-

[image: image1.png]

	oneM2M
Technical Specification

	Document Number
	oneM2M-TS-0030-V-0.2.0

	Document Name:
	Generic Interworking

	Date:
	2017-April-03

	Abstract:
	The present document specifies Generinc Interworking of the oneM2M System with external systems (e.g. Area Networks containing non-oneM2M devices) that can be described with ontologies that are compliant with oneM2M’s Base Ontology in TS-0012.

	Template Version: 08 September 2015 (Dot not modify)

This Specification is provided for future development work within oneM2M only. The Partners accept no liability for any use of this Specification.
The present document has not been subject to any approval process by the oneM2M Partners Type 1. Published oneM2M specifications and reports for implementation should be obtained via the oneM2M Partners' Publications Offices.
About oneM2M

The purpose and goal of oneM2M is to develop technical specifications which address the need for a common M2M Service Layer that can be readily embedded within various hardware and software, and relied upon to connect the myriad of devices in the field with M2M application servers worldwide.

More information about oneM2M may be found at: http//www.oneM2M.org

Copyright Notification

© 2015, oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSTDI, TTA, TTC).

All rights reserved.
The copyright extends to reproduction in all media.

Notice of Disclaimer & Limitation of Liability

The information provided in this document is directed solely to professionals who have the appropriate degree of experience to understand and interpret its contents in accordance with generally accepted engineering or other professional standards and applicable regulations. No recommendation as to products or vendors is made or should be implied.

NO REPRESENTATION OR WARRANTY IS MADE THAT THE INFORMATION IS TECHNICALLY ACCURATE OR SUFFICIENT OR CONFORMS TO ANY STATUTE, GOVERNMENTAL RULE OR REGULATION, AND FURTHER, NO REPRESENTATION OR WARRANTY IS MADE OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR AGAINST INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS. NO oneM2M PARTNER TYPE 1 SHALL BE LIABLE, BEYOND THE AMOUNT OF ANY SUM RECEIVED IN PAYMENT BY THAT PARTNER FOR THIS DOCUMENT, WITH RESPECT TO ANY CLAIM, AND IN NO EVENT SHALL oneM2M BE LIABLE FOR LOST PROFITS OR OTHER INCIDENTAL OR CONSEQUENTIAL DAMAGES. oneM2M EXPRESSLY ADVISES ANY AND ALL USE OF OR RELIANCE UPON THIS INFORMATION PROVIDED IN THIS DOCUMENT IS AT THE RISK OF THE USER.

Contents

3Contents

1
Scope
5
2
References
5
2.1
Normative references
5
2.2
Informative references
5
3
Definitions, symbols and abbreviations
6
3.1
Definitions
6
3.2
Symbols
6
3.3
Abbreviations
6
3.4
Acronyms
7
4
Conventions
7
5
Introduction to Generic Interworking (informative)
7
5.1
Basic concepts of Generic Interworking
7
5.1.1
Generic interworking vs. Specific interworking
7
5.1.2
Use of ontologies for Generic interworking with Area Networks
7
5.2
Using Generic Interworking with Device Abstraction
8
5.2.1
General description
8
5.2.2
An example, involving ZigBee, HAIM and SAREF
9
5.3
Priciples of data flows
9
5.3.1
Preconditions on the communicating entity
9
5.3.2
Data flows for communicating with the IPE using DataPoints of a Service
10
5.3.3
Data flows for communicating with the IPE using Operations of a Service
12
6
Functional specification of communication with the Generic interworking IPE
14
6.1
oneM2M resources for IPE communication
14
6.1.1
General design principles (informative)
14
6.1.2
Resource structure for modelling devices, sub-devices, services and operations
14
6.2
Specification of the IPE for Generic interworking
16
6.2.1
Initialization of the Generic interworking IPE
16
6.2.1.1
General functionality of a Generic interworking IPE
16
6.2.1.2
Initialization sequence of a Generic interworking IPE
16
6.2.2
Interworked Device and Service discovery
17
6.2.2.1
General handling of Interworked Device discovery
17
6.2.2.2
Creation of resources for the Proxied Device
17
6.2.2.3
Creation of resources for sub-devices
18
6.2.2.4
Creation of resources for Services of devices and sub-devices of a device
19
6.2.2.3
Creation of resources for operations of a service of a device
20
6.2.2.3.1
Introduction
20
6.2.2.3.2
Creation of resources for operation invocation
20
6.2.2.3.3
Creation of resources for returning operation results
21
6.2.3
Handling of DataPoints by the IPE
21
6.2.4
Handling of Operations by the IPE
22
6.2.5
Removing of resources for Proxied Devices.
23
7
Rules for creation of XSDs from ontologies
23
7.1
General information
23
7.1.1
yyy
23
7.1
XSD creation rules
23
7.2.1
Creation of XSDs for sub-classes of Base Ontology class: Service
23
Annex <A> (Normative): FlexContainer specializations for Generic interworking for Release 2 (outdated)
24
A.1
Introduction
24
A.2
Resource Type genericInterworkingService
24
A.3
Resource Type genericInterworkingOperationInstance
27
Annex <y>: Bibliography
32
History
32

