Doc# MAS-2017-0117-New_type_definitions_for_Generic_Interworking.doc

	Input Contribution

	Meeting ID*
	MAS#29

	Title:*
	New type definitions for Generic Interworking

	Source:*
	Joerg Swetina, NEC, joerg.swetina@neclab.eu

	Date:*
	2017-05-22

	Input related to*
	WI 0063, Release 3 Enhancements on Base Ontology & Generic Interworking)

	Intended purpose of

document:*
	 FORMCHECKBOX
 Decision

 FORMCHECKBOX
 Discussion

 Information

 Other <specify>

	Impacted other TS/TR(s)
	TS/-0030, v0.2.0 (Generic Interworking), TS-001, TS-004

	Decision requested or recommendation:*
	If MAS agrees to the general principle related CRs would follow in MAS, ARC and PRO.

	Template Version: January 2017 (Do not modify)

oneM2M Notice

The document to which this cover statement is attached is submitted to oneM2M. Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.

 Introduction

This contribution proposes a new way how generic interworking can implement communication between a communicating entity and the IPE.

It relies on a new type of structured attributes that allow to include type information in the structure of the attribute. It simplifies data flows considerably.

The usage of structured attribute type is not restricted to generic interworking, however, fur the time bein this type of attribute is only proposed for use in resources of type <genericInterworkingService> and <genericInterworkingOperationInstance>
The following new types are needed:

General types

· anyTypedContent,
· listType,
· listItem

· structureType
· structureItem
Types specifically for generic interworking:
· dataPoints
· dataPoint
· operations
· operation
· operationResult
The basic idea is that names and data of all dataPoints of a service are contained in a single attribute – attribute Name: “dataPoints” – of the <genericInterworkingService>. Similarly all operations are contained in a in a single attribute – attribute Name: “operations” – of the <genericInterworkingService>.

The building principle is shown in the figure below:

[image: image1.emf]<genericInterworkingService>

dataPoints

m2m:dataPoints

operations

m2m:operations

(0..1)

(0..1)

dataPoint

m2m:dataPoint

(0..n)

data

m2m:anyTypedContent

1

name

xs:NCName

string

xs:string

1

(0..1)

boolean

xs:boolean

double

xs:double

hexBinary

xs:hexBinary

integer

xs:integer

unsignedLong

xs:unsignedLong

list

m2m:listType

lisItem

m2m:listItem

structure

m2m:structureType

itemNumber

xs:unsignedLong

itemContent

m2m:anyTypedContent

structureItem

m2m:structureItem

itemName

xs:NCName

itemContent

m2m:anyTypedContent

(0..1)

(0..1)

(0..1)

(0..1)

(0..1)

(0..1)

(0..1)

(0..n)

(0..n)

1

1

1

1

xs:choice

(i.e. exactly one of)

operation

m2m:operation

(0..n)

invocationData

m2m:dataPoint

1

name

xs:NCName

(0..n)

Noticeable differences to the previous way of implementing dataPoints and operations:

· both, dataPoints and operations, are now modelled as parts of a structured attribute of the <genericInterworkingService>.

· An operation (as part of operations attribute, contains only invocation Data

· The resultData of an operation are part of the resource <genericInterworkingOperationInstance> that is CREATEd for any operation that produces output

[image: image2.emf]<genericInterworkingOperationInstance>

1

operationResult

m2m:operationResult

invocationData

m2m:dataPoint

name

xs:NCName

(0..n)

1

resultData

m2m:dataPoint

(0..n)

· It seems that operationState (values: “data_transmitted_to_interworked_device”, “data_received_by_application”, “operation_ended”, “operation_failed”) could either

a) be removed. In this case failure of transmission from IPE to Interworked Device could not be signalled back to the communicating entity

or

b) be applied to dataPoints too.

· The data flow is considerably simplified (see below)
Proposed changes in TS-0030 (not complete):

6
Functional specification of communication with the Generic interworking IPE and Abstraction Application Entity
6.1
Usage of oneM2M resources for IPE and AAE communication

6.1.1
General design principles (informative)

For Generic interworking the oneM2M resource types <AE>, <container>, <flexContainer>, and specializations of <flexContainer>: genericInterworkingService and genericInterworkingOperationInstance are intended to hold data that can be used for data exchange with the IPE or AAE.

For Generic interworking and Abstraction a convention is needed how the IPE and AAE uses these resources to communicate with other oneM2M entities. This is described in the subsequent clauses.

Resources for RESTful communication style vs. procedure call (RPC) style:

A Generic interworking IPE/AAE needs to be able to communicate with systems that implement some form of RESTful communication style as well as other systems that communicate in a procedure call (RPC) style.

For RESTful systems the use of Input- or OutputDataPoints may be more appropriate.

On the other hand procedure calls can be better modelled using Operations (and their OperationInputs/-Outputs).

Also a combination of both (where Operations additionally receive input from InputDataPoints and/or write output into OutputDataPoints) is possible.

Persistent resources vs. transient resources:

· Persistent resources are genericInterworkingService, <container>s and <flexContainer>s that contain data of Services, Input- or OutputDataPoints. Services, Input- and OutputDataPoints of an Interworked Device usually exist as long as the IPE enables the communication with the Interworked Device.
· Transient resources are genericInterworkingOperationInstances, <container>s and <flexContainer>s that contain data of Operations, OperationInput or OperationOutput.
These resources are created and exist as long as the Interworked Device performs execution of an Operation and receive the output data of the Operation. Once the output data have been delivered to subscribed communicating entities transient resources may be deleted by the IPE.

NOTE:
While in general the present document assumes that semantic information can be made available (using the <semanticDescriptor> resource) the mechanisms described here for IPE communication do not rely on the existence of semanticDescriptors. This allows e.g. very simple devices to exchange their data in "raw" form (e.g. as byte-fields that need to be interpreted by the communicating entity).

6.1.2
Parent-child and linking resource relationships

6.1.2.1
oneM2M release 2 variant
Figure 4 provides an overview of parent-child resource relationships that are used for communication with AEs (in particular the IPE) in the context of Generic interworking.

