Doc# MAS-2017-0094_WoT-Interworking_for_TR-0042

	Input Contribution

	Meeting ID*
	MAS 29

	Title:*
	WoT Interworking Background for TR-0042

	Source:*
	Chonggang Wang, Convida, wang.chonggang@convidawireless.com
Yongjing Zhang, Huawei, zhangyongjing@huawei.com

Xu Li, Convida, li.xu@convidawireless.com

Catalina Mladin, Convida, mladin.catalina@convidawireless.com

	Date:*
	2017-05-22

	Input related to*
	WI-0071, TR-0042

	Intended purpose of

document:*
	 FORMCHECKBOX
 Decision

 FORMCHECKBOX
 Discussion

 Information

 Other <specify>

	Impacted other TS/TR(s)
	TR-0042. V-0.0.1, WoT Interworking Background

	Decision requested or recommendation:*
	Request to agree on the proposed description on WoT Interworking Background

	Template Version: January 2017 (Do not modify)

oneM2M Notice

The document to which this cover statement is attached is submitted to oneM2M. Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.

Introduction
This contribution aims to provide content for the Clause 5.1 “Background and Rationale” and the Clause 5.2 “” in TR-0042 (“WoT Interworking”) which currently has a skeleton only.

-----------------------Start of change 1---
2.2
Informative references
The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.
[i.1]
oneM2M Drafting Rules (http://member.onem2m.org/Static_pages/Others/Rules_Pages/oneM2M-Drafting-Rules-V1_0.doc)
[i.2]
oneM2M TS-0001, Functional Architecture, Release-2 v-2.10.0, August 2016.

[i.3]
Web of Things (WoT) Architecture, W3C Editor's Draft, May 4, 2017 (https://w3c.github.io/wot-architecture/)

[i.4]
WoT Current Practices, Unofficial Draft, April 27, 2017 (http://w3c.github.io/wot/current-practices/wot-practices.html)

[i.5]
Web of Things (WoT) Thing Description, W3C Editor’s Draft, March 6, 2017 (https://w3c.github.io/wot-thing-description/)
Copyright © 2017 W3C® (MIT, ERCIM, Keio, Beihang). This document includes material copied from or derived from [i.3], [i.4], and [i.5]

------------------------End of change 1--
------------------------End of change 2--
3.3
Abbreviations

Abbreviations should be ordered alphabetically.

Clause numbering depends on applicability.

For the purposes of the present document, the [following] abbreviations [given in ... and the following] apply:

Abbreviation format

AE

Application Entity

API
Application Program Interface

ASN
Application Service Node

CRUD
Create, Retrieve, Update, Delete

CSE
Common Service Entity

CSF
Common Service Function

IG
Interest Group

IN

Infrastructure Node

IoT
Internet of Things

IPE
Interworking Proxy Entity

JSON-LD
JavaScript Object Notation for Linked Data
MN

Middle Node

RDF
Resource Description Framework
ROA

Resource-Oriented Architecture

SDT
Smart Device Template

TD

Thing Description

URI
Uniform Resource Identifier

WG

Working Group

WoT
Web of Things

------------------------End of change 2--
------------------------Start of change 3---
5.1
Background and Rationale

Editor’s note: short background and the benefits of oneM2M – WoT interworking
5.1.1
Overview of Interworking in oneM2M

Interworking provides entities from incompatible systems with the framework and ability to communicate and interact with each other. A system compliant to a standard X (such as oneM2M) can be called X-compliant. A native thing/device in an X-compliant system will be called an “X-compliant thing/device”. Similarly, native users/applications in the X-compliant system can interact with the X-compliant devices/things without leveraging any interworking technologies. However, X-compliant users/applications must leverage interworking technologies in order to interact with Y-compliant things/devices.
In general, interworking requires certain new logic functionality, which acts as a translator or intermediator between systems which are compliant to different standards. In oneM2M functional architecture [i.2], Interworking Proxy Entity (IPE) is the logic entity that handles interworking between the oneM2M system and an external system. For a given external device that is X-compliant such as W3C Web of Things (WoT), IPE will create corresponding oneM2M resource representation (as “avatar”) in the oneM2M system and this resource representation will then provide oneM2M-compliant interface. Accordingly, oneM2M users/application can issue RESTful operations (i.e. Create, Retrieve, Update, and Delete which are referred to as CRUD) directly on this resource, which will be captured by the IPE and translated to native operations in external X-compliant system; then IPE sends those native operations to the external device and eventually realize the interworking from oneM2M users/applications to X-compliant device. For the reverse interworking from X-compliant devices to oneM2M users/applications, IPE follows the similar process but translates native operations in the X-compliant system to oneM2M RESTful operations.

