	Doc# MAS-2017-0012R01-CR_TS-0030_Specification_of_an_Abstraction_Application_Entity_for_devi.doc
Change Request
	[image: image5.png]

	

	CHANGE REQUEST

	Meeting ID:*
	MAS#28

	Source:*
	Joerg Swetina, NEC, joerg.swetina@neclab.eu
Martin Bauer, NEC, martin.bauer@neclab.eu

	Date:*
	2017-03-27

	
	

	Reason for Change/s:*
	Specification of an “Abstraction Application Entity” for device abstraction

	CR against: Release*
	3

	CR against: WI*
	 FORMCHECKBOX
 Active WI 0063
Release 3 Enhancements on Base Ontology & Generic Interworking)
 FORMCHECKBOX
 MNT maintenance / < Work Item number(optional)>
Is this a companion CR? Yes FORMCHECKBOX
 No FORMCHECKBOX

Companion CR number: (Note to Rapporteur - use latest agreed revision)Is this a mirror CR? Yes FORMCHECKBOX
 No FORMCHECKBOX

Mirror CR number: (Note to Rapporteur - use latest agreed revision)

 FORMCHECKBOX
 STE Small Technical Enhancements / < Work Item number (optional)>
Only ONE of the above shall be ticked

	CR against: TS/TR*
	TS 0030 v0.1.0

	Clauses *
	5.1, 5.2, 6, 3

	Type of change: *
	 FORMCHECKBOX
 Editorial change
 FORMCHECKBOX
 Bug Fix or Correction
 Change to existing feature or functionality
 FORMCHECKBOX
 New feature or functionality
Only ONE of the above shall be ticked

	Impacted other TS/TR(s)
	TS 0012 contains the “VariableConversion” class that guides behavior of the Abstraction Application

	Post Freeze checking:*
	This CR contains only essential changes and corrections? YES
 NO
This CR may break backwards compatibility with the last approved version of the TS? YES
 NO

	Template Version: January 2017 (Do not modify)

oneM2M Notice

The document to which this cover statement is attached is submitted to oneM2M. Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.

GUIDELINES for Change Requests:

Provide an informative introduction containing the problem(s) being solved, and a summary list of proposals.

Each CR should contain changes related to only one particular issue/problem.
In case of a correction, and the change apply to previous releases, a separate “mirror CR” should be posted at the same time of this CR
Mirror CR: applies only when the text, including clause numbering are exactly the same.

Companion CR: applies when the change means the same but the baselines differ in some way (e.g. clause number).
Follow the principle of completeness, where all changes related to the issue or problem within a deliverable are simultaneously proposed to be made E.g. A change impacting 5 tables should not only include a proposal to change only 3 tables. Includes any changes to references, definitions, and acronyms in the same deliverable.
Follow the drafting rules.
All pictures must be editable.
Check spelling and grammar to the extent practicable.
Use Change bars for modifications.
The change should include the current and surrounding clauses to clearly show where a change is located and to provide technical context of the proposed change. Additions of complete clauses need not show surrounding clauses as long as the proposed clause number clearly shows where the new clause is proposed to be located.
Multiple changes in a single CR shall be clearly separated by horizontal lines with embedded text such as, start of change 1, end of change 1, start of new clause, end of new clause.
When subsequent changes are made to content of a CR, then the accepted version should not show changes over changes. The accepted version of the CR should only show changes relative to the baseline approved text.
Introduction
In oneM2M Rel-1 and Rel-2 the topic of device abstraction has been studied in TR-0007, mainly in section 6. The oneM2M base ontology defines the classes “Function”, which exhibit the - human understandable - meaning what the device "does" and the related “Command” as to indicate the - human understandable - action that can be performed to support the Function.
When two different Services – possibly of different technologies or from different standards – expose the same Function it means, that they do the same thing.
Similarly, different Input- and OutputDataPoints or Operations can expose the same Command, implying that they represent the same action that can be performed by a Function.