It involves the:

· Persistent resource types:

· <AE>, <container> or <flexContainer> - for a oneM2M Device or an Interworked Device

· <container> - for an Input- or OutputDataPoint

· <flexContainer> - for an Input- or OutputDataPoint

· genericInterworkingService specialization of <flexContainer> - for a Service of a a oneM2M Device or an Interworked Device

· Transient resource types:

· <container> - for OperationInput or OperationOutput data of an Operation

· <flexContainer> - for OperationInput or OperationOutput data of an Operation

· genericInterworkingOperationInstance specialization of <flexContainer> - for an Operation of a Service

[image: image3.emf]Device <AE>, <container> or <flexContainer>

(persistent resource)

<semanticDescriptor>

child-resources

Input- / OutputDataPoint <container>

(persistent resource)

Input- / OutputDataPoint <flexContainer>

(persistent resource)

contentInstance … …

latest contentInstance

[customAttribute]

child-resources

child-resources

genericInterworkingService

(persistent resource)

child-resources

and / or

genericInterworkingOperationInstance

(transient resource)

OperationInput / -Output <container>

(transient resource)

OperationInput / -Output <flexContainer>

contentInstance … …

latest contentInstance

[customAttribute]

child-resources

child-resources

and / or

<semanticDescriptor>

<semanticDescriptor>

<semanticDescriptor>

[Input_DataPoint_Links]

Descriptor

Descriptor

Descriptor

Descriptor

[Output_DataPoint_Links]

[Output-DataPoint_Links]

[Input -DataPoint_Links]

[Output_Links]

[Input_Links]

<semanticDescriptor>

Descriptor

<semanticDescriptor>

Descriptor

<semanticDescriptor>

Descriptor

Legend:

Persistent child resources

Transient child resources

Links

Figure 4: Parent-child and Link relationships in the context of Generic interworking
Parent-child relationships:

· An <AE> resource, required for representing a Device, is created by its AE.
Alternatively, in the case of an Interworked Device, the AE that is the generic interworking IPE may create resources of type <container> or <flexContainer>, that represents the Interworked Device.

· Input- and Output DataPoints (<containers> and/or <flexContainers>) are created by the AE as child resources of its (<AE>, <containers>, <flexContainers>) resource that represents the Device.

· Services (resources of specialization type genericInterworkingService of a <flexContainer>) are created by the AE as child resources of its resource that represents the Device.

· OperationInstances (resources of specialization type genericInterworkingOperationInstance of a <flexContainer>) are created by the AE or by the communicating entity as child resources of the genericInterworkingService of the Service.

· OperationInput (<containers> and/or <flexContainers>) are created by the communicating entity as child resources of the genericInterworkingOperationInstance of the Operation instance.

· OperationOutput (<containers> and/or <flexContainers>) are are created by the AE as child resources of the genericInterworkingOperationInstance of the Operation instance.

· All of the above can contain a <semanticDescriptor> as child resource.

Link relationships:

· Services can contain links to:

· InputDataPoints (contained in the InputDataPointsLinks attribute)

· OutputDataPoints (contained in the ouputDataPointsLinks attribute)

· OperationInstances can contain links to:

· InputDataPoints (contained in the InputDataPointsLinks attribute)

· OutputDataPoints (contained in the ouputDataPointsLinks attribute)

· OperationInputs (contained in the inputLinks attribute)

· OperationOutputs (contained in the outputLinks attribute)
6.1.2.2
oneM2M release 3 variant
Figure 4a provides an overview of parent-child resource relationships that are used for communication with AEs (in particular the IPE) in the context of Generic interworking.

It involves the:

· Persistent resource types:

· <AE>, <container> or <flexContainer> - for a oneM2M Device or an Interworked Device

· genericInterworkingService specialization of <flexContainer> - for a Service of a a oneM2M Device or an Interworked Device

· Transient resource types:

· genericInterworkingOperationInstance specialization of <flexContainer> - for the output of an Operation of a Service

[image: image4.emf]Device <AE>, <container> or <flexContainer>

(persistent resource)

<semanticDescriptor>

child-resources

genericInterworkingService

(persistent resource)

child-resources

genericInterworkingOperationInstance

(transient resource)

<semanticDescriptor>

dataPoints

Descriptor

Descriptor

dataPoint "A"

<semanticDescriptor>

Descriptor

<semanticDescriptor>

Descriptor

Legend:

Persistent child resources

Transient child resources

dataPoint "B"

data "A2"

data "A1"

operations

operation"X"

operation "Y"

...

...

invocationData "Y2"

invocationData "Y1"

...

child-resources

operationResult

...

invocationData"Y2"

invocationData"Y1"

...

resultData"Yb"

resultData"Ya"

Figure 4a: Parent-child and Link relationships in the context of Generic interworking
Parent-child relationships:

· An <AE> resource, required for representing a Device, is created by its AE.
Alternatively, in the case of an Interworked Device, the AE that is the generic interworking IPE may create resources of type <container> or <flexContainer>, that represents the Interworked Device.

· Services (resources of specialization type genericInterworkingService of a <flexContainer>) are created by the AE as child resources of its resource that represents the Device.
· Note: In contrast to oneM2M rel-2 Input- and Output DataPoints and operations are realized as structured attributes of the genericInterworkingService
· OperationInstances (resources of specialization type genericInterworkingOperationInstance of a <flexContainer>) are created by the AE or by the communicating entity as child resources of the genericInterworkingService of the Service.

· Note: In contrast to oneM2M rel-2 OperationInput and OperationOutput are realized as structured attribute operationResult of the genericInterworkingOperationInstance
All of the above can contain a <semanticDescriptor> as child resource.
6.1.3
Data flows for IPE and AAE

Both, IPEs and AAEs are types of Application entities (AEs) that act as translating entities.

· IPEs translate data to and from Interworked Devices (entities outside of the oneM2M system) into oneM2M resources (the data of Proxied Devices) that can be accessed by communicating oneM2M entities.