5.1.2
Needs for oneM2M – WoT Interworking

In real Internet of Things (IoT) scenarios, due to the lack of or no coordination among different parties/organizations, it is possible that IoT things/devices deployed by different parties may be compliant to different standards. For example, considering a downtown scenario in a smart city, different parties may deploy their outdoor cameras for various civic purposes such as traffic control, security monitoring, and parking spot management. An application identifying street parking may use the latest images captured around the street by a variety of cameras which may be compliant to different standards
IoT applications or IoT devices may have limited capabilities and will not support multiple standards simultaneously for cost saving or other purposes. For example, some of deployed cameras along streets are only compliant to World Wide Web Consortium (W3C) Web of Things (WoT) standard [i.3] while the user interfaces through an oneM2M application. As a result, the user will not be able to retrieve images from those WoT-compliant cameras unless certain interworking mechanism can be designed and leveraged. Overall, it can be seen that interworking is an essential technology to realize various IoT applications in reality which needs interoperability across oneM2M and W3C WoT.

5.2
Technical comparison of oneM2M and W3C WoT systems
Editor’s note: technical introduction to W3C WoT (e.g. architecture, TD) and comparison between two systems, including similarities and differences in terms of architectural style (RESTful), resource modelling, semantics.
5.2.1
Overview of oneM2M system
The goal of oneM2M is to develop technical specifications which address the need for a common service layer that can be readily embedded within hardware apparatus and software modules in order to support a wide variety of devices in the field. As specified in oneM2M TS-0001 [i.2], the oneM2M common service layer supports a set of Common Service Functions (CSFs) (i.e. service capabilities). An instantiation of a set of one or more particular types of CSFs is referred to as a Common Service Entity (CSE) which can be hosted on different types of network nodes (e.g. Infrastructure Node (IN) and Middle Node (MN), and Application Service Node (ASN)). The CSEs provide the service capabilities to other CSEs as well as to Application Entities (AEs). Typically, an AE represents an instantiation of application logic for end-to-end M2M solutions, for example, an instance of a fleet tracking application, a remote blood sugar monitoring application, a power metering application, or a controlling application, etc. oneM2M service layer is developed based on Resource-Oriented Architecture (ROA) principle, in the sense that different resources and RESTful operations on them are specified in oneM2M functional architecture to support different CSFs. A resource is uniquely addressable using Uniform Resource Identifiers (URIs) and can be manipulated via RESTful CRUD operations. A resource may contain child resource(s) and attribute(s). For example, a parent resource can represent an oneM2M device while its child resources can further represent the operations or properties of this device.

5.2.2
Overview of W3C WoT system
Note: W3C WoT Interest Group (IG) and Working Group (WG) are still ongoing. The content of this clause is based on the latest progress in W3C WoT IG and WG. The content of this clause shall be reexamined and updated according to future deliverables from W3C WoT IG and WG.
5.2.2.1
W3C WoT architecture
WoT functional architecture has been designed with three primary requirements [i.3]: flexibility by aiming to support a wide range of physical WoT devices, upper compatibility to current IoT standards and legacy IoT solutions, and security and privacy. In WoT system, the major functional entity is “WoT Servient” which is an entity consisting of a web client, a web server, and device control capabilities. A WoT Servient becomes a WoT Server if it only has a web server and device control capabilities, or a WoT client if it does not have a web server but a web client. Through a WoT Servient, IoT physical devices can be accessed, monitored, and controlled (e.g. to get their status and data values from those devices).