1
Scope

The present document specifies Generinc Interworking of the oneM2M System with external systems (e.g. Area Networks containing non-oneM2M devices) that can be described with ontologies that are compliant with oneM2M’s Base Ontology, specified in TS-0012 [3].
In oneM2M Release 2 the specification for Generic Interworking had been contained in sections 8 and 9 of TS-0012-v2.0.0 [4].
2
References

The following text block applies.

References are either specific (identified by date of publication and/or edition number or version number) or non‑specific. For specific references,only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.

2.1
Normative references

The following referenced documents are necessary for the application of the present document.

[1]
oneM2M TS-0011: "Common Terminology".

[2]
oneM2M TS-0001: "Functional Architecture".

[3]
oneM2M TS-0012: " Base Ontology".

[4]
oneM2M TS-0012-v2.0.0: " Base Ontology".
[5]
oneM2M TS-0023: " Home Appliances Information Model and Mapping".
[6]
oneM2M TS-0014: "LWM2M Interworking"
[7]
oneM2M TS-0024: "OIC Interworking"
2.2
Informative references
Clause 2.2 shall only contain informative references which are cited in the document itself.

The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.
·
[i.1]
oneM2M Drafting Rules (http://www.onem2m.org/images/files/oneM2M-Drafting-Rules.pdf)
[i.2]
Smart Appliances REFerence (SAREF) ontology (http://ontology.tno.nl/saref)
3
Definitions, symbols and abbreviations

Delete from the above heading the word(s) which is/are not applicable.
3.1
Definitions

For the purposes of the present document, the terms and definitions given in oneM2M TS-0011 [1], TS-0012 [3] and the following apply:
Abstract Device: virtual Device (i.e. a set of oneM2M resources together with an IPE) that allows a communicating entity to communicate with an Interworked Device, using an Abstract Information Model, without the need to know the Device Information Model of that Interworked Device.
Abstract Information Model: Information Model of common functionalities abstracted from a set of Device Information Models (see [1])
Abstraction: process of mapping between a set of Device Information Models and an Abstract Information Model according to a specified set of rules (see [1])
Abstraction Application Entity: A specialized AE that communicates with an IPE and facilitates Abstraction by providing Services that translate between the Abstract Information Model and the Device Information Model of the IPE.
Communicating Entity: The oneM2M entity (usually an AE) that communicates with the IPE for the purpose of sending / receiving data from the Interworked Device.
Device Information Model: Information Model of the native protocol (e.g. ZigBee) for the physical device (see [1])

GenericInterworking: generic interworking allows interworking with many types of non- oneM2M Area Networks and Devices that are described in the form of a oneM2M compliant ontology which is derived from the oneM2M Base Ontology (see [3])
NOTE:
Generic Interworking supports the interworking variant "full mapping of the semantic of the non-oneM2M data model to Mca" as indicated in clause F.2 of oneM2M TS-0001 [2].

