Doc# MAS-2017-0117R01-New_type_definitions_for_Generic_Interworking.doc

	Input Contribution

	Meeting ID*
	MAS#29

	Title:*
	New type definitions for Generic Interworking 

	Source:*
	Joerg Swetina, NEC, joerg.swetina@neclab.eu  

	Date:*
	2017-05-22

	Input related to*
	WI 0063, Release 3 Enhancements on Base Ontology & Generic Interworking)

	Intended purpose of

document:*
	 FORMCHECKBOX 
 Decision

 FORMCHECKBOX 
 Discussion

 Information

 Other <specify>

	Impacted other TS/TR(s)
	TS/-0030, v0.2.0 (Generic Interworking), TS-004, TS-0012 (Base Ontology)
Note: TS-0001 is not affected!

	Decision requested or recommendation:*
	If MAS agrees to the general principle related CRs would follow in MAS, and PRO.

	Template Version: January 2017 (Do not modify)


oneM2M Notice

The document to which this cover statement is attached is submitted to oneM2M.  Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.

 Introduction

This contribution proposes a new way how generic interworking can implement communication between a communicating entity and the IPE.

It relies on a new type of structured attributes that allow to include type information in the structure of the attribute. It simplifies data flows considerably by enabling sending a command to the Interworked Device through a simple UPDATE of a corresponding dataPoint attribute. However, such an attribute may need to have a sub-structure (e.g. to contain the X and Y coordinates of the datapoint). 
The IPE of the Interworked Device gets notified about this update, reads out the data of the dataPoint, converts it into the format of the technology of the Interworked Device and sends it out.
UPDATEing of single dataPoints is the preferred way, used e.g. in TS-0023, to ensure that sending a command is an atomic action.
For transparent interworking (i.e. sending strings of data that are serialized according to the technology of the Interworked Device) this is no problem, one simply can use containers to implement dataPoints.
However, for semantic interworking the approach taken in e.g. TS-0023 is to specify a new specialization of flexContainer – a new type of datapoint – for each structured data that need to be transmitted.
The use of application-specific flexContainers that are specified in the standard and compiled into the oneM2M system is justified when it helps to harmonize the common data model of a large industry segment, as it is the case for Home Appliances.
However, generic interworking wants to support interworking without the need of pre-compiled datastructures. The IPE relies on an ontology (e.g. provided as “.owl” file) that describes the names and the datatypes of the data-model of the Interworked Device. With this information the IPE constructs oneM2M resources that mimick the data-model of the input- / output parameters of the Interworked Device at runtime.
In release-2 this was accomplished by a system of containers and links to model structured data of these input- / output parameters.
A better way, that uses structured attributes instead of linked resources, is proposed in the current contribution.
The usage of a structured attribute type is not restricted to generic interworking, however, for the time being this type of attribute is only proposed for use in resources of type <genericInterworkingService> and <genericInterworkingOperationInstance> but it could also be made available in <containers> and <flexContainers>.
The following new types are needed:

General types

· anyTypedContent,
· listType, 



· structureType, 
structureItem
Types specifically for generic interworking:
· 
· dataPoint
· 
· operation
· 
The basic idea is that the dataPoints of a service are contained in a sequence (0..n occurrances) of attributes with attribute Name: “dataPoint” of the <genericInterworkingService> resource. All these attributes have the same type: m2m:dataPoint.

The real (user-)name of the dataPoint is contained in the ‘name’ element of a m2m:dataPoint type, while the (user-)data are contained in the ‘data’ element of m2m:dataPoint. 

To achieve maximum flexibility the ‘data’ element of m2m:dataPoint has a new type: m2m:anyTypedContent, which allows to hold any kinds of data: simple types like integer, sting ..., list types and structure types.
Similarly all operations are contained in a sequence of a single type attribute – attribute Name: “operation”.

The building principle is shown in the figure below:



[image: image2.emf]<genericInterworkingService>

dataPoint

m2m:dataPoint

(0..n)

data

m2m:anyTypedContent

1

name

xs:NCName

string

xs:string

1

(0..1)

boolean

xs:boolean

double

xs:double

hexBinary

xs:hexBinary

integer

xs:integer

unsignedLong

xs:unsignedLong

list

m2m:listType

structure

m2m:structureType

listItem

m2m:anyTypedContent

structureItem

m2m:structureItem

itemName

xs:NCName

itemContent

m2m:anyTypedContent

(0..1)

(0..1)

(0..1)

(0..1)

(0..1)

(0..1)

(0..1)

(0..n)

(0..n)

1

1

xs:choice

(i.e. exactly one of)

operation

m2m:operation

(0..n)

invocationData

m2m:dataPoint

1

name

xs:NCName

(0..n)

Attribute-/elementName

type

Legend: ...

new datatype 

m2m:anyTypedContent (recursive)


Noticeable differences to the previous way of implementing dataPoints and operations:

· both, dataPoints and operations, are now modelled as parts of a structured attribute of the <genericInterworkingService>.