The general WoT Servient functional architecture as defined in [i.3] is presented in Figure 5.2.2.1-1. Servients communicate with each other through “WoT Interface”, a resource-oriented Web Application Program Interface (API). A Servient can be in client role (i.e., it only consumes other things), server role (i.e., it only exposes things and provides capabilities), or both. As defined in [i.4], “Thing” is the abstract concept of a physical entity that can either be a real-world artifact, such as a device, or a virtual entity that represents physicality, such as a room or group of devices. In general, a WoT Thing (e.g., a legacy device only providing proprietary interface) has an associated WoT Servient, which is the representation of this Thing in the WoT system, with which other WoT Servients can interact. Servients can also provide access to virtual things such as a collection of physical things (e.g., all lights in a room). In addition, Servients can be hosted in different places such as inside a smartphone, a local gateway, or the cloud.
[image: image1.png]=

comm-
unication

v

WoT Servient

Server Discovery
AP
e v

APl

Scriptifg APl

Runtime Environment

Binding Template

~

Security

Privacy

Thing
Description

Figure 5.2.2.1-1: Functional Architecture of WoT Servient [i.3]
According to [i.3], the functionalities of several major modules of a WoT Servient are described below.
· Thing Description: Each WoT Thing is described by a WoT TD, which basically describes the semantics of a Thing as well as its WoT Interface. The TD must be acquired before it the Thing can be accessed and/or interested with. Things can provide their own TDs locally, but the TD can also be hosted externally (e.g. if there is not enough space on the thing/device). To ease TD discovery, TDs can be registered with a well-known TD Repository, where the TD for Things of interest can be queried. The Clause 5.2.2.2 gives more details about TD.

· App Script: The application logic of a WoT Thing (or technically a servient) can be implemented natively, for instance in the device firmware, which is expected to be common for very resource-constrained Things. Following the patterns in the Web, however, application logic should also be provided by scripts. This is supported through a scripting runtime environment—similar to the Web browser—that may be provided by a servient. App scripts implement application logic in a modular and portable way. It can access local hardware, locally connected legacy devices, and remote things through the WoT Interface.
· Script API: Portability of such scripts is ensured through a common Scripting API (i.e. Client API, Server API, Discovery API, and Proprietary API) that allows an application to discover things (via Discovery API), to consume things (via Client API), to expose things (via Server API), and/or to access/control the hardware physically attached to the servient (via Proprietary API). Scripting API is more like an internal API used by application scripts, while the WoT Interface is the external interaction interface between different WoT Servients.
· Protocol Binding: It supports binding Script API messages to different underlying protocols with various communication patterns such as push, pull, pub-sub and bi-directional messaging. After protocol binding, message will be transmitted over WoT interface from one WoT Servient to another WoT Servient. This will be realized by standardized Binding Template.

· Security and Privacy: Security and privacy features will be embedded in other modules like TD, Script API, Protocol Binding, etc. As a result, W3C WoT WG will not generate a standalone specification for security and privacy, but include security and privacy design in TD specification, Script API specification, and binding template specification.

W3C WoT WG will not standardize App Script, but it plans to standardize Thing Description (TD), Script API, Binding Template, and Security and Privacy. TD is the key module to enable interactions between two WoT Servients, and will play a critical role in oneM2M-WoT interworking (e.g. mapping between W3C TD model and semantic models in oneM2M). Protocol binding and security/privacy may also be considered for oneM2M-WoT interworking.
5.2.2.2
WoT thing description
Resource Description Framework (RDF) has been used as an underlying data model for TD representation. A TD is actually a RDF document. Four pieces of content contained in a TD are presented in Figure 5.2.2.2-1 as described in [i.3]:

· Semantic Metadata: It gives generic thing information and context enrichment (e.g. linking to external vocabularies and ontologies)

· Interaction Resources (of a Thing): They describe the capabilities of a thing in terms of Properties, Actions, and Events. Readable/Writable data or resources on a thing are described as Properties; changes and processes on a thing are described as Actions; Events are used as a mechanism to enable notification about the thing under certain conditions.

· Communication: This piece describes bindings to different communications protocols (e.g. HTTP, CoAP, etc.).

· Security: A TD can also provide content related to security mechanisms, policies, and parameters to securely access the thing and the TD itself.

[image: image2.png]Thing’s
Interaction
Resources

- Property
- Action

- Event

Semantic
Metadata

- Generic Thing
information

- Context enrichment

Thing
Description

Communication

- Thing’s protocol
support

- Data exchange
formats
- Bindings to an
interaction resource

Security

- Prerequisites to
access things/
resources

- Protecting TD

Figure 5.2.2.2-1: Concepts of the Thing Description (TD) [i.4]
A TD example for temperature sensor from [i.5] is illustrated in Figure 5.2.2.2-1. Although this example is based on JavaScript Object Notation for Linked Data (JSON-LD) serialization, W3C WoT IG/WG has been investigating other options and may define a general TD model independent of serialization format. This TD example defines a thing myTempSensor which has two properties (i.e. myTemp and myThreshold). Both properties have the type of “Temperature” and the unit of “celsius”. myThreshould can be updated, but myTemp which is the actual measurement from the temperature sensor is read-only. “base” and “links” together give the URI for accessing those two properties. For example, the URI for myTemp is coap:///www.example.com:5683/temp/val. In addition, “@context” as provided by JSON-LD allows a TD to link to and reuse existing external models and vocabularies (i.e. ontology) to enhance semantic interoperability.