Interworked Device: non-oneM2M device (NoDN) for which communication with oneM2M entities can be achieved via an Interworking Proxy Application Entity (IPE) (see [3])
Interworking Proxy Application Entity: A specialized AE that facititates interworking between Non-oneM2M Nodes (NoDN) and the oneM2M System. An IPE maps data of the NoDN into oneM2M resources (Interworked Devices). It invokes operations in the NoDN when the related oneM2M resources are modified and modifies oneM2M resources based on the output of NoDN operations. (see [1])
Proxied Device: virtual Device (i.e. a set of oneM2M resources together with an IPE) that represents the Interworked Device in the oneM2M System (see [3])
3.2
Symbols

Clause numbering depends on applicability.

For the purposes of the present document, the [following] symbols [given in ... and the following] apply:

Symbol format

<symbol>
<Explanation>

<2nd symbol>
<2nd Explanation>

<3rd symbol>
<3rd Explanation>

3.3
Abbreviations

For the purposes of the present document, the abbreviations given in TS-0011 [1], TS-0012 [3] and the following apply:

CE
Communicating Entity

IPE
Interworking Proxy Application Entity (see [1])

3.4
Acronyms

Acronyms should be ordered alphabetically.

Clause numbering depends on applicability.

For the purposes of the present document, the [following] abbreviations [given in ... and the following] apply:

Acronym format

<ACRONYM1>
<Explanation>

<ACRONYM2>
<Explanation>

<ACRONYM3>
<Explanation>

4
Conventions

The key words “Shall”, ”Shall not”, “May”, ”Need not”, “Should”, ”Should not” in this document are to be interpreted as described in the oneM2M Drafting Rules [i.1]
5
Introduction to Generic Interworking (informative)
5.1
Basic concepts of Generic Interworking

5.1.1
Generic interworking vs. Specific interworking
oneM2M supports interworking with several specific non-oneM2M solutions. Examples are: LWM2M Interworking (TS-0014 [6]) or OIC Interworking (TS-0024 [7]). While these examples refer to specific technologies oneM2M also allows to specify only data models – e.g. in TS-0023: "Home Appliances Information Model and Mapping" [5] – which does not assume that a specific technology is used. The data model in TS-0023 could e.g. be implemented with ‘native’ oneM2M entities like ASNs, ADNs and MNs or it could just as well be implemented in a non-oneM2M solution that is interworked with oneM2M via an Interworking Proxy Application Entity (IPE).
Generic Interworking is taking an approach similar to TS-0023, however in this case the data model is not specified but can be provided in an ontology. That ontology needs to be formally described (e.g. in OWL format).
Generic Interworking can be used in cases where oneM2M does not provide a standardized datamodel but still interworking is desired. Such a situation may arise if e.g. a company wants to publish their proprietary datamodel for interworking purposes but does not wish to reveal their proprietary technology (radio technology, communication protocol..) for data transmission.
For Generic Interworking the ontology that describes the data model of the interworked technology needs to be provided to the oneM2M solution. This ontology enables the IPE to create specific resourcetypes – based on dynamically created XSDs, derived from the ontology – and oneM2M resources for communication of oneM2M communicating entities with the IPE. The IPE provides the translation into the external technology.

5.1.2
Use of ontologies for Generic interworking with Area Networks

Interworking with Area Networks is accomplished in oneM2M through functionality provided by Interworking Proxy Entities (IPE).

[image: image2.emf]oneM2M compliant

Solution

Area Network

(e.g. KNX)

Interworked Devices (physical

devices) in the Area Network

Proxied Devices(oneM2M resources)

in the oneM2M System technology

Communicating

entity

REST

-

ful

Resource access

Inter

working

Proxy

Entity

Figure 1: Interworking

The IPE creates "proxied" devices as oneM2M Resources (e.g. AEs) in the oneM2M Solution that can be accessed by communicating entities (e.g. oneM2M Applications) in the usual way.

To accomplish the creation of proxied devices the IPE uses an ontology that describes the Device Information Model of the interworked Area Network and its entities (device types, their operations, etc.).
For example, in figure 1, an ontology that describes a KNX Area Network and its entities would be needed.