· In the case of IPE being the translating entity the target entity is the Interworked Device while the communicating entity can be any oneM2M entity (e.g. a CSE, an AE). In particular, if Abstraction is needed in addition to interworking the communicating entity is an AAE.

· AAEs translate data between Proxied Devices and Abstract Devices.

· In the case of AAE being the translating entity the target entity is the IPE while the communicating entity can be any oneM2M entity (e.g. a CSE, an AE)
The following figures show the data flows for both types of translating entities

[image: image5.emf]UPDATE

InputDataPoints

Translating

entity

Communicating

entity

Target

entity

translate input

CSE

NOTIFY

RETRIEVE

InputDataPoint

Communication initiated by Communicating entity

Communication initiated by Target entity

translate output

UPDATE

OutputDataPoints

NOTIFY

RETRIEVE

OutputDataPoints

Invoke Command

Invoke Command

Figure 5: Data flow for a translating entity involving dataPoints
Read/Write operations on datapoints are the simplest form of executing Commands, i.e. a Command is exposed as datapoint of a Service.

· A communicating entity can invoke a Command at the target entity

· The communicating entity updates an InputDatapoint, which triggers a notification to the translating entity.
Note: in the oneM2M release-3 variant updating an inputDataPoint is performed by updating the related part of the substructure of the dataPoints attribute of the genericInterworkingService
· The translating entity translates the data of the datapoint into the appropriate value and format suitable for the target entity and transmits it to the target entity, who executes the Command.

Note 1: the way how a translating entity transmits a Command to the target entity is not described in this figure.
- in the case the translating entity is an IPE and the target entity is an Interworked Device the Command is transmitted over the Area Network using the technology and protocol of the Interworked Device
- in the case the translating entity is an AAE and the target entity is an IPE – both being oneM2M entities – the arrow does not imply direct communication. Instead the Command is transmitted in exactly the same way as a communicating device communicates with the translating entity (right hand side of the figure when communication is initiated by the communicating entity)
· In the other direction, a target entity can invoke a Command in the communicating entity

· The target entity autonomously transmits data of a Command to the translating entity.

Note 2: the way how a target entity transmits a Command to the translating entity is not described in this figure.
- in the case the translating entity is an IPE and the target entity is an Interworked Device the Command is transmitted over the Area Network using the technology and protocol of the Interworked Device
- in the case the translating entity is an AAE and the target entity is an IPE – both being oneM2M entities – the arrow does not imply direct communication. Instead the Command is transmitted in exactly the same way as a translating entity communicates with the communicating device (right hand side of the figure when communication is initiated by the target entity)
· The translating entity translates the data into the appropriate values and updates the OutputDatapoint related to this Command
· As the communicating entity is subscribed to changes of the OutputDatapoint it gets notified, retrieves the value of the datapoint and executes the Command

Another form of exposing Commands are operations. Operations allow grouping of input- and output parameters into a single transaction between the communicating entity and the target entity.
Release 2 variant;

[image: image6.emf]UPDATE

inputLinks, inputDPLinks

CREATE

Operation

Command response

Invoke Command

Invoke Command

UPDATE InputDataPoint,

CREATE OperationInput

UPDATE

outputLinks, outputDPLinks

RETRIEVE

output

X

OperationState=

"data_received_

by_application"

Translating

entity

Communicating

entity

Target

entity

translate input

Waiting for

answer

translate output

CSE

Communicating entity expects an answer

NOTIFY

RETRIEVE

operationInput

UPDATE

expirationTime

OperationState=

"data_transmitted_to

_interworked_device

OperationState=

"operation_failed“

OR

(

)

NOTIFY

...

expirationTimer expired,

Operation resource can be deleted

Communication initiated by Communicating entity

Communicating entity expects no answer

OperationState=

"operation_ended“

NOTIFY

UPDATE OutputDataPoint,

CREATE OperationOutput

OperationState=

"operation_ended“

Figure 6: Data flow for a translating entity involving operations
when initiated by a communicating entity

· When the communicating entity invokes an operation in the target entity the communicating creates a <genericInterworkingOperation> resource
· It also updates the InputDataPoints and/or create new OperationInputs that are parameters of the operation and that need to be sent in the operation to the target entity.

· To trigger the operation the communicating entity updates the inputLinks and inputDataPointLinks attribute of the <genericInterworkingOperation> resource with the links to InputDataPoints and/or OperationInputs that are used in this operation
· As the translating entity has subscribed to creation and update of the <genericInterworkingOperation> resource it is notified, which triggers the communicating entity to invoke the operation in the target entity.

· The translating entity sets the operationState attribute of the <genericInterworkingOperation> resource to the value “data_received_by_application” and sets an expirationTime
· The translating entity translates the input data contained in the InputDataPoints and/or OperationInputs into appropriate values for the target entity and invokes the command at the target entity.

Note 3: see Note 1
· If the command can be invoked the translating entity sets the operationState attribute to the value “data_transmitted_to_interworked_device”
· If no output of the operation is foreseen then the translating entity sets the operationState attribute to the value “operation_ended”.
· However, if output of the operation is foreseen the translating entity awaits the command response from the target entity.

Note 4: the way how a target entity transmits a Command response to the translating entity is not described in this figure.
- in the case the translating entity is an IPE and the target entity is an Interworked Device the response is transmitted over the Area Network using the technology and protocol of the Interworked Device
- in the case the translating entity is an AAE and the target entity is an IPE – both being oneM2M entities – the arrow does not imply direct communication. Instead the response is transmitted in exactly the same way as a translating entity communicates with the communicating device (right hand side of the figure)
· After receiving the command response the translating entity translates the output data into appropriate values and updates/creates related OutputDataPoints and/or OperationOutputs.
· The translating entity updates the outputLinks and outputDataPointLinks attribute
· The translating entity sets the operationState attribute to the value “operation_ended”.
· The communicating entity gets notified about the change in the outputLinks and outputDataPointLinks attribute and can retrieve data from OutputDataPoints and/or OperationOutputs.
· After the has expirationTime passed the translating entity may delete the <genericInterworkingOperation> resource and all its child resources (i.e. OperationInput/OperationOutput containers and flexcontainers).

