Doc# MAS-2017-0181-Direct_ACP_Control_of_Semantic_Graph_Store

	CHANGE REQUEST

	Meeting ID:*
	MAS30

	Source:*
	Chonggang Wang, Convida, wang.chonggang@convidawireless.com
Catalina Mladin, Convida, mladin.catalina@convidawireless.com
Xu Li, Convida, li.xu@convidawireless.com

	Date:*
	2017-07-02

	
	

	Reason for Change/s:*
	Request to agree on moving the contents related to the direct ACP control of semantic graph store (in Sec. 7.5.2 and Sec. 8.11 of TR-0033) to TS-0034.

	CR against: Release*
	Release 3

	CR against: WI*
	 FORMCHECKBOX
 Active WI-0053 for Rel-3 Enhancements on Semantic Support
 FORMCHECKBOX
 MNT maintenance / < Work Item number(optional)>
Is this a companion CR? Yes FORMCHECKBOX
 No FORMCHECKBOX

Companion CR number: (Note to Rapporteur - use latest agreed revision)Is this a mirror CR? Yes FORMCHECKBOX
 No FORMCHECKBOX

Mirror CR number: (Note to Rapporteur - use latest agreed revision)

 FORMCHECKBOX
 STE Small Technical Enhancements / < Work Item number (optional)>
Only ONE of the above shall be ticked

	CR against: TS/TR*
	TS-0034, v0.1.0

	Clauses *
	3.3, 7.2

	Type of change: *
	 FORMCHECKBOX
 Editorial change

 FORMCHECKBOX
 Bug Fix or Correction

 Change to existing feature or functionality

 FORMCHECKBOX
 New feature or functionality
Only ONE of the above shall be ticked

	Impacted other TS/TR(s)
	<TS/TR number>, <Version Number>, and <Description on which aspect should be reflected in this TS/TR>

	Post Freeze checking:*
	This CR contains only essential changes and corrections? YES FORMCHECKBOX
 NO FORMCHECKBOX

This CR may break backwards compatibility with the last approved version of the TS? YES
 NO

	Template Version: January 2017 (Do not modify)

oneM2M Notice

The document to which this cover statement is attached is submitted to oneM2M. Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.

Introduction
Access control for semantic related functionalities (e.g. semantic resource discovery, semantic query) in Semantic Graph Store (SGS) have been well defined in TR-0033. It’s ready to consider adopting this feature in TS-0034. This contribution is mainly to move the contents related to Direct Access Control of SGS defined in Sec. 7.5.2 and Sec. 8.11 of TR-0033 to TS-0034.
· On one hand, when realizing semantic operations directly over a SGS, the access control shall need to be enforced, which however currently is very resource-tree centric. A straightforward way for solving this problem is that when processing a semantic operation, a special stage is to suspend the processing in the graph store, go back to the resource tree side to check ACP rules in order to determine which RDF triples should be involved, and finally resume the semantic operation processing after ACP is enforced. Since any semantic operation to be processed in the graph store needs to be compliant to access control policies, such an approach is not efficient since every semantic processing has to undergone a “suspended-and-resumed” process because of enforcing ACPs that are only available in the resource tree. In the meantime, this also implies longer processing time for the semantic operations, which also lead to longer response delay for semantic users.

· On the other hand, referring to the existing semantic web, the approach in terms of “data-layering” is widely used in the sense that the information in the raw data layer are first transformed into a semantic form (such as RDF triples) and stored in a semantic data layer so that various semantic features (such as semantic query, semantic reasoning, etc.) can be built directly on top of the semantic data layer. This approach can significantly facilitate the semantic operation processing in the graph store since all the information are directly available and processed within the graph store.

· Accordingly, this contribution introduces the Direct ACP Control solution in the SGS, which is based on the best practice in the existing semantic web as mentioned above.
· The key idea for directly enforcing ACP control within graph store is to make ACP policies/rules also available in a semantical form and can be directly processed by graph store. Accordingly, there is a need for synchronization of access control policies between the CSE (hosting the resource tree) and the SGS. Although doing synchronization may have some overhead which can be mitigated and optimized by means such as a lazy synchronization, the benefits for doing this is that it significantly improves the efficiency of semantic operations (since ACP control can be directly done within the graph store and in a semantic way). It also brings better user experience in terms of shorter response delays for the required semantic operations.

-----------------------Start of change 1---
3.3 Abbreviations

Abbreviations should be ordered alphabetically.

Clause numbering depends on applicability.

For the purposes of the present document, the [following] abbreviations [given in ... and the following] apply:

Abbreviation format

ARIB
Association of Radio Industries and Businesses
ATIS
Alliance for Telecommunications Industry Solutions
CCSA
China Communications Standards Association
ETSI
European Telecommunications Standards Institute

TIA
Telecommunications Industry Association,
TSDSI
Telecommunications Standards Development Society

TTA
Telecommunications Technology Association
TTC
Telecommunication Technology Committee
ACR

Access Control Rule
ACP
Access Control Policy

AE
Application Entity

CRUD
Create, Retrieve, Update, Delete

CSE
Common Service Entity

CSF
Common Service Function

IoT
Internet of Things

MR
Mashup Requestor

RDF

Resource Description Framework

RH
Resource Host
SD
Semantic Descriptor

SGS
Semantic Graph Store

SMF
Semantic Mashup Function

SMI
Semantic Mashup Instance

SMJP
Semantic Mashup Job Profile

SPARQL
SPARQL Protocol and RDF Query Language
<ABREVIATION1>
<Explanation>

<ABREVIATION2>
<Explanation>

<ABREVIATION3>
<Explanation>

-----------------------End of change 1---
-----------------------Start of change 2---
7.2 Access Control
7.2.X Direct ACP control via semantic graph store
7.2.X.1 Introduction
When realizing semantic functionalities and operations (e.g. semantic resource discovery or semantic query), a centralized Semantic Graph Store (SGS) can be used in the system to store RDF triples which are collected from the <semanticDescriptor> resources distributed in the resource tree. However, oneM2M uses <accessControlPolicy> resources to define Access Control Policies (ACP) and those resources are hosted in the resource tree and referred/used by other resources through accessControlPolicyIDs attribute. In other words, any resource accessing (e.g., CRUD or discovery) on a specific resource shall be compliant to certain access control policies as specified by the accessControlPolicyIDs attribute of this resource. Since <semanticDescriptor> resources have their own access control policies as defined in the accesscontrolPolicyIDs attribute, semantic operations to be executed directly on the RDF triples stored at the SGS shall follow those access control policies in the sense that RDF triples from certain <semanticDescriptor> resources shall not be used or involved in a semantic operation processing if it is not allowed by the corresponding access control policies.