If a (technology independent) ontology describes an Abstract Information Model Device and another (technology specific) ontology – used by the IPE – describes a Device Information Model Device and both expose the same Functions and Commands then abstraction between the two systems can be achieved.
A new type of oneM2M Application, called “Abstraction Application Entity” (AAE) translates between the Device Information Model and the Abstract Information Model. It uses VariableConversion rules that are contained in one of the ontologies (preferably the one for the Device Information Model).
Introduction of class “VariableConversion” is the subject of a separate CR to TS-0012
R01 gives a more illustrative example of abstraction using ZigBee, HAIM and SAREF
-----------------------Start of change 1---

5.1
Basic concepts of Generic Interworking
5.1.1
Generic interworking vs. Specific interworking

Editor’s Note: This section should explain in which cases Generic Interworking can/should/needs to be used and what the difference to specific interworking with FlexContaiers is
5.1.2
Use of ontologies for Generic interworking with Area Networks

5.1.2.1
General Principle

Interworking with Area Networks is accomplished in oneM2M through functionality provided by Interworking Proxy Entities (IPE).

[image: image2.emf]oneM2M compliant

Solution

Area Network

(e.g. KNX)

Interworked Devices (physical

devices) in the Area Network

Proxied Devices(oneM2M resources)

in the oneM2M System technology

Communicating

entity

REST

-

ful

Resource access

Inter

working

Proxy

Entity

Figure 1: Interworking

The IPE creates "proxied" devices as oneM2M Resources (e.g. AEs) in the oneM2M Solution that can be accessed by communicating entities (e.g. oneM2M Applications) in the usual way.

To accomplish the creation of proxied devices the IPE uses an ontology that describes the Device Information Model of the interworked Area Network and its entities (device types, their operations, etc.).
For example, in figure 1, an ontology that describes a KNX Area Network and its entities would be needed.

To achieve the flexibility for the IPE to create proxied devices for many different types of Area Networks each ontology that describes a specific Device Information Model needs to be derived from the Base Ontology that is specified in [3].
E.g. the OWL representation of an ontology that describes the Device Information Model of an Area Network of type "KNX" needs to:

a) contain an 'include' statement which includes Base Ontology;

b) the Class of "KNX Nodes" needs to be a subclass of the "Device" Class of oneM2M's Base Ontology;

c) the Class of "KNX Communication Objects" needs to be a subclass of the "Service" Class of the Base Ontology;

d) etc.

NOTE:
For the purpose of Generic interworking with Area Networks the Base Ontology is only used to describe type information and not for describing instances of these types. E.g. the Base Ontology describes the type "Device", but does not contain information about a specific Device.
The Base Ontology therefore only contains Classes and Properties but not instances.

5.1.2.2
 tbd
Editor’s Note: should go to TS-0012 ??

5.1.2.3
 tbd
Editor’s Note: should go to TS-0012 ??

-----------------------End of change 1---

-----------------------Start of change 2---
5.2
Using Generic Interworking with Device Abstraction

Device abstraction relieves a oneM2M Application that wants to communicate with an interworked device through the help of an IPE from the need to know the Device Information Model of that interworked device. In general this abstraction step cannot be achieved by the IPE alone. As explained in section 5.1 the IPE communicates via the Area Network with the interworked devices and provides oneM2M resources (Proxied Devices) to oneM2M Applications for that communication. However these Proxied Devices still exhibit (are structured along) the original data model – the Device Information Model of the external technology of the device – and an Application using Proxied Devices needs to know that technology specific Device Information Model.
The target of Abstraction is to enable an M2M Application to communicate with the interworked external (non-oneM2M) devices without the need to understand the Device Information Model and the semantics of the native interface.
Specific oneM2M Applications, called “Abstraction Application Entities” (AAEs) translate between the – technology specific - Device Information Model and an Abstract Information Model, that is based on of common functionalities abstracted from a set of Device Information Models. Such Abstract Information Models can be provided by industry assiciations of a specific industry sector.
As in the case of the IPE an Abstract Information Models can be described as an ontology and for that ontology to be useful in oneM2M it needs to be derived from the Base Ontology.
For data exchange with communcating entities the AAE provides oneM2M resources, called Abstract Devices.
Abstract Devices exhibit the Abstract Information Model and the communicating entity only needs to understand this single data model to be able to communicate with devices from multiple technologies that are abstracted.
The AAE works together with the IPE for which it provides abstraction. As explained in 5.1 the IPE creates and uses a proxied device resource for each interworked device of the Area Network.
In addition the AAE now creates and uses a abstract device resource for each proxied device of the IPE.