To achieve the flexibility for the IPE to create proxied devices for many different types of Area Networks each ontology that describes a specific Device Information Model needs to be derived from the Base Ontology that is specified in [3].
E.g. the OWL representation of an ontology that describes the Device Information Model of an Area Network of type "KNX" needs to:

a) contain an 'include' statement which includes Base Ontology;

b) the Class of "KNX Nodes" needs to be a subclass of the "Device" Class of oneM2M's Base Ontology;

c) the Class of "KNX Communication Objects" needs to be a subclass of the "Service" Class of the Base Ontology;

d) etc.

NOTE:
For the purpose of Generic interworking with Area Networks the Base Ontology is only used to describe type information and not for describing instances of these types. E.g. the Base Ontology describes the type "Device", but does not contain information about a specific device.
The Base Ontology therefore only contains Classes and Properties but not instances.

5.2
Using Generic Interworking with Device Abstraction
5.2.1
General description

As explained in section 5.1 it is the task of an IPE to interact via the Area Network with the Interworked Devices and to provide oneM2M resources (Proxied Devices) to the communicating entities for communication with the Interworked Devices. However these Proxied Devices still exhibit the native data model – the Device Information Model of the external technology of the device – and a communicating entity needs to know that native Device Information Model (e.g. ZigBee information model).
Device abstraction relieves a communicating entity that wants to communicate with an Interworked Device (e.g. a ZigBee device) from the need to know the native Device Information Model of that Interworked Device.

Additionally to providing interworking, the IPE may translate between the – technology specific – native Device Information Model and an Abstract Information Model, that is based on of common functionalities abstracted from a set of Device Information Models. Such Abstract Information Models can be provided by industry associations of a specific industry sector. An example of an Abstract Information Model, which is specified in oneM2M is the Home Appliance Information Model (HAIM), specified in TS-0023 [5].

As in the case of the IPE an Abstract Information Model can be described by an ontology and that ontology needs to be derived from the Base Ontology.

5.2.2
An example, involving ZigBee, HAIM and SAREF

The figure 2 below illustrates this situation for a light switch. In the example the physical implementation is a ZigBee device implementing a ZigBee Service “On/Off Cluster”. An IPE for ZigBee creates the interworking towards the ZigBee network. This device is abstracted as oneM2M device according to the Home Appliance Information Model (HAIM). In HAIM the corresponding Service is a “binary Switch”.
Both types of Services expose a Function “On Off Function” which is e.g. described in the SAREF ontology.

To turn the switch on SAREF defines an “On Command”.

The corresponding Service in HAIM is executed by setting an Input Datapoint called “powerState” to the binary value “TRUE”.

In Zigbee an operation (ZigBee command) needs to be invoked in the On/Off Cluster with an input parameter (ZigBee Command ID) equal to 0.

A VariableConversion can been specified in the ontology of the ZigBee Device Information Model that contains the rules how to convert a value of InputDataPoint “powerState” into a value of OperationInput “ZigBee Command ID”.

[image: image4.emf]Device

type_DD

hasService hasFunction

Operation

Input

“ID = 0”

exposes

Function

Function

“On Off Function”

Service

“On/Off Cluster”

Operation

“ZigBee

Command”

hasOperation

Command

“OnCommand”

hasCommand

hasInput

exposes

Command

Device

type_DA

hasFunction

Service

“binary Switch”

Input

DataPoint

“powerState

= TRUE”

hasService

exposes

Function

exposes

Command

hasInput

DataPoint

Variable

Conversion

hasConversion

ontology of the Device Information Model

(example ZigBee)

ontology of the Abstract Information Model

(example: HAIM)

convertsTo

Figure 2: ontologies relations

·
·
·

5.3
Priciples of data flows
5.3.1
Preconditions on the communicating entity
1) Any communicating entity, that wants to communicate with:

a. an interworked non-oneM2M device via the IPE needs to be subscribed to the <AE> resource of the IPE to get notified about resources for Proxied Device that are created by the IPE to represent interworked non-oneM2M devices that were discovered by the IPE.

b. a specific interworked non-oneM2M device via the IPE needs to be subscribed to the <flexContainer> or <AE> resource that had been created by the IPE to represent the interworked non-oneM2M device as Proxied Device.
c. a sub-device of a Proxied Device, represented by a <flexContainer> that is a child-resource of the Device’s <flexContainer> or <AE> resource the communicating entity needs also to be subscribed to that <flexContainer> child-resource.