Figure 7.2.X.1-1 gives an example of access control policy for two <semanticDescriptor> resources, where there are two access control policies (i.e. <accessControlPolicy1> and <accessControlPolicy2>). The access to <semanticDescriptor1> is controlled by <accessControlPolicy1> and <accessControlPolicy2>, while the access to <semanticDescriptor2> is only controlled by <accessControlPolicy2>.

[image: image1.emf]<semanticsDescriptor1>

accessControlPolicyID:

URI to <accesscontrolPolicy1>

URI to <accesscontrolPolicy2>

descriptor: triple set for

sample 1 and sample 2

<accesscontrolPolicy1>

privileges: (originator; context(optional); operation)

rule-1: AE1, AE2, AE3; Retrieve, Discovery

rule-2: AE1, AE3; Create, Update, Delete

<accesscontrolPolicy2>

privileges: (originator; context(optional); operation)

rule-3: AE1, AE2; Discovery

<semanticsDescriptor2>

accessControlPolicyID:

URI to <accesscontrolPolicy2>

descriptor:

triple set for sample 3

Figure 7.2.X.1-1: Example of access control policy for <semanticDescriptor>
In direct ACP control via semantic graph store, access control for any semantic operation (e.g. semantic resource discovery, semantic query, etc.) shall be directly enforced in the SGS. For this purpose, the following types of semantic triples shall be generated according to the oneM2M resource tree (i.e. <semanticDescriptor> and <accessControlPolicy> resources) and added to the SGS before the semantic operation is executed at the SGS; in addition, those four types of semantic triples shall be synchronized with the oneM2M resource tree (i.e. changes on or related to <semanticDescriptor> and <accessControlPolicy> resources).

· SD Original Triples: RDF triples or other semantic representation contained in the descriptor attribute of a <semanticDescriptor> resource. In addition, the relationship between a <semanticDescriptor> resource and its accessControlPolicyIDs shall be represented in a semantic form and stored in the SGS.

· SD Relationship Triples: RDF triples or other semantic representation used to describe the belonging relationship between each SD Original Triple (i.e. contained in the descriptor attribute of a <semanticDescriptor> resource) and the corresponding <semanticDescriptor> resource.
· ACP-SD Binding Triples: RDF triples or other semantic representation used to describe which <accessControlPolicy> can be applied to which <semanticDescriptor> (i.e. the binding relationship between a <semanticDescriptor> resource and its accessControlPolicyIDs attribute). For oneM2M, such binding relationship can be obtained from the resource <semanticDescriptor>’s accessControlPolicyIDs attribute.
· ACP Triples: RDF triple or other semantic representation used to describe ACP policies/rules (as defined in <accessControlPolicy> resources) for semantic resources (e.g. <semanticDescriptor>).
Overall, direct ACP control via the SGS shall consist of the following tasks:

Task 1: Store SD Original Triples in the SGS. Generate SD Relationship Triples, store them in the SGS. This task is detailed in clause 7.2.X.2.

Task 2: Generate ACP-SD Binding Triples and ACP Triples; store them in the SGS. This task is detailed in clause 7.2.X.3.

Task 3. Conduct semantic operations with direct ACP control in the SGS. Semantic operations are conducted with the selected semantic triples which are associated with the Access Control Rules allowing the Originator to operate (which is based on the work of Task 1 and Task 2). This task is detailed in clause 7.2.X.4.

Task 4. Synchronize ACP Triples, ACP-SD Binding Triples, SD Relationship Triples, and SD Original Triples as stored in the SGS with any updated <semanticDescriptor> and/or <accessControlPolicies> resources in the oneM2M resource tree. This task is detailed in clause 7.2.X.5.

7.2.X.2 Create SD Relationship Triples

Access control policies for a <semanticDescriptor> resource have been defined in its accesscontrolPolicyIDs attribute. In other words, the granularity for defining ACP is on a resource-level in the sense that all the RDF triples stored in the descriptor attribute of the <semanticDescriptor> resource should be compliant to the same ACP as specified by the accesscontrolPolicyIDs attribute of this <semanticDescriptor> resource. However, when those RDF triples (i.e. SD Original Triples) are copied to the SGS, they are not stored under any resource/attribute anymore which is different than the way how oneM2M resource tree works. Therefore, there needs a way to re-represent the association relationship between a SD Original Triple and its belonged <semanticDescriptor> resource in SGS such that the same ACP enforcement can be performed directly in the SGS. In other words, SD Relationship Triples shall be generated and stored in the SGS.

In order to do so, an internal ontology (referred to as Semantic Descriptor Ontology) with two classes semanticDescriptor and atomDescription, and several properties describedIn, hasSubject hasObject and hasProperty shall be used (See Figure 7.2.X.2-1). Note that the class semanticDescriptor is the concept to model a <semanticDescriptor> resource, while atomDescription is used to mode a SD Original Triple; the atomDescription has four properties describedIn, hasSubject hasObject and hasProperty. For example, for a triple like “classX propertyY classZ” stored in a <semanticDescriptor> resource (which is termed as SD Original Triple), the following association triples shall be created for building the association and be stored in the SGS; those association triples are termed as SD Relationship Triples.

atomDescriptionA

hasSubject

classX

atomDescriptionA

 hasObject

classZ
atomDescriptionA

hasproperty

propertyY
atomDescriptionA

describedIn

semanticDescriptorA
[image: image2.png]Subject

Instance hassubject

hasProperty
Property

Object
Instance

i Semantic Same IRI Semantic
atom Description describedin

RSN Descriptor - Descriptor
istancs Instance Resource

The atomDescription class is used to express the description of one triple

Figure 7.2.X.2-1: Association between a SD original triple and the semanticDescriptor instance

An illustration of such a process is shown in Figure 7.2.X.2-1. As an example, consider a <semanticDescriptor> resource called <SD-1>, which include 4 SD Original Triples:

HomeA

rdf:type

ex:Home .
HomeA

ex:hasLocation

LocationA .
LocationA

ex:hasLatitude

“300” .
LocationA

ex:hasLongitude
“200” .
When those four SD Original Triple are copied to SGS, the following SD Relationship Triple shall be shall be generated:

@PREFIX

sd:

<http://semanticDescriptor.org> .

atomDescription1
rdf:type

sd:atomDescription .