[image: image3.emf]oneM2M compliant

Solution

Area Network

(e.g. KNX)

Inter

working

Proxy

Entity

Abstract Devices

(oneM2M resources)

exhibiting the Abstract

Information Model

Proxied Devices (oneM2M resources)

exhibiting the Device Information

Model of the interworked

technology

Interworked Devices

(physical devices) in

the Area Network

Communicating

entity

Abstraction

Application

Entity

Abstract

Information

Model

Device

Information

Model

Device

Information

Model

Figure 2: Abstraction
Example of collaboration between IPE and AAE when a a communicating entity - using abstraction – wants to invoke an operation at the Interworked Device:
Instead of invoking the operation (of the Device Information Model) of the Proxied Device the communicating entity invokes the (abstracted) operation of the related operation in the Abstract Information Model. This abstracted operation is modelled as a child-resource of the resource corresponding to the Abstract Device.
The AAE converts the data of the abstracted operation into the data of the operation of the Device Information Model and feeds these data into the operation resource of the proxied device.
Finally the IPE uses the data of the operation resource of the proxied device and invokes the (native) operation at the Interworked Device.
In order to be able to associate Services (“native Services”) of the ontology for the Device Information Model with their related abstracted Services of the the ontology for the Abstract Information Model (“abstracted Services”) these ontologies need to fulfil the following conditions:

· “native” Services need to expose the same Functions as their related “abstracted” Services.

· Similarily, Input- and OutputDataPoints and Operations of these Services need to expose the same Commands.

· Input- and OutputDataPoints and OperationInputs and –Outputs need to be related via VariableConversions

Exposing the same Function by Services of the different ontologies ensures, that they have the same semantic meaning. The Service in the ontology of the Abstract Information Model is therefore an abstraction of the Service in the ontology of the Device Information Model
The figure x below illustrates this situation for a light switch. In the example the physical implementation is a ZigBee device implementing a ZigBee Service “On/Off Cluster”. An IPE for ZigBee creates the interworking towards the ZigBee network. This device is abstracted as oneM2M device according to the a Home Appliance Information Model (HAIM). In HAIM the corresponding Service is a “binary Switch”.
Both types of Services expose a Function “On Off Function” which is e.g. described in the SAREF ontology.
To turn the switch on SAREF defines an “On Command”.

The corresponding Service in HAIM is executed by setting an Input Datapoint called “powerState” to the binary value “TRUE”.

In Zigbee an operation (ZigBee command) needs to be invoked in the On/Off Cluster with an input parameter (ZigBee Command ID) equal to 0.
A VariableConversion can been specified in the ontology of the ZigBee Device Information Model that contains the rules how to convert a value of InputDataPoint “powerState” into a value of OperationInput “ZigBee Command ID”.

[image: image4.emf]Device

type_DD

hasService hasFunction

Operation

Input

“ID = 0”

exposes

Function

Function

“On Off Function”

Service

“On/Off Cluster”

Operation

“ZigBee

Command”

hasOperation

Command

“OnCommand”

hasCommand

hasInput

exposes

Command

Device

type_DA

hasFunction

Service

“binary Switch”

Input

DataPoint

“powerState

= TRUE”

hasService

exposes

Function

exposes

Command

hasInput

DataPoint

Variable

Conversion

hasConversion

ontology of the Device Information Model

(example ZigBee)

ontology of the Abstract Information Model

(example: HAIM)

convertsTo

Figure 3: ontologies relations
-----------------------End of change 2---

-----------------------Start of change 3---

6
Functional specification of communication with the Generic interworking IPE and Abstraction Application Entity
6.1
Usage of oneM2M resources for IPE and AAE communication

6.1.1
General design principles (informative)

For Generic interworking the oneM2M resource types <AE>, <container>, <flexContainer>, and specializations of <flexContainer>: genericInterworkingService and genericInterworkingOperationInstance are intended to hold data that can be used for data exchange with the IPE or AAE.