· An operation (as part of operations attribute, contains only invocation Data

· The resultData of an operation are part of the resource <genericInterworkingOperationInstance> that is CREATEd for any operation that produces output




[image: image4.emf]<genericInterworkingOperationInstance>

invocationData

m2m:dataPoint

name

xs:NCName

(0..n)

1

resultData

m2m:dataPoint

(0..n)

operationState

xs:string

(0..1)


· It is proposed that operationState attribute (values: “data_transmitted_to_interworked_device”, “data_received_by_application”,  “operation_ended”, “operation_failed”) is applicable to both: 

a) dataPoints (uni-direction transmission of data to / from interworked device) 

and

b) operations (data transmission followed by response in the other direction).

With the help of structured attributes data flows from/to the IPE can be considerably simplified (see below)


[image: image5.emf]... In case of transmission failure

IPE

comm.

entity CSE

UPDATE dataPoint attribute of 

<serviceResource>

NOTIFY on update of dataPoint

attribute of <serviceResource>

Inter-

worked

Device

Command 

<= (data of dataPoint)

Sending a command to the interworked Device by using a dataPoint of the service

CREATE 

<operationResultResource> as 

child of <serviceResource>, with

•

Attribute for operationState = 

"operation_failed”

NOTIFY on creation of 

<operationResultResource>

serialize invocation parameters 

of  operation


In the reverse direction (IPE => communicating entity) the data flow using a dataPoint is analogous, but in case of transmission failure the IPE generally cannot detect it.

[image: image6.emf]IPE

comm.

entity CSE

UPDATE operation attribute of 

<serviceResource>

(each operation attribute contains 

0..n invocationParameter as 

elements)

NOTIFY on update of operation

attribute of <serviceResource>

Inter-

worked

Device

Command 

<=  (invocation parameters)

=> (result parameters)

Sending a command to the interworked Device by using an operation of the service

CREATE 

<operationResultResource> as 

child of <serviceResource>, with

•

attributes for (0..m) 

resultParameter and

•

attributes for (0..n) 

invocationParameter, copied 

from operation attribute

NOTIFY on creation of 

<operationResultResource>

RETRIEVE resultParameters 

serialize invocation parameters 

of  operation

de-serialize result parameters


In the reverse direction (IPE => communicating entity) the data flow using an operation is analogous, but in case of transmission failure the IPE generally can only detect failure of sending resultParameters back to the Interworked Device.

Proposed way forward:
This work requires substantial changes to 
· TS-0012 (Base Ontology) Section 7: on instantiation of classes as oneM2M resources 
· TS-0030  (Generic Interworking)  on:
· Section 6: Functional specification of communication with the Generic interworking IPE and Abstraction Application Entity
· Section 7: FlexContainer specializations for Generic interworking
· TS-0004 (Protocol) – see below
Note that TS-0001 (architecture) is not impacted.
It is proposed to proceed as follows:

1. Agree – together with the new TS-0033 (Proximal interworking) – on a harmonized way for the resource representation of Interworked Devices, e.g. as <AE>s.

For TS-0012 (Base Ontology)

2. Create a new section 7 (instantiation of classes as oneM2M resources) of TS-0012 based on the use of structured attributes in Rel-3 and based on the agreement in step 1
3. Move the current section 7 of TS-0012 into a normative Annex, explaining that this is an optional way for instantiation of classes and is included for backward compatibility with Rel-2

For TS-0030  (Generic Interworking)

4. Create a new section 6 (Functional specification of communication with the Generic interworking IPE and Abstraction Application Entity) based on the use of structured attributes in Rel-3 and based on the agreement in step 1
5. Move existing section 6 into normative Annex for TS-0030 - as done in step 3
6. Modify section 7 (FlexContainer specializations for Generic interworking) to allow both options (backward compatible).
For TS-0004 (Protocol):
7. Create CR with the content below and create related XSDs.
Proposed new type definitions for TS-0004:

6.3.5.x

m2m: anyTypedContent
Table 6.3.5.23‑1: Type Definition of m2m:anyTypedContent
	Element Path
	Element Data Type 
	Multiplicity
	Note

	String
	xs:string
	0..1
	

	Boolean
	xs:boolean
	0..1
	

	Double
	xs:double
	0..1
	

	hexBinary
	xs:hexBinary
	0..1
	

	Integer
	xs:integer
	0..1
	

	unsignedLong
	xs:unsignedLong
	0..1
	

	list
	m2m:listType
	0..1
	

	structure
	m2m:structureType
	0..1
	

	
	
	
	


This type is an xs:choice. It shall contain exactly one element from a row listed in the table above.

