPoint.

· An InputDataPoint (class: InputDataPoint) is a Variable of a Service that is set by a RESTful Device in its environment and that the Device readsout autonomously (e.g. at periodic times). To enable a third party to instruct the device to retrieve (out of schedule) the current value of a InputputDataPoint devices often also offer a GET_InputDataPoint Operation to trigger the device to retrieve the data from the InputDataPoint.

NOTE 1:
Input- and Output DataPoints are usually used by Devices (AEs) that communicate in a RESTful way, while Operations are the procedures that are used for remote procedure based communication. Operations are, however, also needed in RESTful systems to correlate output, that is produced by a device, to the input that triggered the production of that output.

· An Operation (Class: Operation) is the means of a Service to communicate in a procedure-type manner over the network (i.e. transmit data to/from other devices).
An Operation is a representation of a Command to a network:

· An Operation can have OperationInput (data consumed by the Device) and OperationOutput (Data produced by the Device), as well as a Method that describes how the Operation is invoked over the network.

· An Operation shall have a Data Property "OperationState" that indicates how the operation has progressed in the device.

· An Operation is transient. I.e. an Operation can be invoked, possibly produces output and is finished.

· An Operation correlates the output data of the Operation to the input data that were used at Operation invokation.

· Two sub-classes of class Operation are defined in the base ontology:

· GET_InputDataPoint (Class: GET_InputDataPoint) is a sub-class of Operation that may be offered by a Device to trigger the device to retrieve the data of an InputDataPoint.
(e.g. outside of the schedule when the device normally retrieves that DataPoint).

· SET_OutputDataPoint (Class: SET_OutputDataPoint) is a sub-class of Operation that may be offered by a Device to trigger the device to update the data of an OutputDataPoint.
(e.g. outside of the schedule when the device normally updates that DataPoint).

· OperationInput (Class: OperationInput) describes the type of input of an Operation to a service of the device. The OperationInput class represents all possible values for that input (data types and -ranges or a list of enumerated individuals). An Operation can have multiple OperationInputs and/or OperationOutputs. If an instance of an Operation is executed then the input value to that Operation is an instance of its OperationInput classes (e.g. enumerated instances like "ON" or "OFF" for an OperationInput class that sets the state of a switch or a real number within a certain range for a "Temperature" OperationInput class for a thermostat).

· OperationOutput (Class: OperationOutput) describes the type of output of an Operation from a service of the device. The OperationOutput class represents all possible values for that OperationOutput (data types and -ranges or a list of enumerated individuals). An Operation can have multiple OperationInputs and/or OperationOutputs. If an instance of an Operation is executed then the output values of that Operation are instances of its OperationOutput classes.

· OperationState (Class: OperationState) describes the current state during the lifetime of an Operation. The OperationState class represents all possible values for that state (enumerated individuals). The OperationState is set during the progress of the operation by the entity invoking the operation, the entity that is the target of the operation, e.g. a device (or for interworked devices by the IPE) and the CSE. It takes values like
"data_received_by_application", "operation_ended", "operation_failed", "data_transmitted_to_interworked_device".

· Area Network (Class: AreaNetwork):

· An Area Network is characterized by its technology:

· physical properties (e.g. IEEE_802_15_4_2003_2_4GHz); its

· communication protocol (e.g. ZigBee_1_0); and

· potentially a profile (e.g. ZigBee_HA).

· Interworked Device (Class: InterworkedDevice):

· Is part of an AreaNetwork.

NOTE 2:
An Interworked Device is not a oneM2M Device and can be only accessed from the oneM2M System by communicating with a "proxied" (virtual) device that has been created by an Interworking Proxy Entity (IPE).
The InterworkedDevice class describes the "proxied" (virtual) device that is represented in the oneM2M System as an individual <AE> resource or a child resource of the <AE> of its IPE.

-----------------------End of change 4---
-----------------------Start of change 5---

7.1.1.2
Instantiation of individual classes of the Base Ontology

An overview of the oneM2M resources for instantiating the classes of the oneM2M Base Ontology is shown in the figure 2. Different colours indicate different resource types.