For Generic interworking a convention is needed how the IPE uses these resources to communicate with other oneM2M entities. This is described in the subsequent clauses.

Resources for RESTful communication style vs. procedure call (RPC) style:

A Generic interworking IPE needs to be able to communicate with non-oneM2M systems that implement some form of RESTful communication style as well as other systems that communicate in a procedure call (RPC) style.

For RESTful systems the use of Input- or OutputDataPoints may be more appropriate.

On the other hand procedure calls can be better modelled using Operations (and their OperationInputs/-Outputs).

Also a combination of both (where Operations additionally receive input from InputDataPoints and/or write output into OutputDataPoints) is possible.

Persistent resources vs. transient resources:

· Persistent resources are genericInterworkingService, <container>s and <flexContainer>s that contain data of Services, Input- or OutputDataPoints. Services, Input- and OutputDataPoints of an Interworked Device usually exist as long as the IPE enables the communication with the Interworked Device.
· Transient resources are genericInterworkingOperationInstances, <container>s and <flexContainer>s that contain data of Operations, OperationInput or OperationOutput.
These resources are created and exist as long as the Interworked Device performs execution of an Operation and receive the output data of the Operation. Once the output data have been deliverd to subscribed communicating entities transient resources may be deleted by the IPE.

NOTE:
While in general the present document assumes that semantic information can be made available (using the <semanticDescriptor> resource) the mechanisms described here for IPE communication do not rely on the existence of semanticDescriptors. This allows e.g. very simple devices to exchange their data in "raw" form (e.g. as byte-fields that need to be interpreted by the communicating entity).

-----------------------End of change 3---
-----------------------Start of change 4---

6.4
Specification of the Abstraction Application Entity (AAE)
6.4.1
General functionality of an AAE
The AAE translates between
· data – modelled according to the Device Information Model of the Area Network - that describe Services of a set of Proxied Devices
and
· data – modelled according to the Abstract Information Model - that describe Services of a related set of Abstract Devices.

To that purpose both, the Device Information Model and the Abstract Information Model need to be available as oneM2M compliant ontologies to the AAE.
First the AAE needs to be configured with the information on the IPE (<AE> resource of the IPE, ontology describing the Device Information Model of the IPE) for which it should provide Services abstraction and with the information on the ontology describing the Abstract Information Model.

· Depending on the capabilities of the AAE and when the ontologies are made available as a formal description the AAE may access and parse the OWL files.

By analysing the ontologies the AAE then needs to find out which Services in the ontology describing the Device Information Model can be abstracted into Services in the ontology describing the Abstract Information Model.
Both services need to expose the same Function.
Similarly the AAE needs to find out which Input- / OutputDataPoints and Operations of both ontologies expose the same Command.
Finally the AAE needs to check that for all Variables (Input- / OutputDataPoints and OperationInputs / -Outputs) VariableConversions exist
Note: Usually the Functions and Commands will be specified in the ontology of the Abstract Information Model. The VariableConversions will be specified in the ontology of the Device Information Model.
The AAE needs to discover the Proxied devices of an IPE for which it can provide Services abstraction. For each of these Proxied devices it will create an Abstract Device
6.4.2
Proxied Device discovery

The AAE shall subscribe to the <AE> resource of the IPE in order to discover the Proxied devices (<container> or <flexContainer> child resource of the IPE's <AE> resource) for which it can provide Services abstraction

1. For each discovered Proxied Device the AAE shall create a <container> or <flexContainer> child resource of the AAE's <AE> resource for a Abstract Device that represents the Proxied Device
2. For each Service (resource type <genericInterworkingService>) of the Proxied device the AAE shall create the related abstracted Service as child resources of the resource of the Abstract Device.

3. The IPE shall create <semanticDescriptor>s as child resources of the Services.
4. For each Abstracted Service the AAE shall create the Input- and OutputDataPoints (resource types <container> and/or <flexContainer>) as child resources of the resources of the Abstract Device.
5. The AAE shall subscribe to all its created resources.
6. The AAE shall subscribe to all discovered Proxied Devices and their child resources to get notified about changes in these resources.
6.4.3 Handling of Input- OutputDataPoints and Operations by the AAE
A Command may be exposed differently in the ontologies of the Device Information Model (of the Proxied Devive) and the Abstract Information Model (of the Abstract Device). The following table shows all combinations and specifies the behaviour of the AAE.
	