2) The communicating entity needs also be subscribed to

a. the <flexContainer> resources, representing Services, that have been created by the IPE as child resourses of the resource of the Proxied Device. The attribute notificationContentType of the <subscription> needs to be set to "modified-attributes"
b. the <flexContainer> resources for the Operation invocation and, if the operation involves an answer, also to the <flexContainer> for the Operation result. The attribute notificationContentType of the <subscription> needs to be set to "all-attributes"
5.3.2
Data flows for communicating with the IPE using DataPoints of a Service
The following figures show the data flows for communicating with the IPE using DataPoints of a Service

[image: image5.emf]UPDATE

OutputDataPoint

customAttribute

of Service

<flexContainer>

UPDATE

InputDataPoint

customAttribute

of Service

<flexContainer>

IPE

Communicating

entity

Interworked

Device

translate input

CSE

NOTIFY

with changed

value of

InputDataPoint

Communication initiated by Communicating entity

Communication initiated by Interworked Device

translate output

Invoke Command

Invoke Command

NOTIFY

with changed

value of

OutputDataPoint

Figure 5: Data flow for an IPE involving dataPoints

· As a precondition the IPE and the communicating entity needs to be subscribed to the Service <flexContainer> with attribute notificationContentType of the <subscription> set to "modified-attributes"
When a communicating entity wants to invoke a command on the Interworked Device, using Datapoints of the related Service

· The communicating entity UPDATEs the corresponding <flexContainer> that represents the service with the new value for customAttribute of the InputDatapoint.

· The CSE subsequently NOTIFYes the IPE about the changed value for customAttribute of the InputDatapoint.

· The IPE invokes the command at the Interworked Device that sends the data of the InputDatapoint to the Interworked Device.

When the Interworked Device wants to invoke a command on the Interworked Device, using Datapoints of the related Service

· The Interworked Device invokes the command at the IPE that sends the data of the OutputDatapoint to the IPE.

· The IPE UPDATEs the corresponding <flexContainer> that represents the Service with the new value for customAttribute of the OutputDatapoint.

· The CSE subsequently NOTIFYes the communicating entity about the changed value for customAttribute of the OutputDatapoint.

5.3.3
Data flows for communicating with the IPE using Operations of a Service
The following figures show the data flows for communicating with the IPE using an Operation of a Service. It only shows the case where the communication is initiated by the communicating entity, The case where communication is initiated by the Interworked Device is analogous.

[image: image6.emf]UPDATE Operation result

<flexContainer> with

original OperationInput

and potentially

with OperationOutput

Command response

Invoke Command

UPDATE Operation

invocation

<flexContainer>

potentially

with OperationInput

IPE

Communicating

entity

Interworked

Device

translate input

Waiting for

answer

for configurable

maximum time

translate output

CSE

If operation involves an answer

NOTIFY

Communication initiated by Communicating entity

NOTIFY

Figure 6: Data flow for a translating entity involving operations
when initiated by a communicating entity
Another form of exposing Commands are operations. Operations allow grouping of input- and output parameters into a single transaction between the communicating entity and the target entity. It is permissible that no OperationInput and/or OperationOutput data exist for an Operation.

· As a precondition the IPE and the communicating entity needs to be subscribed to the <flexContainer> for the Operation invocation and, if the operation involves an answer, also to the <flexContainer> for the Operation result. The attribute notificationContentType of the <subscription> needs to be set to "all-attributes"
· When the communicating entity invokes an operation in the target entity it UPDATEs the <flexContainer> resource for the Operation invocation, potentially with OperationInput values for the related customAttributes. If the operation involves no OperationInput the UPDATE request contains no customAttributes
· The CSE subsequently NOTIFYes the IPE about the updated <flexContainer> resource for the Operation invocation, potetially with OperationInput values for the related customAttributes.
· The IPE invokes the command at the Interworked Device.