 {

"@context": ["https://w3c.github.io/wot/w3c-wot-td-context.jsonld",

"https://w3c.github.io/wot/w3c-wot-common-context.jsonld"],

"@type": "Sensor",

"name": "myTempSensor",

"base": "coap:///www.example.com:5683/temp/",

"interactions": [

{

"@id": "val",

"@type": ["Property","Temperature"],

"unit": "celsius",

"reference": "threshold",

"name": "myTemp",

"outputData": {"valueType": {"type": "number"}},

"writable": false,

"links": [{

"href": "val",

"mediaType": "application/json"

}]

}, {

"@id": "threshold",

"@type": ["Property","Temperature"],

"unit": "celsius",

"name": "myThreshold",

"outputData": {"valueType": {"type": "number"}},

"writable": true,

"links": [{

"href": "thr",

"mediaType": "application/json"

}]

},{

"@type": ["Event"],

"outputData": {"valueType": {"type": "number"}},

"name": "myChange",

"property": "temp",

"links": [{

"href": "val/changed",

"mediaType": "application/json"

}]

}, {

"@type": ["Event"],

"outputData": {"valueType": {"type": "number"}},

"name": "myWarning",

"links": [{

"href": "val/high",

"mediaType": "application/json"

}]

}

]

}

Figure 5.2.2.2-2: A TD Example for Temperature Sensor [i.5]

5.2.3
Comparisons of oneM2M and WoT systems

According to [i.2] for oneM2M and [i.3]-[i.5] for W3C WoT, oneM2M and W3C WoT systems share the following commonalities:

· Both are based on the RESTful design principle. For example, a resource in oneM2M has a URI and can be manipulated via CRUD operations. Similarly, as illustrated in Figure 5.2.2.2-2, Properties/Actions/Events on a Things are described as resources; each has a URI and can be accessed (e.g. Retrieve and Update).

· Both can bind to various communication protocols (e.g. HTTP, CoAP, MQTT, etc.).

· Both use RDF to describe semantic metadata about a thing (in W3C WoT) or a resource (in oneM2M).

· Both can leverage external ontologies.

· TD model in W3C WoT and Smart Device Template (SDT)/Base Ontology in oneM2M provide similar information.

Several differences between the oneM2M and the W3C WoT systems have been identified below. Although this is not an exhaustive list, it needs to be taken into account when designing interworking solutions between the two systems.

· oneM2M provides a common Service Layer that includes a set of CSFs describing service aspects. By comparison, a WoT Servient does not provide such common service functions; accordingly, a TD does not describe any service aspect.
· A WoT Thing is associated with a WoT Servient, and in the meantime, a WoT Thing has a corresponding TD which describes how to interact with this thing through its corresponding servient. In other words, the TD can be separated from the WoT thing or its servient in the sense that the TD can be regarded as a user manual and can be hosted/published to a TD repository. By comparison, in oneM2M system, there is not such a “description” or “manual” for interacting with oneM2M devices/resources.
· The <semanticDescriptor> resource defined in oneM2M is different from the TD defined in the W3C WoT system. The <semanticDescriptor> resource provides additional metadata as semantic annotations for a particular resource. In contrast, the TD describes more aspects about a whole thing (e.g. semantic metadata, security, interaction patterns and communication binding details), not limited to a single resource. At the same time the TD in W3C WoT uses a more centralized approach, while the <semanticDescriptor> resource in oneM2M is more distributed.

· oneM2M focuses on external reference points and interactions between two logical entities. In contrast, W3C WoT will not specify external WoT interface between two WoT Servients, but it does define internal Script APIs within a WoT Servient.

· oneM2M provides sophisticated filters for resource discovery. In contrast, only discovery of TDs is needed in W3C WoT system. The discovery of TDs targets the whole TD document, not a particular resource or a specific type of resources hosted on a thing.

-----------------------End of change 3---
© 2017 oneM2M Partners

Page 1 (of 2)