	Command in the Abstract Device Service is exposed as InputDataPoint
	Command in the Abstract Device Service is exposed as OutputDataPoint
	Command in the Abstract Device Service is exposed as Operation

	Command in the Proxied Device Service is exposed as InputDataPoint
	Value of InputDataPoint of Abstract Device Service is converted according to VariableConversion and written into InputDataPoint of Proxied Device
	
	The value of OperationInput or InputDataPoint of the Operation of the Abstract Device Service is converted according to VariableConversion and written into the InputDataPoint of the Operation of the Proxied Device.

	Command in the Proxied Device Service is exposed as OutputDataPoint
	
	Value of OutputDataPoint of Proxied Device Service is converted according to VariableConversion and written into OutDataPoint of the Abstract Device
	When the OutputDataPoint of the Proxied Device Service) has been updated the AAE creates an OperationInstance (type <genericInterworkingOperation > resource as child resource of <genericInterworkingService> resource of the Abstract Device Service).

The value of the OutputDataPoint of of the Operation of the Proxied Device is converted according to VariableConversion and written into OperationOutput or OutputDataPoint of the Operation of the Abstracted Device.

	Command in the Proxied Device Service is exposed as Operation with no OperationOutput or OutputDataPoint of the Operation
	The AAE creates an OperationInstance (type <genericInterworkingOperation > resource as child resource of <genericInterworkingService> resource of the Proxied Device Service)
The value of InputDataPoint of Abstract Device Service is converted according to VariableConversion and written into OperationInput or InputDataPoint of the Operation of the Proxied Device
	
	The AAE creates an OperationInstance (type <genericInterworkingOperation> resource as child resource of <genericInterworkingService> resource of the Proxied Device Service) and subscribes to it.
The value of OperationInput or InputDataPoint of the Operation of the Abstract Device Service is converted according to VariableConversion and written into OperationInput or InputDataPoint of the Operation of the Proxied Device.
Subsequently, the operationState attribute of the Operation of the Proxied Device shall be monitored and for the lifetime of the Operation (<genericInterworkingOperation> resource) of the Proxied Device and copied into the operationState attribute of the Operation of the Abstract Device

	Command in the Proxied Device Service is exposed as Operation with no OperationInput or InputDataPoint of the Operation
	
	When a new Operation (type <genericInterworkingOperation > resource as child resource of <genericInterworkingService> resource of the Proxied Device Service) has been created
the AAE converts the value of the OperationOutput or OutputDataPoint of of the OperationInstance of the Proxied Device according to VariableConversion and writes it into the OutDataPoint of the Abstract Device
	When a new Operation (type <genericInterworkingOperation > resource as child resource of <genericInterworkingService> resource of the Proxied Device Service) has been created the AAE creates an OperationInstance (type <genericInterworkingOperation > resource as child resource of <genericInterworkingService> resource of the Abstract Device Service).

The value of the OperationOutput or OutputDataPoint of of the Operation of the Proxied Device is converted according to VariableConversion and written into OperationOutput or OutputDataPoint of the Operation of the Abstracted Device.

	Command in the Proxied Device Service is exposed as Operation with both, OperationInput or InputDataPoint and OperationOutput or OutputDataPoint of the Operation
	
	
	First, the AAE creates an OperationInstance (type <genericInterworkingOperation > resource as child resource of <genericInterworkingService> resource of the Proxied Device Service) and subscribes to it.
The value of OperationInput or InputDataPoint of the Operation of the Abstract Device Service is converted according to VariableConversion and written into OperationInput or InputDataPoint of the Operation of the Proxied Device.
Subsequently, the operationState attribute of the Operation of the Proxied Device shall be monitored and for the lifetime of the Operation (<genericInterworkingOperation> resource) of the Proxied Device and copied into the operationState attribute of the Operation of the Abstract Device
When the operationState attribute of the Operation of the Proxied Device indicates the value "operation ended" the AAE shall convert the value of the OperationOutput or OutputDataPoint of of the Operation of the Proxied Device according to VariableConversion and write it into OperationOutput or OutputDataPoint of the Operation of the Abstracted Device.
The AAE shall set the operationState attribute of the Operation of the Abstracted Device to the value "operation ended"