[image: image7.emf]UPDATE

outputLinks, outputDPLink

Translating

entity

Communicating

entity

Target

entity

translate output

Waiting for

answer

translate input

CSE

Target entity expects an answer

CREATE

Operation

NOTIFY

RETRIEVE

operationOutput

OperationState=

"data_transmitted_to

_interworked_device

NOTIFY

OperationState=

"operation_ended“

...

expirationTimer expired,

Operation resource can be deleted

Communication initiated by Target entity

Target entity expects no answer

OperationState=

"operation_ended“

NOTIFY

RETRIEVE

operationOutput

X

OperationState=

"operation_failed“

OR

(

)

UPDATE

inputLinks, inputDPLinks

Invoke Command

Command response

Command response

UPDATE OutputDataPoint,

CREATE OperationOutput

set expirationTime

UPDATE InputDataPoint,

CREATE OperationInput

Figure 7: Data flow for a translating entity involving operations
when initiated by a target entity
transaction between the communicating entity and the target entity.

· When the target entity invokes a command that is exposed as an operation the translating entity creates a <genericInterworkingOperation> resource
Note 5: see Note 2

Note 6: the way how a translating entity transmits a Command response to the target entity is not described in this figure.
- in the case the translating entity is an IPE and the target entity is an Interworked Device the response is transmitted over the Area Network using the technology and protocol of the Interworked Device
- in the case the translating entity is an AAE and the target entity is an IPE – both being oneM2M entities – the arrow does not imply direct communication. Instead the response is transmitted in exactly the same way as a communicating device communicates with the translating entity (right hand side of the figure when communication is initiated by the communicating entity)

Release 3 variant:

[image: image8.emf]Command response

Invoke Command

UPDATE operations

attribute

Translating

entity

Communicating

entity

Target

entity

translate

operation input

contained in

operations

attribute

Waiting for

answer

CSE

If Communicating entity expects an answer

NOTIFY

operations attribute

...

expirationTimer expired,

Operation resource can be deleted

Communication initiated by Communicating entity

CREATE

genericInterworking-

OperationInstance

with output data

operationResult

attribute and set

expirationTime=xxx

NOTIFY

on creation of

genericInterworking-

OperationInstance

and get output data

from operationResult

attribute

translate

operation

output

Figure 6: Data flow for a translating entity involving operations
when initiated by a communicating entity
· When the communicating entity invokes an operation in the target entity

· the communicating entity updates the invocationData of the related operation part of the substructure of the operations attribute of the <genericInterworkingService>
· As the translating entity has subscribed to changes of attributes of the <genericInterworkingService> resource it gets notified, which triggers the translating entity to invoke the operation in the target entity.

· The translating entity translates the input data contained in the operations => operation “Y” => invocationData “Y1”, “Y2”,.. attribute into appropriate values for the target entity and invokes the command at the target entity.

· If output of the operation is foreseen the translating entity awaits the command response from the target entity.

Note 4: the way how a target entity transmits a Command response to the translating entity is not described in this figure.
- in the case the translating entity is an IPE and the target entity is an Interworked Device the response is transmitted over the Area Network using the technology and protocol of the Interworked Device
- in the case the translating entity is an AAE and the target entity is an IPE – both being oneM2M entities – the arrow does not imply direct communication. Instead the response is transmitted in exactly the same way as a translating entity communicates with the communicating device (right hand side of the figure)
· After receiving the command response the translating entity translates the output data into appropriate values and updates/creates a <genericInterworkingOperation> child-resource of the <genericInterworkingService> resource

· the translating entity copies the original
invocation data into the operationResult => invocationData “Y1”, “Y2”,.. attribute and
the translated output data into the operationResult => resultData “Ya”, “Yb”,.. attribute

· The communicating entity gets notified about the creation of the <genericInterworkingOperation> child-resource of the <genericInterworkingService> resource.
Note: the data flow for a translating entity involving operations when initiated by a target entity works analogously
7
FlexContainer specializations for Generic interworking
7.1
Introduction

For Ontology based Interworking two specialization types of <flexContainer> are needed: genericInterworkingService and genericInterworkingOperationInstance.
7.2
Resource Type genericInterworkingService
Resource type genericInterworkingService is used for grouping Input- and/or Output Datapoints and/or OperationInstances of a Service. For Ontology based Interworking Input- and/or Output Datapoints and/or OperationInstances can be grouped as a Service with respect to their usage within a single Device.
A resource of type genericInterworkingService contains references to the <container> or <flexContainer> resources that represent Input- and/or Output Datapoints of the Service in the inputDataPointLinks and outputDataPointLinks attributes.
A resource of type genericInterworkingService is also the parent resource of genericInterworkingOperationInstances for that Service.

A resource of type genericInterworkingService can be a child-resource of:

a) AE, container, flexContainer since Ontology based Interworking allows these three resource types to represent Devices and InterworkeDevices.

b) genericInterworkingService since Ontology based Interworking allows Services to contain (sub-)Services.

[image: image9.emf]<subscription>

0..n

[genericInterworkingService]

0..1

creator

0..1

ontologyRef

<semanticDescriptor>

0..n

serviceName

1

containerDefinition

inputDataPointLinks

1

0..1

outputDataPointLinks

0..1

[genericInterworking

Service]

0..n

[genericInterworking

OperationInstance]

0..n

dataPoints

0..1

operations

0..1

Figure 8: Structure of [genericInterworkingService] resource

The [genericInterworkingService] resource shall contain the child resource specified in table 1.