<SD-1>

rdf:type

sd:semanticDescriptor .

atomDescription1
sd:hasSubject

HomeA .
atomDescription1
sd:hasObject

ex:Home .
atomDescription1
sdhasProperty
rdf:type .
atomDescription1
sd:describedIn
<SD-1> .
atomDescription2
sd:hasSubject
HomeA .
atomDescription2
sd:hasObject

LocationA .
atomDescription2
sd:hasProperty
ex:hasLocation .
atomDescription2
sd:describedIn
<SD-1> .
atomDescription3
sd:hasSubject
LocationA .
atomDescription3
sd:hasObject

“300” .
atomDescription3
sd:hasProperty
ex:Latitude .
atomDescription3
sd:describedIn
<SD-1> .
atomDescription4
sd:hasSubject
LocationA .
atomDescription4
sd:hasObject

“200” .
atomDescription4
sd:hasProperty
ex:hasLongtitude .
atomDescription4
sd:describedIn
<SD-1> .
7.2.X.3 Create ACP triples and ACP binding triples

7.2.X.3.1 Access Control Ontology
In order to represent ACP in a semantical form, the Access Control Ontology is introduced, which is shown in Figure 7.2.X.3.1-1. This ontology is defined by following how oneM2M <accessControlPolicy> resource is specified in oneM2M TS-0001 [1], where an access-control-rule-tuple consists of parameters such as accessControlOriginators, accessControlOperations, and accessControlContexts. Accordingly, this ontology defines two new classes: accessControlPolicy and accessControlRule. In addition, five new properties (i.e. hasACPRule, hasACOriginator, hasACOperations, hasACContexts and appliedTo) are defined. More details about those terms are introduced as follows:

· The property hasACPRule is used to link an accessControlPolicy instance with an accessControlRule instance. Properties hasACOriginator, hasACOperations and hasACContexts (optional) basically describe an accessControlRule instance and are used to specify who can issue what operations under which conditions. As these triples describe the ACP themselves, they are referred to as ACP Triples.

· The property appliedTo is used to describe which <semanticDescriptor> resource an accessControlPolicy instance can be applied to. As these triples bind <accessControlPolicy> and <semanticDescriptor>, they are referred to as ACP-SD Binding Triples.

[image: image3]
Figure 7.2.X.3.1-1: Access control ontology model
7.2.X.3.2 Example of Using Access Control Ontology
Figure 7.2.X.3.2-1 shows an example of the eHealth Ontology Reference Model, which will be used to develop the SGS example in Figure 7.2.X.3.2-2.
[image: image4.emf]eHealthcare Ontology Reference Model

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix ex: <http://example.org/> .

@prefix acp: <http://accessControlPolicy.org/>.

ex:Person a rdfs:Class .

ex:dateOfBirth a rdf:Property ; rdfs:domain ex:Person ; rdfs:range xsd:date ; rdfs:comment "Date of Birth" .

ex:name a rdf:Property ; rdfs:domain ex:Person ; rdfs:range rdfs:Literal ; rdfs:comment "name of the person" .

ex:Patient rdfs:subClassOf ex:Person .

ex:Doctor rdfs:subClassOf ex:Person .

ex:takeCareOf a rdf:Property ; rdfs:domain ex:Doctor ; rdfs:range rdfs:Patient ;

rdfs:comment "doctor take care of (relation) patient" .

ex:MeasurementSample a rdfs:Class .

ex:measureOn a rdf:Property ; rdfs:domain ex:MeasurementSample ; rdfs:range xsd:date ;

rdfs:comment "the date of measurement" .

ex:measureFor a rdf:Property ; rdfs:domain ex:MeasurementSample ; rdfs:range ex:Patient ;

rdfs:comment "sample is measure for which patient" .

ex:unit a rdf:Property ; rdfs:domain ex:MeasurementSample ; rdfs:range rdfs:Literal ;

rdfs:comment "unit of the value" .

ex:BPMeasurementSample rdfs:subClassOf ex:MeasurementSample .

ex:dValue a rdf:Property ; rdfs:domain ex:BPMeasurementSample ; rdfs:range xsd:integer ;

rdfs:comment "value of the diastolic" .

ex:sValue a rdf:Property ; rdfs:domain ex:BPMeasurementSample ; rdfs:range xsd:integer ;

rdfs:comment "value of the systolic" .

ex:resourceGroup a rdf:Class ;

rdfs:comment "contain a list of resources in resource tree" .

ex:containMeasurement a rdf:Property ; rdfs:domain ex:resourceGroup ; rdfs:range ex:MeasurementSample ;

rdfs:comment "resourceGroup contains one or more measurement samples" .

Figure 7.2.X.3.2-1: eHealth ontology reference model
Figure 7.2.X.3.2-2 describes an example of ACP Triples and ACPSD Binding Triples in the SGS, based on the <semanticDescriptor> resource example shown in Figure 7.2.X.1-1 and the Access Control Ontology defined in Figure 7.2.X.3.1-1. In this example, there are two patients Jack and Alice; their doctors are John and Steve, respectively. There are three blood pressure meansurement samples (i.e. Sample1 for Jack, Sample2 and Sample3 for another patient3). Corresponding triples are shown in black text in Figure 7.2.X.3.2-2, which are generated based on the eHealth Ontology Reference Model in Figure 7.2.X.3.2-1.

The triples in red text in Figure 7.2.X.3.2-2 are added for access control purpose according to the proposed Access Control Ontology model in Figure 7.2.X.3.1-1, when new ACPs are created or updated. In this example, it is assumed two access control polices be created. First, two <semanticDescriptor> resources are described (i.e. semanticDescriptor1 contains Sample1 and Sample2, while semanticDescriptor2 contains Sample3. Then, two access control policies are defined (i.e. accessControlPolicy1 is applied to semanticDescriptor1, while accessControlPolicy2 is applied to both semanticDescriptor1 and semanticDescriptor2). Next, the detailed Access Control Rules for accessControlPolicy1 and accessControlPolicy2 are described.
· accessControlPolicy1 has two accessControlRules, which states that 1) AE-ID-1, AE-ID-2, and AE-ID-3 can RETRIEVE and DISCOVER triples in the semanticDescriptor which accessControlPolicy1 is applied to (i.e. semanticDescriptor1); 2) AE-ID-1 and AE-ID-3 can CREATE, UPDATE, or DELETE triples in the semanticDescriptor which accessControlPolicy1 is applied to (i.e. semanticDescriptor1).

· For accessControlPolicy2, only one accessControlRule is defined; this accessControlRule states that AE-ID-1 and AE-ID-2 can DISCOVER triples in the semanticDescriptor which accessControlPolicy2 is applied to (i.e. semanticDescriptor1 and semanticDescriptor2).

[image: image5.emf]eHealth Semantic Graph Store

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix ex: <http://example.org/> .