[image: image6.emf]Device

hasService hasFunction

Operation

Input

refersTo

Controlling

Function

consistsOf

Operation

Output

Operation

State

hasOperation

State

exposes

Function

Interworked

Device

Thing

hasThingProperty

hasThingRelation

Thing

Property

is-a

is-a

Variable

Output

DataPoint

is-a

is-a

Function Service

Operation

hasOperation

Command

hasCommand

is-a

Aspect

Meta

Data

Area

Network

isPartOf

hasOutput

hasInput

hasMetaData

describes

Measuring

Function

Input

DataPoint

exposes

Command

is-a

oneM2M resources for instantiating

the oneM2M Base Ontology

GET_

Input

DataPoint

is-a

SET_

Output

DataPoint

Variable

Aspect

hasOutput

DataPoint

hasInput

DataPoint

hasSub

Service

hasOutputDataPoint

is-a

hasInputDataPoint

Variable

hasSub

Structure

is-a

SimpleType

Variable

Legend: oneM2M resource types

<flexContainer> specialization: genericInterworkingService

<flexContainer> specialization: genericInterworkingOperationInstance

<AE>, <container> or <flexContainer>

<container> or <flexContainer>

Variable

Conversion

Figure 2: oneM2M instantiation of the Base Ontology

· The Device class of the oneM2M Base Ontology (or a sub-class thereof that is not an InterworkedDevice) shall be instantiated in the data of the descriptor attribute of a resource of type <semanticDescriptor> that is a child resource of an <AE>.

The Device instance is identified using the rdf:about attribute that contains a URI (e.g. the MAC address) that is unique within the oneM2M Solution.

The application logic (identified by its APP-ID of the Device instance is provided by the Application Entity (AE) of that Device.

NOTE 1:
The The resourceID of a <node> resource that stores the node specific information where this AE resides is contained in the nodeLink attribute of the <AE> of the Device
· The InterworkedDevice class of the oneM2M Base Ontology (or a sub-class) shall be instantiated in the data of the descriptor attribute of a a resource of type <semanticDescriptor> that is a child resource of:
· an <AE> resource of its Interworking Proxy Application Entity (IPE); or, alternatively

· a <container> or <flexContainer> resource that is a child resource of the <AE> resource of its Interworking Proxy Application Entity (IPE).

The InterworkedDevice instance is identified using the rdf:about attribute that contains a URI (e.g. the device identifier of the device in the interworked system) that is unique within the oneM2M Solution.

The APP-ID of the <AE> that is the parent (or grand-parent) of the <semanticDescriptor> which contains an instance of an InterworkedDevice, shall be the APP-ID of InterworkedDevice's IPE.
NOTE 2:
The reason for the different instantiation of Device and InterworkedDevice is the following:

Case 1 – native oneM2M device
A oneM2M device (ASN, ADN - and potentially MN) always has an AE and an <AE> resource. Therefore the Device class for a oneM2M device needs to be instantiated in the descriptor attribute of the <semanticDescriptor> child resource of that <AE>.
Case 2 – interworked (non-oneM2M) device
In the case of an interworked (non-oneM2M) device the IPE may

· Instatiate the InterworkedDevice class for the interworked (non-oneM2M) devices in the descriptor attribute of the <semanticDescriptor> child resource of the IPE’s <AE>.

· The IPE can create multiple <AE> resources, one for each interworked device.
In this case each interworked device needs to be instantiated in the descriptor attribute of the <semanticDescriptor> child resource of that newly created <AE>.
· The IPE can create multiple <container> or <flexContainer> resources as child resources of the <AE> resource of its Interworking Proxy Application Entity (IPE) , one for each interworked device.
In this case each interworked (non-oneM2M) device needs to be instantiated in the descriptor attribute of the <semanticDescriptor> child resource of that <container> or <flexContainer>.
· The AreaNetwork class (or a sub-class) shall be instantiated in the data of the descriptor attribute of the <semanticDescriptor> child resource of the oneM2M resource that instantiates the InterworkedDevice class:

· The Data Properties "anTechnologyCommunicationProtocol", "anTechnologyPhysicalStandard" and "anTechnologyProfile" are instantiated in the descriptor attribute of the <semanticDescriptor> child resource of the oneM2M resource that instantiates the InterworkedDevice class.

· The Service class (or a sub-class) shall be instantiated in the data of the descriptor attribute of the <semanticDescriptor> child resource of a genericInterworkingService (specialization of <flexContainer>) resource.