-----------------------End of change 4---

----Start of changes to Definitions Symbols Abbreviations Acronyms -

3
Definitions, symbols, abbreviations and acronyms
3.1
Definitions

For the purposes of the present document, the terms and definitions given in oneM2M TS-0011 [1], TS-0012 [3] and the following apply:
Abstract Information Model: Information Model of common functionalities abstracted from a set of Device Information Models (see [1])
Abstraction: process of mapping between a set of Device Information Models and an Abstract Information Model according to a specified set of rules (see [1])
Abstraction Application Entity: A specialized AE that communicates with an IPE and facilitataes Abstraction by providing Servives that translate between the Abstract Information Model and the Device Information Model of the IPE.
Device Information Model: Information Model of the native protocol (e.g. ZigBee) for the physical device (see [1])

generic interworking: generic interworking allows interworking with many types of non- oneM2M Area Networks and Devices that are described in the form of a oneM2M compliant ontology which is derived from the oneM2M Base Ontology (see [3])
NOTE:
generic interworking supports the interworking variant "full mapping of the semantic of the non-oneM2M data model to Mca" as indicated in clause F.2 of oneM2M TS-0001 [2].

interworked device: non-oneM2M device (NoDN) for which communication with oneM2M entities can be achieved via an Interworking Proxy Application Entity (IPE) (see [3])
Interworking Proxy Application Entity: A specialized AE that facititates interworking between Non-oneM2M Nodes (NoDN) and the oneM2M System. An IPE maps data of the NoDN into oneM2M resources. It invokes operations in the NoDN when the related oneM2M resources are modified and modifies oneM2M resources based on the output of NoDN operations. (see [1])
proxied device: virtual Device (i.e. a set of oneM2M resources together with an IPE) that represents the Interworked Device in the oneM2M System (see [3])
3.2
Symbols

<symbol>
<Explanation>

3.3
Abbreviations and Acronyms

For the purposes of the present document, the abbreviations given in TS-0011 [1], TS-0012 [3] and the following apply:

AAE
Abstraction Application Entity
IPE
Interworking Proxy Application Entity (see [1])
---End of changes to Definitions, Symbols, Abbreviations, Acronyms ---

© 2017 oneM2M Partners
 Page 3 (of 14)

[image: image5.png]_1547464694.ppt

oneM2M compliant Solution

Area Network

(e.g. KNX)

Interworked Devices (physical devices) in the Area Network

Proxied Devices (oneM2M resources) in the oneM2M System technology

Communicating

entity

REST-ful Resource access

Inter

working

Proxy

Entity

oneM2M compliant Solution

Area Network
(e.g. KNX)

Inter
working

Proxy
Entity

Abstract Devices (oneM2M resources) exhibiting the Abstract Information Model

Proxied Devices (oneM2M resources) exhibiting the Device Information Model of the interworked
technology

Interworked Devices (physical devices) in the Area Network

Communicating
entity

Abstraction
Application
Entity

Abstract Information
Model

Device Information
Model

Device Information
Model

Device
type_DD

hasService

hasFunction

Operation
Input
“ID = 0”

exposes
Function

Function
“On Off Function”

Service
“On/Off Cluster”

Operation
“ZigBee
Command”

hasOperation

Command
“On Command”

hasCommand

hasInput

exposes
Command

Device
type_DA

hasFunction

Service
“binary Switch”

Input
DataPoint
“powerState
= TRUE”

hasService

exposes
Function

exposes
Command

hasInput
DataPoint

Variable
Conversion

hasConversion

ontology of the Device Information Model
(example ZigBee)

ontology of the Abstract Information Model
(example: HAIM)

convertsTo

_1547458060.ppt

oneM2M compliant Solution

Area Network

(e.g. KNX)

real Devices in Area Network

“proxied” Devices in the oneM2M System technology

oneM2M

AE

REST-ful Resource access

Inter

working

Proxy

Entity