@prefix acp: <http://accessControlPolicy.org/>.

ex:Patient1 a ex:Patient ; ex:name "Jack" ; ex:dateOfBirth "2000-08-03"^^xsd:date .

ex:Patient2 a ex:Patient ; ex:name "Alice" ; ex:dateOfBirth "1998-06-03"^^xsd:date .

ex:Doctor1 a ex:Doctor ; ex:name "John" ; ex:dateOfBirth "1944-08-21"^^xsd:date ; ex:takeCareOf

ex:Patient1 .

ex:Doctor2 a ex:Doctor ; ex:name "Steve" ; ex:dateOfBirth "1947-02-11"^^xsd:date ; ex:takeCareOf

ex:Patient2 .

ex:Sample1 a ex:BPMeasurementSample ;

ex:measureOn "2014-08-21"^^xsd:date ; ex:measureFor ex:Patient1 ;

ex:unit "mmHg" ; ex:sValue "150"^^xsd:integer ; ex:dValue "100"^^xsd:integer .

ex:Sample2 a ex:BPMeasurementSample ;

ex:measureOn "2014-07-24"^^xsd:date ; ex:measureFor ex:Patient3 ;

ex:unit "mmHg" ; ex:sValue "140"^^xsd:integer ; ex:dValue "96"^^xsd:integer .

ex:Sample3 a ex:BPMeasurementSample ;

ex:measureOn "2012-11-24"^^xsd:date ; ex:measureFor ex:Patient3 ;

ex:unit "mmHg" ; ex:sValue "130"^^xsd:integer ; ex:dValue "57"^^xsd:integer .

Below are triples associating measurement samples with corresponding access control policy

ex:semanticsDescriptor1 a ex:resourceGroup ; ex:containMeasurement ex:Sample1, ex:Sample2 .

ex:semanticsDescriptor2 a ex:resourceGroup ; ex:containMeasurement ex:Sample3 .

acp:accessControlPolicy1 acp:appliedTo ex:semanticsDescriptor1 .

acp:accessControlPolicy2 acp:appliedTo ex:semanticsDescriptor1 .

acp:accessControlPolicy2 acp:appliedTo ex:semanticsDescriptor2 .

Below are triples created for access control policy 1 resource based on access control ontology

acp:accessControlRule1_1 rdf:type acp:accessControlRule.

acp:accessControlRule1_2 rdf:type acp:accessControlRule.

acp:accessControlPolicy1 rdf:type acp:accessControlPolicy.

acp:accessControlPolicy1 acp:hasACPRule acp:accessControlRule1_1, acp:accessControlRule1_2 .

acp:accessControlRule1_1 acp:hasACOriginator "AE-ID-1", "AE-ID-2", "AE-ID-3" .

acp:accessControlRule1_1 acp:hasACOperations "RETRIEVE", "DISCOVERY" .

acp:accessControlRule1_2 acp:hasACOriginator "AE-ID-1", "AE-ID-3" .

acp:accessControlRule1_2 acp:hasACOperations "CREATE", "UPDATE", "DELETE" .

Below are triples created for access control policy 2 resource based on access control ontology

acp:accessControlRule2_1 rdf:type acp:accessControlRule.

acp:accessControlPolicy2 rdf:type acp:accessControlPolicy.

acp:accessControlPolicy2 acp:hasACPRule acp:accessControlRule2_1 .

acp:accessControlRule2_1 acp:hasACOriginator "AE-ID-1", "AE-ID-2" .

acp:accessControlRule2_1 acp:hasACOperations "DISCOVERY" .

Figure 7.2.X.3.2-2: eHealth triples in the SGS
7.2.X.4 Conduct semantic operations with direct ACP control
This clause is to introduce more details on implementing Task-3 as discussed in clause 7.2.X.1. This clause uses semantic query as an example of semantic operatoins to be excuted with direct ACP control in the SGS.

When the Hosting CSE receives a SPARQL query from the Originator, it shall: 1) add the access control related patterns according to the ID of the Originator and the request operation to be conducted (e.g., semantic discovery) into the received SPARQL statement; 2) add ACP-SD binding related patterns into the received SPARQL statement (i.e. constraints on ACP-SD Binding Triples); 3) add SD association related patterns (i.e. constraints on SD Relationship Triples) to the received SPARQL statement; and 4) execute the revised SPARQL statement to make query on the SGS.

For example, in the scenario of the example in Figure 7.2.X.3.2-2, when AE-ID-3 sends the following SPARQL query request to the Hosting CSE,

select distinct ?sample ?sValue ?dValue
where

{

 ?sample

rdf:type

ex:BPMeasurementSample .

 ?sample

ex:sValue

?sValue .

 ?sample

ex:dValue

?dValue .

}
The Hosting CSE shall add some access control related statements according to the ID (i.e. AE-ID-3) of the Originator and the request operation (i.e. DISCOVERY) of the query, the revised SPARQL query can be given as below (red text for ACP constraints, blue text for ACP-SD binding constraints, and orange text for SD relationship constraints)
select distinct ?sample ?sValue ?dValue
where
{

 ?accessControlRule
acp:hasACOriginator
"AE-ID-3" .

 ?accessControlRule
acp:hasACOperations
"DISCOVERY" .

 ?accessControlPolicy
acp:hasACPRule

?accessControlRule .

 ?accessControlPolicy
acp:appliedTo

?semanticDescriptor .

 ?semanticDescriptor
ex:containResource

?sample
 ?atomDescription1

sd:describedIn

?semanticDescriptor .

 ?atomDescription1

sd:hasSubject

?sample .

 ?atomDescription1

sd:hasObject

ex:BPMeasurementSample .

 ?atomDescription1

sd:hasProperty

rdf:type .

 ?atomDescription2

sd:describedIn

?semanticDescriptor .

 ?atomDescription2

sd:hasSubject

?sample .

 ?atomDescription2

sd:hasObject

?sValue .

 ?atomDescription2

sd:hasProperty

ex:sValue .

 ?atomDescription3

sd:describedIn

?semanticDescriptor .

 ?atomDescription3

sd:hasSubject

?sample .

 ?atomDescription3

sd:hasObject

?dValue .

 ?atomDescription3

sd:hasProperty

ex:dValue .

 ?sample

rdf:type

ex:BPMeasurementSample .

 ?sample

ex:sValue

?sValue .