The instance is identified using the rdf:about attribute that contains the URI of the Device concatenated with the letter "*" and the class name of the Service (e.g. 00:11:2F:74:2C:8F*MyService).

The genericInterworkingService resource shall be a child resource of the (<AE>, <container> or <flexContainer>) resource that contains the <semanticDescriptor> which instantiates the Device class. It contains references to the <container> or <flexContainer> resources that represent Input- and/or OutputDatapoints of the Service.

· The Function class (or sub-class) shall be instantiated in the data of the descriptor attribute of the <semanticDescriptor> child resource of the oneM2M resource that instantiates the Device class.

The instance is identified using the rdf:about attribute that contains the URI of the Device concatenated with the letter "*" and the class name of the Function (e.g. 00:11:2F:74:2C:8F*MyFunction).

· The Command class (or sub-class) shall be instantiated in the data of the descriptor attribute of the <semanticDescriptor> child resource of the oneM2M resource that instantiates the Device class.

The instance is identified using the rdf:about attribute that contains the URI of the Device concatenated with the letter "*" and the class name of the Command (e.g. 00:11:2F:74:2C:8F*MyCommand).

· The Operation class (or sub-classes) shall be instantiated in the descriptor attribute of the <semanticDescriptor> child resource of a genericInterworkingOperationInstance (specialization of <flexContainer>) resource.

The instance is identified using the rdf:about attribute that contains the URI of the Device concatenated with the letter "*" and the class name of the Service, concatenated with the letter "*" and a combination of the class name of the Operation with a number that makes the instance unique within its Service instance during the operation's lifetime
(e.g. at a certain point in time a Service instance might have Operation instances with OperationInstances with IDs:

· "00:11:2F:74:2C:8F*MyService*MyOperation1", "00:11:2F:74:2C:8F*MyService*MyOperation5",

· "00:11:2F:74:2C:8F*MyService*MyOtherOperation1",

· "00:11:2F:74:2C:8F*MyService*MyThirdOperation8").

The genericInterworkingOperationInstance resource shall be a child resource of the genericInterworkingService resource that contains the <semanticDescriptor> which instantiates the Service class:

· The range instance of Object Property "hasOperation"that links the instance of the Service to the instance of the Operation shall be be annotated with an Annotation Property: resourceDescriptorLink <semanticDescriptor>which shall contain a reference to the resource of type <semanticDescriptor> that instantiates the Operation.

· The OperationInput and OperationOutput class (or sub-class) shall be instantiated in the data of the descriptor attribute of the <semanticDescriptor> child resource of a <container> or <flexContainer>.

The instance is identified using the rdf:about attribute that contains the URI of the OperationInstance concatenated with the letter "*" and the class name of the OperationInput and OperationOutput
(e.g. 00:11:2F:74:2C:8F*MyService*MyThirdOperation8*MyOperationOutput).

The <container> or <flexContainer>, whose the <semanticDescriptor> child resource contains the instance of the OperationInput or OperationOutput shall be a child resource of the genericInterworkingOperationInstance resource:

· The range of an instantiation of Object Properties "hasInput" and "hasOutput" that link the instance of the Operation to the instance of the OperationInput and OperationOutput shall be be annotated with an Annotation Property: resourceDescriptorLink which shall contain a reference to the resource of type <semanticDescriptor> that instantiates the OperationInput and OperationOutput.

· The InputDataPoint and OutputDataPoint class (or sub-class) shall be instantiated in the data of the descriptor attribute of the <semanticDescriptor> child resource of a <container> or <flexContainer>.

The instance is identified using the rdf:about attribute that contains the URI of the Device concatenated with the letter "*" and the class name of the InputDataPoint or OutputDataPoint (e.g. 00:11:2F:74:2C:8F*MyInputDataPoint)

The <container> or <flexContainer> resource shall be a child resource of the (<AE>, <container> or <flexContainer>) resource that contains the <semanticDescriptor> which instantiates the Device class or InterworkedDevice class.

· The range of an instantiation of Object Properties "hasInputDataPoint" and "hasOutputDataPoint" that link the instance of a Service or Operation to the instance of the InputDataPoint and OutputDataPoint shall be be annotated with an Annotation Property: resourceDescriptorLink which shall contain a reference to the resource of type <semanticDescriptor> that instantiates the InputDataPoint and OutputDataPoint.