6.3.5.x

m2m:listType
Table 6.3.5.4‑1: Type Definition of m2m:listType
	Element Path
	Element Data Type 
	Multiplicity
	Note

	listItem
	m2m:anyTypedContent
	0..n
	


6.3.5.x

m2m:structureType
Table x.x.x.x-1: Type Definition of m2m:structureType
	Element Path
	Element Data Type 
	Multiplicity
	Note

	structureItem
	m2m:structureItem
	0..n
	


6.3.5.x

m2m:structureItem
Table x.x.x.x-1: Type Definition of m2m:structureItem
	Element Path
	Element Data Type 
	Multiplicity
	Note

	itemName
	xs:NCName
	1
	

	itemContent
	m2m:anyTypedContent
	1
	


6.3.5.x

m2m:dataPoint
Table x.x.x.x-1: Type Definition of m2m:dataPoint
	Element Path
	Element Data Type 
	Multiplicity
	Note

	name
	xs:NCName
	1
	

	data
	m2m:anyTypedContent
	1
	


6.3.5.x

m2m:operation
Table x.x.x.x-1: Type Definition of m2m:operation
	Element Path
	Element Data Type 
	Multiplicity
	Note

	name
	xs:NCName
	1
	

	invocationData
	m2m:dataPoint
	0..n
	


Annex A (normative): 
Specializations of <flexContainer> resource
A.12. Introduction
This annex defines each specialization of <flexContainer> resource that are used for generic interworking [35] and AllJoyn interworking [36]. The <flexContainer> resource and procedures are defined in the clause 7.4.37. Since the specialization resources handling procedures are the same as <flexContainer> resource, this annex does not specify them. Also, since all the specialization inherits the universal/common attributes of <flexContainer> resource, this annex does not specify that information.

A.13. Resource type [genericInterworkingService]

This resource type is used for grouping Input and/or Output Datapoints and/or OperationInstances of a Service in the context of Ontology based Interworking. The detailed description of the [genericInterworkingService] resource can be found in clause 9.2 of oneM2M TS-0012 [35].

Table J.2‑1: Data type definition of [genericInterworkingService] resource

	Data Type ID
	File Name
	Note

	genericInterworkingService
	CDT-genericInterworkingService-v3_1_0.xsd
	XSD schema for genericInterworkingService resource


Table J.2‑2: Resource Specific Attributes of [genericInterworkingService] resource
	Attribute Name
	Request Optionality 
	Data Type
	Default Value and Constraints

	
	Create
	Update
	
	

	containerDefinition
	M
	NP
	xs:anyURI
	No default

	ontologyRef
	O
	O
	xs:anyURI
	No default

	serviceName
	M
	NP
	xs:string
	No default.

	inputDataPointLinks
	O
	O
	m2m:listOfDataLinks
	No default

	outputDataPointLinks
	O
	O
	m2m:listOfDataLinks
	No default

	dataPoint
	O
	O
	m2m:dataPoint
	No default

	operation
	O
	O
	m2m:operation
	No default


How can I indicate multiplicity 0..n of the new attributes ??
A.14. Resource type [genericInterworkingOperationInstance]

This resource type and is used for grouping (persistent) Input and/or Output Datapoints and/or (transient) OperationInput / Output of an Operation in the context of Ontology based Interworking. Resources of resource type genericInterworkingOperationInstance are created as child-resources of a genericInterworkingService. The detailed description of the [genericInterworkingService] resource can be found in clause 9.2 of oneM2M TS-0012 [35].