 ?sample

ex:dValue

?dValue .
}

Next, the revised SPARQL query statement is excuted within the SGS. Since ACP have already been reprensented in a semantical form, the query result of the revised SPARQL query is the desried result with enforced direct acceess control. Figure 7.2.X.4-1 shows the SPARQL query result in the above example over the eHealth SGS in Figure 7.2.X.3.2-2. According to the access control triples added to the SGS (i.e. red text in Figure 7.2.X.3.2-2), AE-ID-3 is only allowed to DISCOVER samples included in semanticDescriptor1 (i.e. Sample1 and Sample2). As a result, the returned result for SPAQRL query in Figure 7.2.X.4-1 presents the selected content of Sample1 and Sample2.
[image: image6.png]Query Result (1-2 of 2)

Download format: | BINARY | | Download
Resuls per page: 200
Results offset: Previous 200 | [Next 200

Show cata types & language tags: (¥]

sample. Svalue | DValue
exSomples 150 |00
exSomples |10 |96

Figure 7.2.X.4-1: Example for eHealth semantic query result with access control
7.2.X.5 Synchronization ACP triples and SD-related triples in the SGS with the resource tree

When making ACP policies/rules be also available in a semantical form (i.e. ACP Triples) in the SGS for supporting direct access control, synchronization between <accessControlPolicy> resources at the Hosting CSE and ACP Triples at the SGS is required. Depending on different cases, the Hosting CSE shall perform the following tasks in order to maintain such synchronization:

· When a new <accessControlPolicy> resource is created, the Hosting CSE shall generate new ACP Triples according to the ACP ontology and stores these new ACP Triples in the SGS (See clause 7.2.X.5.1).
· When the privileges attribute of an existing <accessControlPolicy> resource is updated, the Hosting CSE shall generate new ACP Triples and update corresponding old ACP Triples at the SGS accordingly (See cause 7.2.X.5.2)
· When an existing <accessControlPolicy> resource is deleted, the Hosting CSE shall remove the corresponding ACP Triples at the SGS (See clause 7.2.X.5.3).
Similar to ACP Triples, others such as SD Original Triples, SD Relationship Triples, and ACP-SD Binding Triples shall be synchronized. Depending on different cases, the Hosting CSE shall perform the following tasks in order to maintain such synchronization:

· When a <semanticDescriptor> is created:

· In this case, the Hosting CSE shall generate SD Relationship Triples and ACP-SD Binding Triples and then store them in the SGS (See clause 7.2.X.5.4)
· When the accessControlPolicyIDs attribute of a <semanticDescriptor> resource changes

· In this case, the Hosting CSE shall generate new ACP-SD Binding Triples and use them to update corresponding old ACP-SD Binding Triples in the SGS. This case may apply also when the accessControlPolicyIDs attribute of the parent changes (See clause 7.2.X.5.5).

· When the descriptor attribute of a <semanticDescriptor> resource changes:

· In this case, the Hosting CSE shall generate new SD Relationship Triples and use them to update old SD Relationship Triples in the SGS (See clause 7.2.X.5.6).

· When a <semanticDescriptor> resource is deleted:

· In this case, the Hosting CSE shall delete all corresponding SD Original Triples, SD Relationship Triples and ACP-SD Binding Triples from the SGS (See clause 7.2.X.5.7).
7.2.X.5.1 Procedure for creating ACP triples when a new <accessControlPolicy> resource is created
Figure 7.2.X.5.1-1 illustrates the procedure for creating ACP Triples in SGS, which is triggered when an Originator requests to create a new <accessControlPolicy> resource at the Hosting CSE.

The following steps shall be performed:

· Step 1: The Originator sends a request to create a new <accessControlPolicy> resource to the Hosting CSE. This message contains the representation of <accessControlPolicy> to be created (e.g. the value of privileges attribute).

· Step 2: The Hosting CSE receives the request in Step 1 and, subject to the Originator access rights verification, shall create the requested <accessControlPolicy> resource.

Example: Assume <acp1> be the newly created ACP resource and its URI “acp1URI”. Assuming <acp1> has one access control rule (e.g. acr11) and the URI of the corresponding privileges attribute is “acr11URI”. For exemplification, assume also that acr11 allows an AE (“AE-ID-1”) to perform DISCOVERY operations.

· Step 3: The Hosting CSE sends a response to the Originator.

Example: If Step 1 was successful, “acp1URI” will be contained in this response message.

· Step 4: The Hosting CSE generates corresponding ACP Triples based on the content of <acp1> and the ACP ontology,

Example: An example of ACP Triples for <acp1> resource created in Step 1 is illustrated in Figure 7.2.X.5.1-2.

[image: image7.emf]@PREFIX acp: <http://accessControlPolicy.org> .

acp:acp1 rdf:type acp:accessControlPolicy .

acp:acp1 acp:hasACPRule acp:acr11.

acp:acr11 rdf:type acp:accessControlRule .

acp:acr11 acp:hasACOriginator "AE-ID-1" .

acp:acr11 acp:hasACOperations "DISCOVERY" .

Line#1

Line#2

Line#3

Line#4

Line#5

Line#6

Figure 7.2.X.5.1-2: Example ACP triples corresponding to <acp1> resource

· In Figure 7.2.X.5.1-2:

· line#1 defines prefix “acp” which will used in lines #2-#6.

· line#2 defines a new acp:accessControlPolicy class instance for <acp1> resource. The subject value of this triple (i.e. acp:acp1) is “acp1URI”, therefore the subject value of this triple makes it possible to locate the corresponding resource <acp1>. The Hosting CSE can also use “acp1URI” to locate corresponding triples in the SGS (e.g. when updating existing ACP Triples).

· line#3 defines that acp:acp1 instance has an associated access control rule acr11. The object value of this triple (i.e. acp:acr11) is “acr11URI”, therefore the object value of this triple, makes it possible to locate the corresponding privileges attribute of <acp1> resource. The Hosting CSE can use “acr11URI” to locate the corresponding triples in the SGS (e.g. when updating existing ACP Triples).

· line#4 defines that acp:acr11 (i.e. the object on line#3) is an acp:accessControlRule class instance.

· line#5 and line#6 give the values of two properties of acp:acr11 based on the assumptions in this example.

Note: The triples on lines #4-#6 define the access control rule acr11. If <acp1> has more access control rules, additional access control rules will be defined similarly to those on lines #4-#6.

· Optionally: The Hosting CSE may add the address of the SGS to the <accessControlPolicy> resource created in Step 2 in a new attribute, to enable direct addressing of the triples.

· Step 5: The Hosting CSE sends a SPARQL request to store the ACP Triples created in Step 4 to the selected SGS.

Example: The ACP Triples shown in Figure 7.2.X.5.1-2 will be contained in the SPARQL request.

· Step 6: The SGS receives the SPARQL request, processes it and saves the ACP Triples into its graph store.

· Step 7: The SGS sends a response back to the Hosting CSE to confirm the request in Step 6 is successfully executed.

[image: image8.emf]Hosting CSE Originator

Sematic Triple

Store

1. Create <accessControlPolicy> Resource

2. Create <accessControlPolicy> resource as

requested in Step 1 if it is allowed.

3. Response

5. SPARQL request e.g. store ACP Triples

7. Response

6. Process SPARQL request

e.g. add ACP Triples to SGS

4. Generate ACP triples according to ACP ontology.

Optionally: Add address of the SGS’s as atribute of new resource

Figure 7.2.X.5.1-1: Procedure for creating ACP triples in the SGS
7.2.X.5.2 Procedure for updating ACP triples when an existing <accessControlPolicy> resource is updated
The procedure for updating ACP Triples in a SGS follows a similar flow to the procedure used when a new <accessControlPolicy> resource is created. In this case the Originator requests to update the privileges attribute of an existing <accessControlPolicy> resource, as shown in Figure 7.2.X.5.2-1.