· <semanticDescriptor>The OperationState class (or sub-class) shall be instantiated in the data of the descriptor attribute of the <semanticDescriptor> child resource of the genericInterworkingOperationInstance resource that is related via the "hasOperationState" Object Property.

The instance is identified using the rdf:about attribute that contains the URI of the OperationInstance concatenated with the letter "*" and "OperationState" (i.e. the class name of the OperationState).
(e.g. 00:11:2F:74:2C:8F*MyService*MyThirdOperation8*OperationState)

· The data property "oneM2MTargetURI" shall contain the URI of the genericInterworkingOperationInstance resource

· The data property "oneM2MAttribute" shall ontain the value "OperationState" (i.e. the name of the Attribute of the OperationState in the genericInterworkingOperationInstance resource)

· <semanticDescriptor>The Aspect class (or sub-classes) may be instantiated in the data of the descriptor attribute of the <semanticDescriptor> child resource of any resource type that allows a <semanticDescriptor> child resource.

The instance is identified using the using the rdf:about attribute that contains a URI that is unique within the oneM2M Solution.

NOTE 3:
The choice of a suitable unique URI is out of scope of oneM2M.

· The Thing class (or sub-classes) may be instantiated in the data of the descriptor attribute of the <semanticDescriptor> child resource of any resource type that allows a <semanticDescriptor> child resource:

· The instance is identified using the using the rdf:about attribute that contains a URI that is unique within the oneM2M Solution.

NOTE 4:
The choice of a suitable unique URI is out of scope of oneM2M.

· The range of an instantiation of Object Property "hasThingRelation" that links the instance of the Thing to the instance of a second Thing shall be be annotated with an Annotation Property: resourceDescriptorLink which shall contain a reference to the resource of type <semanticDescriptor> that instantiates the second Thing

NOTE 5:
This reference could refer to Thing, or a Device (as a sub-class of Thing).

· The range of an instantiation of an Object Property "hasThingProperty" that links the instance of the Thing to an instance of a ThingProperty shall be be annotated with an Annotation Property: resourceDescriptorLink which shall contain a reference to the resource of type <semanticDescriptor> that instantiates the ThingProperty<semanticDescriptor>.

· The TingProperty class (or sub-class) shall be instantiated in the data of the descriptor attribute of the <semanticDescriptor> of the Thing or of a separate <container> or <flexContainer>.

The instance is identified using the rdf:about attribute that contains the URI of the Thing concatenated with the letter "*" and the class name of the ThingProperty (e.g. [some out of scope Thing URI]*MyThingProperty):

· If the TingProperty is a SimpleTypeVariable and contains in its data property "hasValue" the value of the ThingProperty then it can be instantiated in the data of the descriptor attribute of the <semanticDescriptor> of the Thing.

· Otherwise the TingProperty shall be instantiated in the data of the descriptor attribute of a separate <container> or <flexContainer> which shall be a child resource of the parent resource of <semanticDescriptor> which instantiates the Thing class.
In this case the The range of an Object Property "hasThingProperty" that links an instance of a Thing to the instance of the ThingProperty shall be be annotated with an Annotation Property: resourceDescriptorLink which shall contain a reference to the resource of type <semanticDescriptor> that instantiates the ThingProperty.

· The sub-classes of the Variable class shall be instantiated in the data of the descriptor attribute of the <semanticDescriptor> child resource of resources of a <container> or <flexContainer>.
If the Variable has a structure (if it is composed of (sub-)Variables) - i.e. it is not a SimpleTypeVariable then:

· The <semanticDescriptor> shall have instances of object property "hasSubStructure" and each instance contains in its range an instance of a (sub-) Variable. If that (sub-)Variable is part of a different <semanticDescriptor> resource then the The range of an object property "hasSubStructure" shall be annotated with an annotation property: "resourceDescriptorLink" which shall contain a reference to the resource of type <semanticDescriptor> that instantiates the (sub-)Variable.

· The<semanticDescriptor> shall contain an instance of data property "oneM2MTargetURI" which shall contain the URI of the parent <container> or <flexContainer> resource.