Table 1: Child resources of [genericInterworkingService] resource

	Child Resources of [genericInterworking
Service]
	Child Resource Type
	Multiplicity
	Description
	[genericInterworkingServiceAnnc] Child Resource Type

	semanticDescriptor
	<semanticDescriptor>
	0..n
	See clause 9.6.30 in TS-0001 [2]
	<semanticDescriptor>, <semanticDescriptorAnnc>

	[variable]
	<subscription>
	0..n
	See clause 9.6.8
in TS-0001 [2]
	<subscription>

	[variable]
	<flexContainer> specialization: [genericInterworking
Service]
	0..n
	A Service may be composed of (sub)-Services that are contained as child-resources
	[genericInterworkingService]

[genericInterworkingServiceAnnc]

	[variable]
	<flexContainer> specialization: [genericInterworking
OperationInstance]
	0..n
	See clause 7.3
For each invocation of an operation of a Service a child-resource of type [genericInterworkingOperationInstance] is created. When the operation is finished this child-resource is deleted by the IPE
	[genericInterworkingOperationInstance]

[genericInterworkingOperationInstanceAnnc]

The [genericInterworkingService] resource shall contain the attributes specified in table 2.

Table 2: Attributes of [genericInterworkingService] resource

	Attributes of
[genericInterworking
Service]
	Multiplicity
	RW/

RO/

WO
	Description
	[genericInterworkingService
Annc]
Attributes

	resourceType
	1
	RO
	See clause 9.6.1.3 in TS-0001 [2]
	NA

	resourceID
	1
	RO
	See clause 9.6.1.3 in TS-0001 [2]
	NA

	resourceName
	1
	WO
	See clause 9.6.1.3 in TS-0001 [2]
	NA

	parentID
	1
	RO
	See clause 9.6.1.3 in TS-0001 [2]
	NA

	accessControlPolicyIDs
	0..1 (L)
	RW
	See clause 9.6.1.3 in TS-0001 [2]
	MA

	labels
	0..1 (L)
	RW
	See clause 9.6.1.3 in TS-0001 [2]
	MA

	stateTag
	1
	RO
	See clause 9.6.1.3 in TS-0001 [2]
	OA

	announceTo
	0..1 (L)
	RW
	See clause 9.6.1.3 in TS-0001 [2]
	NA

	announcedAttribute
	0..1 (L)
	RW
	See clause 9.6.1.3 in TS-0001 [2]
	NA

	dynamicAuthorizationConsultationIDs
	0..1 (L)
	RW
	See clause 9.6.1.3 in TS-0001 [2]
	OA

	containerDefinition
	1
	WO
	See clause 9.6.1.2.2 in TS-0001 [2]
The value shall be “org.onem2m. genericInterworkingService”
	MA

	creator
	0..1
	RO
	See clause 9.6.35 in TS-0001 [2]
	NA

	ontologyRef
	0..1
	RW
	See clause 9.6.35 in TS-0001 [2]
	OA

	serviceName
	1
	RW
	The attribute contains the name of the Service. The name of the Service is given by the class name of that Service in the used ontology (which needs to be derived from the Base Ontology)
	MA

	inputDataPointLinks
	0..1
	RW
	This attribute contains a list of triples, each triple containing the following fields:

1.
A text string with the name of an inputDatapoint of the Service

2.
A URI of the resource (container or flexContainer) that holds the data of the inputDataPoint

3.
A field for identifying simple-type data

If the inputDataPoint contains simple-type data then

i.
If the resource type of the inputDataPoint is <container> then this field shall contain the text string “latest”

ii.
If the resource type of the inputDataPoint is <flexContainer> then this field shall contain the name of the [customAttribute] (which is identical to the name of the inputDataPoint)

If the inputDataPoint contains complex-type data then this field shall remain empty.

	MA

	outputDataPointLinks
	0..1
	RW
	This attribute contains a list of triples, each triple containing the following fields:

1.
A text string with the name of an outputDatapoint of the Service

2.
A URI of the resource (container or flexContainer) that holds the data of the outputDataPoint

3.
A field for identifying simple-type data

If the outputDataPoint contains simple-type data then

i.
If the resource type of the outputDataPoint is <container> then this field shall contain the text string “latest”

ii.
If the resource type of the outputDataPoint is <flexContainer> then this field shall contain the name of the [customAttribute] (which is identical to the name of the outputDataPoint)

Otherwise, if the outputDataPoint contains complex-type data then this field shall remain empty.

	MA

	dataPoints
	0..1
	RW
	This structured attribute is a sequence of dataPoints (input- and outputDataPoints), including their names and data, that the service supports
	MA

	operations
	0..1
	RW
	This structured attribute is a sequence of operations, including their names and invocation data, that the service supports
	MA

7.3
Resource Type genericInterworkingOperationInstance
In the context of Ontology based Interworking resources of resource type genericInterworkingOperationInstance are created as child-resources of a Service by the CSE. The originator of a request can be:

· the AE (for AE initiated communication for notifying communicating entities);
· a communicating entity (to notify the AE about an operation that needs to be performed by the AE and to receive output back from the AE).
After the expirationTime the AE may delete the operationInstance and all linked operationInput and operationOutput resources (contained in the references in attributes: inputLinks and outputLinks)

An OperationInstance resource holds in its attributes inputDataPointLinks and inputLinks references to resources of type <container> and <flexContainer> from which the AE should retrieve input of the operation. Similarly the attributes outputDataPointLinks and outputLinks references to resources of type <container> and <flexContainer> to which the AE should write its output of the operation.

[image: image10.emf]<subscription>

0..n

[genericInterworking

OperationInstance]

0..1

creator

0..1

ontologyRef

<semanticDescriptor>

0..n

operationName

1

containerDefinition

inputDataPointLinks

1

0..1

outputDataPointLinks

0..1

inputLinks

0..1

outputLinks

0..1

operationState

1

expirationTime

1

operationResult

1

Figure 9: Structure of [genericInterworkingOperationInstance] resource

The [genericInterworkingOperationInstance] resource shall contain the child resource specified in table 3.

Table 3: Child resources of [genericInterworkingOperationInstance] resource

	Child Resources of [genericInterworkingOperationInstance]
	Child Resource Type
	Multiplicity
	Description
	[genericInterworkingOperationInstanceAnnc]
Child Resource Type

	semanticDescriptor
	<semanticDescriptor>
	0..n
	See clause 9.6.30 in TS-0001 [2]
	<semanticDescriptor>, <semanticDescriptorAnnc>

	[variable]
	<subscription>
	0..n
	See clause 9.6.8
in TS-0001 [2]
	<subscription>

The [genericInterworkingOperationInstance]resource shall contain the attributes specified in table 4.