If the Operation involves an answer from the Interworked Device ten

· The Interworked Device returns the answer on the command to the IPE. The IPE needs to wait for that answer for a configurable maximum time that may depend on the technology of the interworked non-oneM2M solution.

· The IPE UPDATEs the corresponding <flexContainer> that represents the Operation result, potentially with OperationOutput values for the related customAttributes.
· The CSE subsequently NOTIFYes the communicating entity about the update of the <flexContainer> that represents the Operation result.

6
Functional specification of communication with the Generic interworking IPE
6.1
oneM2M resources for IPE communication

6.1.1
General design principles
For Generic interworking the oneM2M resource types <AE> and specializations of <flexContainer> are intended to hold data that can be used for data exchange with the IPE.

For Generic interworking a convention is needed how the IPE uses these resources to communicate with other oneM2M entities. This is described in the subsequent clauses.

Resources for RESTful communication style vs. procedure call (RPC) style:

A Generic interworking IPE needs to be able to communicate with systems that implement some form of RESTful communication style as well as other systems that communicate in a procedure call (RPC) style.

For RESTful systems the use of Input- or OutputDataPoints may be more appropriate.
On the other hand procedure calls that involve stateful transactions between the IPE and the Interworked Device can be better modelled using Operations (and their OperationInputs/-Outputs).

·
·

6.1.2
Resource structure for modelling devices, sub-devices, services and operations
Figure 4 provides an overview of parent-child resource relationships that are used for communication with AEs (in particular the IPE) in the context of Generic interworking.
It involves the oneM2M resource types:

· <AE> - for the Interworking Proxy Entity (IPE)

· <flexContainer> - child- resource of <AE> of IPE

or
· <AE> - for an Interworked Device

Note: An IPE may, instead of creating <flexContainer>resources for Interworked Devices, also choose to represent them <AE>s. This option should be chosen if the interworked devices need to be identifiable for the purpose of service subscription, charging, differentiation during access control enforcement, authentication, App-ID registry, etc.

· <flexContainer> - for a sub-device
· <node> for the node of a Device or sub-device
· <flexContainer> - for a Service of a Device or sub-device.

· <flexContainer> - for an Operation (invocation) of a Service.

· <flexContainer> - for an Operation (result) of a Service.

[image: image7.emf]Resources for Generic Interworking

Not shown: <semanticDescriptor>, <subscription>

<flexContainer>

<flexContainer>

<flexCont>

<flexCont>

<flexCont>

<flexCont>

OutputDataPoint

OperationOutput

OperationInput

CSEBase

<flexCont>

OutputDataPoint

Service

<flexCont>

OperationInput

Operation

(invocation)

OperationInput

<flexCont>

<AE>

IPE

<container>

<contentInstance>

<contentInstance>

<contentInstance>

nodeLink

XSDs of

classes

XSD storage

<flexContainer>

Sub-device

Operation

(result)

OperationInput

OperationOutput

InputDataPoint

InputDataPoint

<node>

node of

sub-device

nodeLink

<flexContainer>

<flexContainer>

<flexContainer>

Device

node of

device

<node>

node of

IPE

<node>

nodeLink

Figure 4: Resources used in the context of Generic interworking when
Interworked Devices are represented as <flexContainer>s

[image: image8.emf]<flexContainer>

<flexContainer>

<flexCont>

<flexCont>

<flexCont>

<flexCont>

<AE>

<AE>

OutputDataPoint

OperationOutput

OperationInput

CSEBase

<AE>

<flexCont>

OutputDataPoint

Service

<flexCont>

OperationInput

Operation

(invocation)

OperationInput

<flexCont>

Device

(customAttributes)

<AE>

IPE

<node>

<container>

<contentInstance>

<contentInstance>

<contentInstance>

nodeLink

XSDs of

classes

XSD storage

<flexContainer>

Sub-device

Operation

(result)

OperationInput

OperationOutput

InputDataPoint

InputDataPoint

node of

device

Resources for Generic Interworking

Not shown: <semanticDescriptor>, <subscription>

<node>

node of

sub-device

nodeLink

Figure 4: Resources used in the context of Generic interworking
when Interworked Devices are represented as <AE>s
Parent-child relationships:

· An <AE> resource, required for representing an Interworked Device is created by the generic interworking IPE as child-resources of the IPE’s CSE
· <flexContainer> resources, for representing sub-devices are created as child-resources of the <AE> resource that represents the device to which the sub-devices belong.
· <flexContainer> resources, for representing Services are created as child-resources of the <AE> or <flexContainer> resource that represents the device or sub-device to which the Service belongs.
Input- or OutputDataPoints are modelled as customAttributes
· <flexContainer> resources, for representing Operations invocations are created as child-resources of the <flexContainer> resource that represents the Service to which the Operation belongs.
OperationInputs are modelled as customAttributes
· <flexContainer> resources, for representing Operations results are created as child-resources of the <flexContainer> resource that represents the Operations invocation to which the Operation result belongs.
OperationInputs and –Outputs are modelled as customAttributes
· All of the above can contain a <semanticDescriptor> as child resource and may contain <subscription> resources.
Link relationships:

· The <AE>s and <flexContainer> resources, representing Interworked Devices / sub-devices may have nodeLink attributes to their respective <node> resources
Note: If Interworked Devices / sub-devices are resident on the same node their nodeLink attributes reference the same <node> resource

·
·
·
·
·
·
·
·
·

·
·
·
·
·
·
·

·
·
·
·
·
·
·
·

·
·
·
·

·
·
·

·
·

·
·

·
·

·
·
·
·

·
·
·

·
·
·
·
·

·

6.2
Specification of the IPE for Generic interworking
6.2.1
Initialization of the Generic interworking IPE
6.2.1.1
General functionality of a Generic interworking IPE

Generic interworking Interworking supports the interworking variant with full mapping of the semantic of the non-oneM2M data model to Mca as indicated in clause F.2 of oneM2M TS-0001 [2].

The non-oneM2M data model is described in the form of a oneM2M compliant ontology which is derived (as sub-classes and sub-properties) from the oneM2M Base Ontology and may be available in a formal description language (e.g. OWL).

A oneM2M compliant ontology can describe an external technology (e.g. ZigBee) for which a standardized interworking with oneM2M is required or it could describe a model of consensus that is shared by large industry sector (like SAREF, referenced in [i.2]) that facilitates the matching of existing assets (standards/protocols/datamodels/etc.). An IPE that provides Generic interworking with a M2M Area Network shall instantiate the classes, object- and data properties of the ontology describing the non-oneM2M data model of the M2MArea Network as oneM2M resources, according to the instantiation described below.

·
In the following sections it us assumed that the oneM2M compliant ontology describing the non-oneM2M data model is available as a formal description (e.g. in OWL format). The location (URI) where the formal description of the ontology can be retrieved by the IPE needs to be configured in the IPE – either preconfigured or through administrative means.
6.2.1.2
Initialization sequence of a Generic interworking IPE
After registration of the IPE’s <AE> resource the IPE shall do the following:
1) The IPE shall retrieve the formal description of the ontology and parse it.
2) The IPE shall create a child-resource of its <AE> resource of type <container>, subsequently called ‘XSD-storage’
This <container>is will hold the XSDs that are needed for the specialized [flexContainer]s that are used in the oneM2M resource representation of entities of the non-oneM2M interworked solution.
· The resource name of the <container> resource shall be identical to the name of the ontology, omitting “http://” and changing each “/” (slash) into “_” (underscore).
· The attribute ontologyRef of that <container>shall contain the reference (URI) to the used ontology
3) For each class of the ontology the IPE shall create a resource of type <contentInstance> as child resource of this <container>. That <contentInstance> shall hold the XSD for instantiating the class as [flexContainer] specialization in oneM2M.
The specification how the IPE shall create XSDs from an ontology is described in section 8.
· The resource name of each <contentInstance> resource shall be identical to the class name of the ontology, followed by “.xsd”.
· The attribute ontologyRef of that < contentInstance >shall contain the reference (URI) to the class of the ontology
Example:
For ontology ‘http://www.someOrganization.org/someOntology’ the IPE would create a <container> resource with resource name “www.someOrganization.org_someOntology”.
Its ontologyRef would contain the URI: ‘http://www.someOrganization.org/someOntology’
If the ontology defines a class ‘http://www.someOrganization.org/someOntology#someService’ then the IPE needs to create a <contentInstance> as child rsource of that that “www.someOrganization.org_someOntology” <container>. The resource name of that <contentInstance> would be “someService.xsd”.
Its ontologyRef would contain the URI: ‘http://www.someOrganization.org/someOntology#someService’
4) If supported by the technology of the non-oneM2M solution the IPE shall discover the devices in the non-oneM2M solution, including their supported services. Alternatively, information about the devices in the the non-oneM2M solution may be manually configured in the IPE.