· The<semanticDescriptor> shall have instances of the data property "oneM2MMethod" which indicates a oneM2M CRUD Method through which the oneM2M instance of the value of the Variable can be manipulated by the communicating entity:

· It contains the string "RETRIEVE" for retrieving the variable when the oneM2M resource is of type <container> or <flexContainer>. This applies to sub-classes: OperationOutput, OutputDatapoint, ThingProperty and OperationState.

· It contains the string "CREATE" for updating the variable when the oneM2M resource is of type <container>. This applies to sub-classes: OperationInput, InputDatapoint, ThingProperty.

· It contains the string "UPDATE" for updating the variable when the oneM2M resource is of type <flexContainer>. This applies to sub-classes: OperationInput, InputDatapoint, ThingProperty.

· The sub-classes of the SimpleTypeVariable class shall be instantiated in the data of the descriptor attribute of the <semanticDescriptor> child resource of resources of a <container> or <flexContainer>.
The data properties are the same as for instances of the Variable class.
In addition:

· The data property "hasValue" contains the value of the Variable if that value is part of the semantic description and is not contained in a different resource (identified by the oneM2MTargetURI data property).

NOTE 6:
Storing the value of a Variable in a semantic description (i.e. as part of the RDF description in the <semanticDescriptor> resource) is useful for values that are relatively static (e.g. the name of the manufacturer).

NOTE 7:
Data properties "hasValue" and "oneM2MTargetURI" are mutually exclusive. Only one of the two shall be instantiated for a SimpleTypeVariable.

· If data property "oneM2MTargetURI" is instantiated then the data property "oneM2MAttribute" shall also be instantiated and contain:

· In the case of a <flexContainer> the name of the Attribute of the SimpleTypeVariable in the <flexContainer> resource).

· In the case of a <container> the value "#latest".

· The VariableConversion class represents a conversion rule between different Variables.
· A VariableConversion that exists between variables of a Command (OperationInput/-Output) and variables of the related Operation (OperationInput/-Output) or Input-/OutputDatapoints is not instantiated as resource in the oneM2M System.
It documents how parameters of a Command of a Function needs to be interpreted when a related Operation (OperationInput/-Output) or Input-/OutputDatapoints of the corresponding Service is invoked.
· A VariableConversion that exists between variables of two Services of a single or two different Devices specifies a functionality of the oneM2M AE which implements the Device:
· If an Operation OA that has an OperationInput OAI of a Device A is invoked
and
OAI is related via Object Property: hasConversion to a VariableConversion VC
and
VC is related via Object Property: convertsTo to an OperationInput OBI of an Operation OB of Device B
then Device A shall convert OperationInput OAI according to the rules specified in VariableConversion VCinto OperationInput OBI and invoke Operation OB in Device B.
Example: Assume a “dimming” Command for controlling a lightbulb.
In the case of an Abstract Device A the corresponding Operation A has an OperationInput parameter that can take values 0 – 100.
In the case of an actual Device B the Operation B implementing the same Command has an OperationInput parameter of 3 bit size (i.e. integer range 0-7).
In this case the OperationInput of Operation A has an Object Property hasConversion to a VariableConversion VC and VC has an Object Property convertsTo to the OperationInput of Operation B of Device B.
The comments Annotation Property of VC describes how to convert the value in the range of 0-100 in the OperationInput of Operation A to the OperationInput in the range of 0-7 of Operation B.
Using this information, an “abstraction” application can convert the OperationInput of Device A to the OperationInput of Device B and invoke the Operation on Device B.
· The MetaData class (or sub-classes) may be instantiated in the data of the descriptor attribute of the <semanticDescriptor> child resource of any resource type that allows a <semanticDescriptor> child resource.

The instance is identified using the using the rdf:about attribute that contains a URI that is unique within the oneM2M Solution.

-----------------------End of change 5---

© 2017 oneM2M Partners
 Page 20 (of 20)

[image: image7.png]_1547381716.ppt

Variable

Class: VariableConversion

Variable

Conversion

hasConversion

convertsTo

is-a

dataProperty

objectProperty

Legend:			… an OWL class

			… an Object Property

			… a Data Property

			… indicates an inheritance (sub-Class / sub-Property)