Table 4: Attributes of [genericInterworkingOperationInstance] resource

	Attributes of
[genericInterworking
OperationInstance]
	Multiplicity
	RW/

RO/

WO
	Description
	[genericInterworkingOperation
InstanceAnnc]
Attributes

	resourceType
	1
	RO
	See clause 9.6.1.3 in TS-0001 [2]
	NA

	resourceID
	1
	RO
	See clause 9.6.1.3 in TS-0001 [2]
	NA

	resourceName
	1
	WO
	See clause 9.6.1.3 in TS-0001 [2]
	NA

	parentID
	1
	RO
	See clause 9.6.1.3 in TS-0001 [2]
	NA

	expirationTime
	1
	RW
	See clause 9.6.1.3 in TS-0001 [2]
This attribute shall contain the time after which the operationInstance and its operationInput and operationOutput resources may be deleted by the AE.

If an AE got notified about creation of the operationInstance and if the AE accepts to process the operation (i.e. does not immediately delete the operationInstance) the expirationTime is set by the AE.
	MA

	accessControlPolicyIDs
	0..1 (L)
	RW
	See clause 9.6.1.3 in TS-0001 [2]
	MA

	labels
	0..1 (L)
	RW
	See clause 9.6.1.3 in TS-0001 [2]
	MA

	creationTime
	1
	RO
	See clause 9.6.1.3 in TS-0001 [2]
	NA

	lastModifiedTime
	1
	RO
	See clause 9.6.1.3 in TS-0001 [2]
	NA

	stateTag
	1
	RO
	See clause 9.6.1.3 in TS-0001 [2]
	OA

	announceTo
	0..1 (L)
	RW
	See clause 9.6.1.3 in TS-0001 [2]
	NA

	announcedAttribute
	0..1 (L)
	RW
	See clause 9.6.1.3 in TS-0001 [2]
	NA

	dynamicAuthorizationConsultationIDs
	0..1 (L)
	RW
	See clause 9.6.1.3. in TS-0001 [2]
	OA

	containerDefinition
	1
	WO
	See clause 9.6.1.2.2 in TS-0001 [2]
The value shall be “org.onem2m. genericInterworkingOperationInstance”
	MA

	creator
	0..1
	RO
	See clause 9.6.35 in TS-0001 [2]
	NA

	ontologyRef
	0..1
	RW
	See clause 9.6.35 in TS-0001 [2]
	OA

	operationName
	1
	RW
	The attribute contains the name of the Operation. The name of the Operation is given by the class name of that Operation in the used ontology (which needs to be derived from the Base Ontology)
	MA

	operationState
	1
	RW
	This attribute contains a text string that indicates how far the operation has progressed.
specified values are:

o
“data_received_by_application”

o
 “operation_ended”

o
“operation_failed”

o
“data_transmitted_to_interworked_device”

Additional, application specific values for the text string of the operationState attribute are permissible.
	MA

	inputDataPointLinks
	0..1
	RW
	This attribute contains a list of triples, each triple containing the following fields:

1.
A text string with the name of an inputDatapoint of the operationInstance

2.
A URI of the resource (container or flexContainer) that holds the data of the inputDataPoint

3.
A field for identifying simple-type data

If the inputDataPoint contains simple-type data then

i.
If the resource type of the inputDataPoint is <container> then this field shall contain the text string “latest”

ii.
If the resource type of the inputDataPoint is <flexContainer> then this field shall contain the name of the [customAttribute] (which is identical to the name of the inputDataPoint)

If the inputDataPoint contains complex-type data then this field shall remain empty.

	MA

	outputDataPointLinks
	0..1
	RW
	This attribute contains a list of triples, each triple containing the following fields:

1.
A text string with the name of an outputDatapoint of the OperationInstance

2.
A URI of the resource (container or flexContainer) that holds the data of the outputDataPoint

3.
A field for identifying simple-type data

If the outputDataPoint contains simple-type data then

i.
If the resource type of the outputDataPoint is <container> then this field shall contain the text string “latest”

ii.
If the resource type of the outputDataPoint is <flexContainer> then this field shall contain the name of the [customAttribute] (which is identical to the name of the outputDataPoint)

If the outputDataPoint contains complex-type data then this field shall remain empty.

	MA

	inputLinks
	0..1
	RW
	This attribute contains a list of triples, each triple containing the following fields:

1.
A text string with the name of an operationInput of the operationInstance

2.
A URI of the resource (container or flexContainer) that holds the data of the operationInput

3.
A field for identifying simple-type data

If the operationInput contains simple-type data then

i.
If the resource type of the operationInput is <container> then this field shall contain the text string “latest”

ii.
If the resource type of the operationInput is <flexContainer> then this field shall contain the name of the [customAttribute] (which is identical to the name of the operationInput)

If the Input contains complex-type data then this field shall remain empty.

	MA

	outputLinks
	0..1
	RW
	This attribute contains a list of triples, each triple containing the following fields:

1.
A text string with the name of an operationOutput of the operationInstance

2.
A URI of the resource (container or flexContainer) that holds the data of the outputDataPoint

3.
A field for identifying simple-type data

If the operationOutput contains simple-type data then

i.
If the resource type of the operationOutput is <container> then this field shall contain the text string “latest”

ii.
If the resource type of the operationOutput is <flexContainer> then this field shall contain the name of the [customAttribute] (which is identical to the name of the operationOutput)

If the operationOutput contains complex-type data then this field shall remain empty.