Note: This procedure applies also for updates of the accessControlPolicyIDs attribute of the <semanticDecriptor> resource.
The following steps shall be performed:

· Steps 1- 3: Similar to those describing Figure 7.2.X.5.1-1, but reflecting normal processing of an UPDATE operation. In this case the Originator triggers an update of the privileges attribute of an existing <accessControlPolicy>.

· Step 4: Based on the new value of the privileges attribute the Hosting CSE generates new ACP Triples

· Example: Assume the Originator aims to update the privileges attribute of <acp1> resource from “DISCOVERY” to “DISCOVERY” and “RETRIEVE” as the new accessControlOperations. To implement these changes in Figure 7.2.X.5.1-2 the Hosting CSE can simply add a new triple e.g. “acp:acr11 acp:hasACOperations “RETRIEVE”. Alternatively, the Hosting CSE can replace the triple on Line#6 to the new triple “acp:acr11 acp:hasACOperations “DISCOVERY”, “RETRIEVE”.”.

· Step 5: The Hosting CSE sends a SPARQL request to the SGS to update existing ACP Triples related to <acp1> resource to reflect the update being requested.

Example: As described in Step 4, there are two options to implement this.

· The Hosting CSE adds a new triple with the following SPARQL request:
@PREFIX

acp:

http://accessControlPolicy.org> .

INSERT DATA

{ acp:acr11

acp:hasACOperations
“RETRIEVE”. }
· The Hosting CSE replaces Line#6 in Figure 7.2.X.5.1-2 with the SPARQL request:

@PREFIX

acp:

http://accessControlPolicy.org> .

DELETE

{?acr

acp:hasACOperations

?operation }

WHERE

{

 ?acr

acp:hasACOperations

?operation

 FILTER (?acr=acp:acr11)

}

INSERT DATA

{ acp:acr11

acp:hasACOperations
“DISCOVERY”, “RETRIEVE”. }
· Step 6: The SGS processes the received SPARQL request and updates the corresponding ACP Triples.

· Step 7: The SGS sends a response to the Hosting CSE to inform it whether the request has successfully executed.

[image: image9.emf]Hosting CSE Originator

Sematic Graph

Store

1. Update <accessControlPolicy> Resource

2. Update <accessControlPolicy>with its new

representation given in Step 1

3. Response

7. Response

6. Process SPARQL request

e.g. update ACP Triples to SGS

4. Generate new ACP triples according to the new

<accessControlPolicy> resource (i.e. its privilege attribute)

5. SPARQL request e.g. update ACP Triples

Figure 7.2.X.5.2-1: Procedure for updating ACP triples in SGS
7.2.X.5.3 Procedure for deleting ACP triples when an existing <accessControlPolicy> resource is deleted
The procedure for deleting ACP Triples in a SGS follows a similar flow to the procedure used when a new <accessControlPolicy> resource is created. In this case, the Originator requests to delete an existing <accessControlPolicy> resource, as shown in Figure 7.2.X.5.3-1.
The following steps shall be performed:

· Steps 1- 3: Similar to those describing Figure 7.2.X.5.1-1, but reflecting normal processing of a DELETE operation. In this case the Originator triggers the deletion of an existing <accessControlPolicy> resource.

· Step 4: The Hosting CSE shall send a SPARQL request to the SGS to delete existing ACP Triples

· Example: The following SPARQL request implements this request:
@#PREFIX
acp:
http://accessControlPolicy.org> .

DELETE

{

 ?acp

?p

?o

 ?s

?p2
?acp

 ?acr

?p1 ?o1

}

WHERE

{

 ?acp

?p

?o

 ?s

?p2

?acp

 ?acp

acp:hasACPRule
?acr

 ?acr

?p1

?o1

 FILTER (?acp=acp:acp1)

}

· Step 5: The SGS processes the received SPARQL request and removes all requested ACP Triples.

· Step 6: The SGS sends a response to the Hosting CSE to inform it whether the request was successfully executed.

[image: image10.emf]Hosting CSE Originator

Sematic Graph

Store

1. Delete <accessControlPolicy> Resource

2. Delete <accessControlPolicy>Resource

3. Response

6. Response

5. Process SPARQL request

e.g. remove ACP Triples

4. SPARQL request e.g. delete ACP Triples

Figure 7.2.X.5.3-1: Procedure for Deleting ACP Triples in the SGS
7.2.X.5.4 Procedure for creating ACP-SD binding triples and SD relationship triples in SGS

Figure 7.2.X.5.4-1 illustrates the procedure for creating ACP-SD Binding Triples and SD Relationship Triples in SGS, which shall be triggered when an Originator requests to create a new <semanticDescriptor> resource.

After checking the access rights and other related security functions, the Hosting CSE shall create the <semanticDescriptor> resource locally (referred to as sd1 and its URI assumed to be sd1URI). Then, the Hosting CSE shall store all semantic triples as described in the descriptor attribute of SD1 resource to the SGS. More importantly, the Hosting CSE shall generate new SD Relationship Triples and ACP-SD Binding Triples and shall store them to the SGS as well. Note that if sd1 has no accessControlPolicyIDs attribute, ACP-SD Binding Triples shall not be generated.

The following steps shall be performed:

· Step 1: The Originator sends “Create <semanticDescriptor> Resource” request to the Hosting CSE. It is assumed that the value of descriptor attribute and accessControlPolicyIDs attribute of <semanticDescriptor> resource will be given in this request message.

· Assume the descriptor attribute contains only one SD Original Triple “S1 P1 O1 .”

· Assume the value of accessControlPolicyIDs is “acp1URI” i.e. the access control policy acp1 will be applied.

· Step 2: The Hosting CSE accordingly creates the <semanticDescriptor> resource (referred to as sd1).

· Assume its URI is sd1URI.

· Step 3: The Hosting CSE sends a response to Originator to inform it if Step 2 is successfully completed.

· Step 4: Bases don the SD Original Triple contained in the descriptor attribute of sd1, the Hosting CSE generates SD Relationship Triples.

· In our example, there is only one SD Original Triple, as shown below:
@PREFIX

sd:

<http://semanticDescriptor.org>.

sd:sd1

rdf:type

sd:semanticDescriptor .

sd:tripleInstance11

rdf:type

sd:atomDescription .

sd:tripleInstance11

sd:describedIn
sd:sd1 .

sd:tripleInstnace11

sd:hasSubject

sd:S1 .

sd:tripleInstnace11

sd:hasProperty
sd:P1 .

sd:tripleInstnace11

sd:hasObject

sd:O1 .