Class

*

Device

hasService

hasFunction

Operation
Input

refersTo

Controlling
Function

consistsOf

OperationOutput

Operation
State

hasOperation
State

exposes
Function

Interworked
Device

Thing

hasThingProperty

hasThingRelation

Thing
Property

is-a

is-a

Variable

Output
DataPoint

is-a

is-a

Function

Service

Operation

hasOperation

Command

hasCommand

is-a

Aspect

Meta
Data

Area
Network

isPartOf

hasOutput

hasInput

hasMetaData

describes

SimpleType
Variable

Measuring
Function

Input
DataPoint

exposes
Command

is-a

The oneM2M Base Ontology

GET_
Input
DataPoint

is-a

SET_
Output
DataPoint

Variable

Aspect

hasOutput
DataPoint

hasInput
DataPoint

hasSub
Service

hasOutputDataPoint

is-a

hasInputDataPoint

Variable

Legend: A class shown with grey
shading indicates that the same
class appears multiple times in the figure

Variable

hasSub
Structure

Variable
Conversion

hasConversion

is-a

convertsTo

1

_1547394628.ppt

Device

hasService

hasFunction

Operation

Input

refersTo

Controlling

Function

consistsOf

OperationOutput

Operation

State

hasOperation

State

exposes

Function

Interworked

Device

Thing

hasThingProperty

hasThingRelation

Thing

Property

is-a

is-a

Variable

Output

DataPoint

is-a

is-a

Function

Service

Operation

hasOperation

Command

hasCommand

is-a

Aspect

Meta

Data

Area

Network

isPartOf

hasOutput

hasInput

hasMetaData

describes

Measuring

Function

Input

DataPoint

exposes

Command

is-a

oneM2M resources for instantiating

the oneM2M Base Ontology

GET_

Input

DataPoint

is-a

SET_

Output

DataPoint

Variable

Aspect

hasOutput

DataPoint

hasInput

DataPoint

hasSub

Service

hasOutputDataPoint

is-a

hasInputDataPoint

Variable

hasSub

Structure

is-a

SimpleType

Variable

Variable

Conversion

Legend: oneM2M resource types

<flexContainer> specialization: genericInterworkingService

<flexContainer> specialization: genericInterworkingOperationInstance

<AE>, <container> or <flexContainer>

<container> or <flexContainer>

*

Variable

describes

rdfs:Literal

Aspect

Legend:			… an OWL class
			… an Object Property

			… a Data Property

			… indicates an inheritance (sub-Class / sub-Property)

is-a

dataProperty

objectProperty

Class

Class: Variable

Input
DataPoint

rdf: PlainLiteral

oneM2M
Method

Output
DataPoint

Thing
Property

OperationOutput

OperationInput

hasMetaData

MetaData

oneM2M
TargetURI

SimpeType
Variable

rdfs:Literal

hasValue

has
SubStructure

is-a

Variable
Conversion

hasConversion

convertsTo

1

_1547377650.ppt

Variable

describes

rdfs:Literal

Aspect

Class: Variable

Input

DataPoint

rdf: PlainLiteral

oneM2M

Method

Output

DataPoint

Thing

Property

OperationOutput

OperationInput

is-a

hasMetaData

MetaData

oneM2M

TargetURI

SimpeType

Variable

is-a

hasSub

Structure

is-a

dataProperty

objectProperty

Legend:			… an OWL class

			… an Object Property

			… a Data Property

			… indicates an inheritance (sub-Class / sub-Property)

Class

*

_1547377633.ppt

Device

hasService

hasFunction

Operation

Input

refersTo

Controlling

Function

consistsOf

OperationOutput

Operation

State

hasOperation

State

exposes

Function

Interworked

Device

Thing

hasThingProperty

hasThingRelation

Thing

Property

is-a

is-a

Variable

Output

DataPoint

is-a

is-a

Function

Service

Operation

hasOperation

Command

hasCommand

is-a

Aspect

Meta

Data

Area

Network

isPartOf

hasOutput

hasInput

hasMetaData

describes

is-a

SimpleType

Variable

Measuring

Function

Input

DataPoint

exposes

Command

is-a

The oneM2M Base Ontology

GET_

Input

DataPoint

is-a

SET_

Output

DataPoint

Variable

Aspect

hasOutput

DataPoint

hasInput

DataPoint

hasSub

Service

hasOutputDataPoint

is-a

hasInputDataPoint

Variable

hasSub

Structure

Legend: A class shown with grey

shading indicates that the same

class appears multiple times in the figure

Variable

*