	MA

	operationResult
	1
	RW
	This structured attribute contains the invocationData and the resultData of the operation
	MA

Proposed new type definitions for TS-0004:

6.x.y.z

m2m: anyTypedContent
Table 6.3.5.23‑1: Type Definition of m2m:anyTypedContent
	Element Path
	Element Data Type
	Multiplicity
	Note

	String
	xs:string
	0..1
	

	Boolean
	xs:boolean
	0..1
	

	Double
	xs:double
	0..1
	

	hexBinary
	xs:hexBinary
	0..1
	

	Integer
	xs:integer
	0..1
	

	unsignedLong
	xs:unsignedLong
	0..1
	

	list
	m2m:listType
	0..1
	

	structure
	m2m:structureType
	0..1
	

	
	
	
	

This type is an xs:choice. It shall contain exactly one element from a row listed in the table above.

6.x.y.z

m2m:listType
Table 6.3.5.4‑1: Type Definition of m2m:listType
	Element Path
	Element Data Type
	Multiplicity
	Note

	listItem
	m2m:listItem
	0..n
	

This type is an xs:sequence
6.x.y.z

m2m:listItem
Table 6.3.5.9‑1: Type Definition of m2m:listItem

	Element Path
	Element Data Type
	Multiplicity
	Note

	itemNumber
	xs:unsignedLong
	1
	

	itemContent
	m2m:anyTypedContent
	1
	

6.x.y.z

m2m:structureType
Table x.x.x.x-1: Type Definition of m2m:structureType
	Element Path
	Element Data Type
	Multiplicity
	Note

	structureItem
	m2m:structureItem
	0..n
	

This type is an xs:sequence

6.x.y.z

m2m:structureItem
Table x.x.x.x-1: Type Definition of m2m:structureItem
	Element Path
	Element Data Type
	Multiplicity
	Note

	itemName
	xs:NCName
	1
	

	itemContent
	m2m:anyTypedContent
	1
	

6.x.y.z

m2m:dataPoint
Table x.x.x.x-1: Type Definition of m2m:dataPoint
	Element Path
	Element Data Type
	Multiplicity
	Note

	name
	xs:NCName
	1
	

	data
	m2m:anyTypedContent
	1
	

6.x.y.z

m2m:operation
Table x.x.x.x-1: Type Definition of m2m:operation
	Element Path
	Element Data Type
	Multiplicity
	Note

	name
	xs:NCName
	1
	

	invocationData
	m2m:dataPoint
	0..n
	

6.x.y.z

m2m:operationResult
Table x.x.x.x-1: Type Definition of m2m:operationResult
	Element Path
	Element Data Type
	Multiplicity
	Note

	invocationData
	m2m:dataPoint
	0..n
	

	resultData
	m2m:dataPoint
	0..n
	

6.x.y.z

m2m:dataPoints
Table x.x.x.x-1: Type Definition of m2m:dataPoints
	Element Path
	Element Data Type
	Multiplicity
	Note

	dataPoint
	m2m:dataPoint
	0..n
	

6.x.y.z

m2m:operations
Table x.x.x.x-1: Type Definition of m2m:operations
	Element Path
	Element Data Type
	Multiplicity
	Note

	operation
	m2m:operation
	0..n
	

Annex A (normative):
Specializations of <flexContainer> resource
A.12. Introduction
This annex defines each specialization of <flexContainer> resource that are used for generic interworking [35] and AllJoyn interworking [36]. The <flexContainer> resource and procedures are defined in the clause 7.4.37. Since the specialization resources handling procedures are the same as <flexContainer> resource, this annex does not specify them. Also, since all the specialization inherits the universal/common attributes of <flexContainer> resource, this annex does not specify that information.

A.13. Resource type [genericInterworkingService]

This resource type is used for grouping Input and/or Output Datapoints and/or OperationInstances of a Service in the context of Ontology based Interworking. The detailed description of the [genericInterworkingService] resource can be found in clause 9.2 of oneM2M TS-0012 [35].

Table J.2‑1: Data type definition of [genericInterworkingService] resource

	Data Type ID
	File Name
	Note

	genericInterworkingService
	CDT-genericInterworkingService-v3_1_0.xsd
	XSD schema for genericInterworkingService resource

Table J.2‑2: Resource Specific Attributes of [genericInterworkingService] resource
	Attribute Name
	Request Optionality
	Data Type
	Default Value and Constraints

	
	Create
	Update
	
	

	containerDefinition
	M
	NP
	xs:anyURI
	No default

	ontologyRef
	O
	O
	xs:anyURI
	No default

	serviceName
	M
	NP
	xs:string
	No default.

	inputDataPointLinks
	O
	O
	m2m:listOfDataLinks
	No default

	outputDataPointLinks
	O
	O
	m2m:listOfDataLinks
	No default

	dataPoints
	O
	O
	m2m:dataPoints
	No default

	operations
	O
	O
	m2m:operations
	No default

A.14. Resource type [genericInterworkingOperationInstance]

This resource type and is used for grouping (persistent) Input and/or Output Datapoints and/or (transient) OperationInput / Output of an Operation in the context of Ontology based Interworking. Resources of resource type genericInterworkingOperationInstance are created as child-resources of a genericInterworkingService. The detailed description of the [genericInterworkingService] resource can be found in clause 9.2 of oneM2M TS-0012 [35].

Table J.3‑1: Data type definition of [genericInterworkingOperationInstance] resource

	Data Type ID
	File Name
	Note

	genericInterworkingOperationInstance
	CDT-genericInterworkingOperationInstance-v3_1_0.xsd
	XSD schema for genericInterworkingOperationInstance resource

Table J.3‑2: Resource Specific Attributes of [genericInterworkingOperationInstance] resource
	Attribute Name
	Request Optionality
	Data Type
	Default Value and Constraints

	
	Create
	Update
	
	

	containerDefinition
	M
	NP
	xs:anyURI
	No default

	ontologyRef
	O
	O
	xs:anyURI
	No default

	operationName
	M
	NP
	xs:string
	No default

	inputDataPointLinks
	O
	O
	m2m:listOfDataLinks
	No default

	outputDataPointLinks
	O
	O
	m2m:listOfDataLinks
	No default

	inputLinks
	O
	O
	m2m:listOfDataLinks
	No default

	outputLinks
	O
	O
	m2m:listOfDataLinks
	No default

	operationState
	M
	O
	xs:string
	No default

	operationResult
	O
	O
	m2m:operationResult
	No default

© 2017 oneM2M Partners

Page 1 (of 2)