· Step 5:, The Hosting CSE will generate the ACP-SD Binding Triples

· In our example, since sd1’s accessControlPolicyIDs attribute points to acp1 resource as shown below:
@PREFIX

sd:

<http://semanticDescriptor.org>.

@PREFIX

acp:

<http://accessControlPolicy.org>.

acp:acp1

rdf:type

acp:accessControlPolicy .

sd:sd1

rdf:type

sd:semanticDescriptor .

acp:acp1

acp:appliedTo
sd:sd1 .

· Step 6: The Hosting CSE sends a SPARQL request to the SGS to store these SD Relationship Triples and ACP-SD Binding Triples to the SGS.

· Step 7: The SGS processes the SPARQL request and store corresponding SD Relationship Triples and ACP-SD Binding Triples in the SGS.

· Step 8: The SGS sends a response message to the Hosting CSE to inform it if the SPARQL request in Step 6 is successfully executed.

Note:
If the <semanticDescriptor> resource being created in Step 2 does not have accessControlPolicyIDs attribute, the accessControlPolicyIDs attribute of the parent resource may be used or system default access privileges may be applied. The new ACP-SD Binding Triples will also be generated using either the parent resource’s accessControlPolicyIDs attribute or based on the default privileges.

[image: image11.emf]Hosting CSE Originator SGS

1. Create <semanticDescriptor> Resource

2. Create <semanticDescriptor> Resource and SD Original Triples

3. Response

6. SPARQL request to store SD Original Triples, SD

Relationship Triples, ACP-SD Binding Triples

8. Response

7. Process SPARQL request and

store all triples

4. Generate SD Relationship Triples.

5. Generate ACP-SD Binding Triples.

Figure 7.2.X.5.4.1-1: Procedure for creating SD relationship triples and ACP-SD binding triples

7.2.X.5.5 Procedure for updating ACP-SD binding triples in SGS

Figure 7.2.X.5.5-1 shows the procedure for updating ACP-SD Binding Triples when the accessControlPolicyIDs attribute of a <semanticDescriptor> resource is updated. For example, assume the sd1 resource created earlier have its accessControlPolicyIDs changed from acp1 to acp2; with the ACP Triples for the resource acp2 as follows:

@PREFIX
acp:

<http://accessControlPolicy.org>.

acp:acp2

rdf:type

acp:accessControlPolicy .

acp:acp2

acp:hasACPRule

acp:acr21 .

acp:acr21

rdf:type

acp:accessControlRule .

acp:acr21

acp:hasACOriginator
"AE-ID-2" .

acp:acr21

acp:hasACOperations
"RETRIEVE" .

The following steps shall be performed:

· Step 1: The Originator sends a request to update the resource sd1’s accessControlPolicyIDs from the URI of the resource acp1 to the URI of the resource acp2. The URI of the resource acp2 (i.e. acp2URI) is contained in this request. The URI of the resource sd1 (i.e. sd1URI) is also contained in this request.

· Step 2: The Hosting CSE checks access rights. If it is allowed, the Hosting CSE updates sd1’s accessControlPolicyIDs with acp2’s URI given in Step 1.

· Step 3: The Hosting CSE sends a response back to the Originator to inform it if the request in Step 1 is successful or not.

· Step 4: Since the sd1’s accessControlPolicyIDs is changed, the Hosting CSE generates a new ACP-SD Binding Triple (“acp:acp2 acp:appliedTo sd:sd1”) to reflect this change. This new ACP-SD Binding Triple will replace the old ACP-SD Binding Triple (i.e. “acp:acp1 acp:appliedTo sd:sd1”)

(new ACP-SD Binding Triple) acp:acp2
acp:appliedTo

sd:sd1

(old ACP-SD Binding Triple) acp:acp1
acp:appliedTo

sd:sd1

· Step 5: The Hosting CSE sends an SPARQL request to replace the old ACP-SD Binding Triple in the SGS with the new ACP-SD Binding Triple as shown in above Step 4. This SPARQL request for this example is shown below:

@PREFIX
acp:
<http://accessControlPolicy.org> .

@PREFIX
sd:
<http:semanticDescriptor.org> .

DELETE

{ ?acp
acp:appliedTo sd:sd1 }

WHERE

{

?acp

acp:appliedTo sd:sd1

}

INSERT DATA

{ acp:acp2 acp:appliedTo
sd:sd1 . }

· Step 6: The SGS processes the SPARQL request and updates the specified ACP-SD Binding Triples in Step 5.

· Step 7: The SGS sends a response to the Hosting CSE to inform it if the SPARQL request in Step 5 is successfully performed.

Note:

If the accessControlPolicyIDs attribute of the <semanticDescriptor> resource was empty to start with, its parent resource’s accessControlPolicyIDs may be enforced. The hosting CSE will apply this step based on updates to the accessControlPolicyIDs attribute of the parent resource.

[image: image12.emf]Hosting CSE Originator SGS

1. Update

accessControlPolicyIDs

for

<semanticDescriptor>

2. Update the accessControlPolicyIDs attribute

with the new value

3. Response

7. Response

6. Process the SPARQL request, update

ACP-SD Binding Triples

4. Generate new ACP-SD Binding Triples to associate the

<semanticDescriptor> resource with new acp

5. SPARQL request to update ACP-SD Binding Triples

Figure 7.2.X.5.5-1: Procedure for updating ACP-SD binding triples in the SGS
7.2.X.5.6 Procedure for updating SD relationship triples in SGS

Figure 7.2.X.5.6-1 shows the procedure for updating SD Relationship Triples when the descriptor attribute of a <semanticDescriptor> resource is changed. For example, the descriptor of the sd1 resource created earlier is changed to have two SD Original Triples (Old one – “S1 P1 O1”; New one – “S2 P2 O2”).

The following steps shall be performed:

· Step 1: The Originator sends a request to update the resource sd1’s descriptor to include one new SD Original Triple (i.e. “S2 P2 O2”). The URI of the resource sd1 (i.e. sd1URI) is also contained in this request.

· Step 2: The Hosting CSE checks access rights. If it is allowed, the Hosting CSE updates sd1’s descriptor attribute by adding one new SD Original Triple (i.e. “S2 P2 O2”).

· Step 3: The Hosting CSE sends a response back to the Originator to inform it if the request in Step 1 is successful or not.

· Step 4: The Hosting CSE generates new SD Relationship Triples below to reflect this change.

· In our example:

sd:tripleInstance12
rdf:type

sd:atomDescription .

sd:tripleInstance12

sd:describedIn
sd:sd1 .

sd:tripleInstance12

sd:hasSubject

sd:S2 .

sd:tripleInstance12

sd:hasProperty
sd:P2 .

sd:tripleInstance12

sd:hasObject

sd:O2 .