Table J.3‑1: Data type definition of [genericInterworkingOperationInstance] resource

	Data Type ID
	File Name
	Note

	genericInterworkingOperationInstance
	CDT-genericInterworkingOperationInstance-v3_1_0.xsd
	XSD schema for genericInterworkingOperationInstance resource


Table J.3‑2: Resource Specific Attributes of [genericInterworkingOperationInstance] resource
	Attribute Name
	Request Optionality 
	Data Type
	Default Value and Constraints

	
	Create
	Update
	
	

	containerDefinition
	M
	NP
	xs:anyURI
	No default

	ontologyRef
	O
	O
	xs:anyURI
	No default

	operationName
	M
	NP
	xs:string
	No default

	inputDataPointLinks
	O
	O
	m2m:listOfDataLinks
	No default

	outputDataPointLinks
	O
	O
	m2m:listOfDataLinks
	No default

	inputLinks
	O
	O
	m2m:listOfDataLinks
	No default

	outputLinks
	O
	O
	m2m:listOfDataLinks
	No default

	operationState
	O
	O
	xs:string
	No default

	invocationData
	O
	O
	m2m:dataPoint
	No default

	resultData
	O
	O
	m2m:dataPoint
	No default


How can I indicate multiplicity 0..n of the new attributes ??
© 2017 oneM2M Partners






















Page 1 (of 2)

<genericInterworkingOperationInstance>

1

operationResult
m2m:operationResult

invocationData
m2m:dataPoint

name
xs:NCName

(0..n)

1

resultData
m2m:dataPoint

(0..n)












<genericInterworkingOperationInstance>

invocationData
m2m:dataPoint

name
xs:NCName

(0..n)

1

resultData
m2m:dataPoint

(0..n)

operationState
xs:string

(0..1)












... In case of transmission failure















IPE

comm.
entity

CSE

UPDATE dataPoint attribute of <serviceResource>

NOTIFY on update of dataPoint attribute of <serviceResource>

Inter-
worked
Device

Command 

            <= (data of dataPoint)
            

Sending a command to the interworked Device by using a dataPoint of the service

CREATE <operationResultResource>  as child of <serviceResource>, with

Attribute for operationState = "operation_failed”

NOTIFY on creation of <operationResultResource>

serialize invocation parameters 
of  operation


















IPE

comm.
entity

CSE

UPDATE operation attribute of <serviceResource>
(each operation attribute contains 0..n invocationParameter as elements)

NOTIFY on update of operation attribute of <serviceResource>

Inter-
worked
Device

Command 

            <=  (invocation parameters)
            => (result parameters)

Sending a command to the interworked Device by using an operation of the service



CREATE <operationResultResource>  as child of <serviceResource>, with

attributes for (0..m) resultParameter and

attributes for (0..n) invocationParameter, copied from operation attribute

NOTIFY on creation of <operationResultResource>

RETRIEVE resultParameters 

serialize invocation parameters 
of  operation

de-serialize result parameters
















<genericInterworkingService>

dataPoint
m2m:dataPoint

(0..n)

data
m2m:anyTypedContent

1

name
xs:NCName

string
xs:string

1

(0..1)

boolean
xs:boolean

double
xs:double

hexBinary
xs:hexBinary

integer
xs:integer

unsignedLong
xs:unsignedLong

list
m2m:listType

structure
m2m:structureType

listItem
m2m:anyTypedContent

structureItem
m2m:structureItem

itemName
xs:NCName

itemContent
m2m:anyTypedContent

(0..1)

(0..1)

(0..1)

(0..1)

(0..1)

(0..1)

(0..1)

(0..n)

(0..n)

1

1



xs:choice 
(i.e. exactly one of)

operation
m2m:operation

(0..n)

invocationData
m2m:dataPoint

1

name
xs:NCName

(0..n)

Attribute-/elementName

type

Legend: ...

new datatype 

m2m:anyTypedContent (recursive)












<genericInterworkingService>

dataPoints
m2m:dataPoints

operations
m2m:operations

(0..1)

(0..1)

dataPoint
m2m:dataPoint

(0..n)

data
m2m:anyTypedContent

1

name
xs:NCName

string
xs:string

1

(0..1)

boolean
xs:boolean

double
xs:double

hexBinary
xs:hexBinary

integer
xs:integer

unsignedLong
xs:unsignedLong

list
m2m:listType

lisItem
m2m:listItem

structure
m2m:structureType

itemNumber
xs:unsignedLong

itemContent
m2m:anyTypedContent

structureItem
m2m:structureItem

itemName
xs:NCName

itemContent
m2m:anyTypedContent

(0..1)

(0..1)

(0..1)

(0..1)

(0..1)

(0..1)

(0..1)

(0..n)

(0..n)

1

1

1

1



xs:choice 
(i.e. exactly one of)

operation
m2m:operation

(0..n)

invocationData
m2m:dataPoint

1

name
xs:NCName

(0..n)