_1556723279.ppt

Device <AE>, <container> or <flexContainer> (persistent resource)

<semanticDescriptor>

child-resources

Input- / OutputDataPoint <container> (persistent resource)

Input- / OutputDataPoint <flexContainer> (persistent resource)

contentInstance … …

latest contentInstance

[customAttribute]

child-resources

child-resources

genericInterworkingService (persistent resource)

child-resources

and / or

genericInterworkingOperationInstance (transient resource)

OperationInput / -Output <container> (transient resource)

OperationInput / -Output <flexContainer>

contentInstance … …

latest contentInstance

[customAttribute]

child-resources

child-resources

and / or

<semanticDescriptor>

<semanticDescriptor>

<semanticDescriptor>

[Input_DataPoint_Links]

Descriptor

Descriptor

Descriptor

Descriptor

[Output_DataPoint_Links]

[Output-DataPoint_Links]

[Input -DataPoint_Links]

[Output_Links]

[Input_Links]

<semanticDescriptor>

Descriptor

<semanticDescriptor>

Descriptor

<semanticDescriptor>

Descriptor

Legend:

Persistent child resources

Transient child resources

Links

*

<genericInterworkingService>

dataPoints
m2m:dataPoints

operations
m2m:operations

(0..1)

(0..1)

dataPoint
m2m:dataPoint

(0..n)

data
m2m:anyTypedContent

1

name
xs:NCName

string
xs:string

1

(0..1)

boolean
xs:boolean

double
xs:double

hexBinary
xs:hexBinary

integer
xs:integer

unsignedLong
xs:unsignedLong

list
m2m:listType

lisItem
m2m:listItem

structure
m2m:structureType

itemNumber
xs:unsignedLong

itemContent
m2m:anyTypedContent

structureItem
m2m:structureItem

itemName
xs:NCName

itemContent
m2m:anyTypedContent

(0..1)

(0..1)

(0..1)

(0..1)

(0..1)

(0..1)

(0..1)

(0..n)

(0..n)

1

1

1

1

xs:choice
(i.e. exactly one of)

operation
m2m:operation

(0..n)

invocationData
m2m:dataPoint

1

name
xs:NCName

(0..n)

<genericInterworkingOperationInstance>

1

operationResult
m2m:operationResult

invocationData
m2m:dataPoint

name
xs:NCName

(0..n)

1

resultData
m2m:dataPoint

(0..n)

Device <AE>, <container> or <flexContainer> (persistent resource)

<semanticDescriptor>

child-resources

genericInterworkingService (persistent resource)

child-resources

genericInterworkingOperationInstance (transient resource)

<semanticDescriptor>

dataPoints

Descriptor

Descriptor

dataPoint "A"

<semanticDescriptor>

Descriptor

<semanticDescriptor>

Descriptor

Legend:

Persistent child resources

Transient child resources

dataPoint "B"

data "A2"

data "A1"

operations

operation"X"

operation "Y"

...

...

invocationData "Y2"

invocationData "Y1"

...

child-resources

operationResult

...

invocationData "Y2"

invocationData "Y1"

...

resultData "Yb"

resultData "Ya"

Command response
Invoke Command
UPDATE operations  attribute
Translating entity
Communicating entity
Target entity
translate operation input contained in operations attribute
Waiting for answer
CSE
If Communicating entity expects an answer
NOTIFY operations attribute
...
expirationTimer expired, Operation resource can be deleted
Communication initiated by Communicating entity
CREATE genericInterworking- OperationInstance with output data operationResult attribute and set expirationTime=xxx
NOTIFY
on creation of
genericInterworking- OperationInstance  and get output data from operationResult attribute
translate operation output

UPDATE
inputLinks, inputDPLinks
CREATE Operation
Command response
Invoke Command
Invoke Command
UPDATE InputDataPoint, CREATE OperationInput
UPDATE
outputLinks, outputDPLinks
RETRIEVE output
X
OperationState=
"data_received_by_application"
Translating entity
Communicating entity
Target entity
translate input
Waiting for answer
translate output
CSE
Communicating entity expects an answer
NOTIFY
RETRIEVE
operationInput
UPDATE
expirationTime
OperationState=
"data_transmitted_to_interworked_device
OperationState=
"operation_failed“
OR
(
)
NOTIFY
...
expirationTimer expired, Operation resource can be deleted
Communication initiated by Communicating entity
Communicating entity expects no answer
OperationState=
"operation_ended“
NOTIFY
UPDATE OutputDataPoint, CREATE OperationOutput OperationState=
"operation_ended“

_1556721288.vsd

_1556721643.vsd

UPDATE
outputLinks, outputDPLink
Translating entity
Communicating entity
Target entity
translate output
Waiting for answer
translate input
CSE
Target entity expects an answer
CREATE Operation
NOTIFY
RETRIEVE
operationOutput
OperationState=
"data_transmitted_to_interworked_device
NOTIFY
OperationState=
"operation_ended“
...
expirationTimer expired, Operation resource can be deleted
Communication initiated by Target entity
Target entity expects no answer
OperationState=
"operation_ended“
NOTIFY
RETRIEVE
operationOutput
X
OperationState=
"operation_failed“
OR
(
)
UPDATE
inputLinks, inputDPLinks
Invoke Command
Command response
Command response
UPDATE OutputDataPoint, CREATE OperationOutput set expirationTime
UPDATE InputDataPoint, CREATE OperationInput

UPDATE InputDataPoints
Translating entity
Communicating entity
Target entity
translate input
CSE
NOTIFY
RETRIEVE
InputDataPoint
Communication initiated by Communicating entity
Communication initiated by Target entity
translate output
UPDATE OutputDataPoints
NOTIFY
RETRIEVE
OutputDataPoints
Invoke Command
Invoke Command