· Step 5: The Hosting CSE sends an SPARQL request to replace old SD Relationship Triples and/or add new SD Relationship Triple in the SGS with the new SD Relationship Triple generated in above Step 4. This SPARQL request for this example is shown below:

@PREFIX
acp:
<http://accessControlPolicy.org> .

@PREFIX
sd:

<http://semanticDescriptor.org> .

INSERT DATA

{ sd:tripleInstance12
rdf:type

sd:atomDescription .

 sd:tripleInstance12
sd:describedIn
sd:sd1 .

 sd:tripleInstance12
sd:hasSubject

sd:S2 .

 sd:tripleInstance12
sd:hasProperty
sd:P2 .

 sd:tripleInstance12
sd:hasObject

sd:O2 .

}

· Step 6: The SGS processes the SPARQL request and adds new SD Relationship Triples

· Step 7: The SGS sends a response to the Hosting CSE to inform it if the SPARQL request in Step 5 is successfully performed.

Notes:

If an old SD Original Triple is removed or updated by a new SD Original Triple, the corresponding SD Relationship Triples related to this old SD Original Triple will be removed from the SGS.

The update of triples in the descriptor attribute may be performed also by targeting the semanticOpExec attribute of the <semanticDescriptor> parent resource with a SPARQL query; when this SPARQL query is executed, new SD Original Triples may be added to the descriptor attribute of the <semanticDescriptor> resource. In this case Steps 4 – 7 will be performed. More specifically, SPARQL Update consists of DELETE and ADD operations, so the SD relationship triples associated with the old original triples will be deleted, and the new ones stored.

[image: image13.emf]Hosting CSE Originator SGS

1. Update

descriptor

attribute of a

<semanticDescriptor> resource

2. Update the descriptor attribute and SD

Original triples

3. Response

7. Response

6. Process the SPARQL request, update

triples

4. Generate new SD Relationship Triples

5. SPARQL request to update SD Original triples, SD

Relationship Triples

Figure 7.2.X.5.6-1: Procedure for updating SD relationship triples in the SGS
7.2.X.5.7 Procedure for deleting SD relationship triples and ACP-SD binding triples in SGS

Figure 7.2.X.5.7-1 shows a procedure for deleting SD Relationship Triples and ACP-SD Binding Triples from the SGS, which could be triggered by the Initiating AE/CSE or the Hosting CSE to delete a <semanticDescriptor> resource. For example, the sd1 resource created earlier is removed.

The following steps shall be performed.

· Step 1: The Originator sends “Delete <semanticDescriptor> Resource” to the Hosting CSE to delete sd1 resource. The URI of sd1 resource (i.e. sd1URI) is contained in this request.

· Step 2: The Hosting CSE deletes sd1 resource locally.

· Step 3: The Hosting CSE sends a response to the Originator to inform it if the deletion request in Step 1 is successful.

· Step 4: The Hosting CSE sends an SPARQL request to the SGS to remove SD Relationship Triples and ACP-SD Binding Triples related to sd1 resource. The SPARQL will look like:

@PREFIX
acp:
<http://accessControlPolicy.org>.

@PREFIX
sd:
<http:semanticDescriptor.org> .

DELETE

{ ?sd
?p
?o

 ?tripleInstance
 ?p1
?o1

 ?acp
acp:AppliedTo
?sd

}

WHERE

{

?sd
?p
?o.

?tripleInstance
 ?p1
?o1.

?tripleInstance
sd:describedIn
?sd .

?acp
acp:AppliedTo
?sd

FILTER (?sd = sd:sd1)

}

· Step 5: The SGS processes the SPARQL request in Step 4 and removes corresponding SD Relationship Triples and ACP-SD Binding Triples.

· Step 6: The SGS sends a response to the Hosting CSE to inform it if the SPARQL request in Step 4 is successfully performed.

Note:

Steps 4 – 6 will also be performed if a SPARQL query targeting the semanticOpExec attribute of a <semanticDescriptor> resource results in the deletion of existing SD Original Triples.

[image: image14.emf]Hosting CSE Originator SGS

1. Delete <semanticDescriptor> Resource

2. Delete <semanticDescriptor>Resource

3. Response

6. Response

5. Process the SPARQL request and

remove triples

4. SPARQL request to remove SD Original Triples, SD

Relationship Triple and ACP-SD Binding Triples

Figure 7.2.X.5.7-1: Procedure for deleting SD relationship triples and ACP-SD binding triples from the SGS

-----------------------End of change 2---
Access Control Ontology

@

prefix rdf

:

<

http

://

www

.

w

3

.

org

/

1999

/

02

/

22

-

rdf

-

syntax

-

ns

#>

.

@

prefix rdfs

:

<

http

://

www

.

w

3

.

org

/

2000

/

01

/

rdf

-

schema

#>

.

@

prefix xsd

:

<

http

://

www

.

w

3

.

org

/

2001

/

XMLSchema

#>

.

@

prefix acp

:

<

http

://

accessControlPolicy

.

org

/

>

.

@

prefix ex

:

<

http

://

example

.

org

/

>

.

@

prefix m

2

m

:

<

http

://

oneM

2

M

.

org

/

>

.

acp

:

accessControlPolicy rdf

:

type rdfs

:

Class

.

acp

:

accessControlRule rdf

:

type rdfs

:

Class

.

acp

:

hasACPRule

rdf

:

type

rdf

:

Property

;

rdfs

:

domain

acp

:

accessControlPolicy

;

rdfs

:

range

acp

:

accessControlRule

.

acp

:

hasACOriginator

rdf

:

type

rdf

:

Property

;

rdfs

:

domain

acp

:

accessControlRule

;

rdfs

:

range

m

2

m

:

AE

_

ID

,

m

2

m

:

CSE

_

ID

,

xsd

:

anyURI

.

acp

:

hasACContexts

rdf

:

type

rdf

:

Property

;

rdfs

:

domain

acp

:

accessControlRule

;

rdfs

:

range

m

2

m

:

ipv

4

,

m

2

m

:

ipv

6

,

m

2

m

:

contryCode

,

rdfs

:

Literal

.

acp

:

hasACOperations

rdf

:

type

rdf

:

Property

;

rdfs

:

domain

acp

:

accessControlRule

;

rdfs

:

range

m

2

m

:

accessControlOperations

,

rdfs

:

Literal

.

acp

:

appliedTo

rdf

:

type

rdf

:

property

;

rdfs

:

domain

acp

:

accessControlPolicy

;

rdfs

:

range

xsd

:

anyURI

,

rdfs

:

Literal

,

m

2

m

:

ID

,

ex

:

resourceGroup

.

Access Control Triples

© 2017 oneM2M Partners

Page 1 (of 2)