6.2.2
Interworked Device and Service discovery

6.2.2.1
General handling of Interworked Device discovery
If supported by the technology of the non-oneM2M solution the IPE shall continue to discover the devices in the non-oneM2M solution.
If supported by the technology of the non-oneM2M solution the IPE shall continue to discover services that are provided by the devices in the non-oneM2M solution.
6.2.2.2
Creation of resources for the Proxied Device

For each discovered Interworked Device in the non-oneM2M solution the IPE shall:

either:

· register an <AE> resource with the IPE's hosting CSE. That <AE> resource represents the non-oneM2M Interworked Device in the oneM2M System.
or

· in the case the IPE provides interworking with only a single Interworked Device, the IPE may use it's own <AE> resource to represent the non-oneM2M Interworked Device in the oneM2M System.
· Note 1: The <AE> resource that represents the non-oneM2M Interworked Device in the oneM2M System, including the <AE>’s child resources, together with the IPE functionality to execute CRUDN operations on these resources is called ‘Proxied Device’ (see definitions section):
· If the IPE registers individual <AE>s for Proxied Devices the following rules apply:
· As the IPE registers the <AE> as a proxy for the Interworked Device it should either
· not create a Security Association Establishment procedure, or
· create a Security Association Establishment procedure between the Node on which the IPE <AE> is hosted and the Registrar CSE. In this case only the Node from which the registration request is received at the Registrar CSE is authenticated. Thus the IPE, which handles communication for all the Proxied Devices, can communicate over either a single Security Association or over individual Security Associations for each Proxied Device.
Note 2: The Node authentication as described above (see also TS-0001 [1] section 10.2.2.2) is applicable as the IPE performs AE functionality for all its Proxied Devices, as if their (virtual) individual AEs were resident on the same node as the IPE AE.
· The APP-ID of the <AE> shall be the APP-ID of the IPE.

· It is recommended that the AE-ID of an <AE> resource that represents an Interworked Device should be derived and resemble an identifier of the Interworked Device in the non-oneM2M solution.
As the formats of such identifiers are very diverse no general rule for that derivation can be given.

· It is recommended that the resourceName of an <AE> resource that represents an Interworked Device should be derived and resemble the address of the Interworked Device in the non-oneM2M solution.
As the formats of such addresses are very diverse no general rule for that derivation can be given.

· The attribute ontologyRef shall contain the reference (URI) to the class of the ontology that specifies the type of the Interworked Device.
· The labels attribute of may contain the following key- vale pairs:
5) Key: “Iwked-Technology” Value: the name of the ontology, omitting “http://” and changing each “/” (slash) into “_” (underscore).
Key: “Iwked-Entity-Type” Value: Class name of the class in the ontology (i.e. a sub-class of class InterworkedDevice of the oneM2M base ontology) that specifies the type of the Interworked Device
· The IPE may create a <semanticDescriptor>child-resource for the <AE>.
· 6.2.2.3
Creation of resources for sub-devices
· A Device can consist of (i.e. be composed) of several (sub-) Devices. In the oneM2M base ontology the Object Property: consistsOf links a device class to a class of its sub-devices
For each sub-device of a discovered device in the non-oneM2M solution the IPE shall create a specialized [flexContainer] resource as child-resource of the <AE>resource of the Proxied Device.
· The specialization type of the [flexContainer] is determined by the XSD file – a <contentInstance>in the XSD-storage – that correlates to the class of the sub-device in the ontology
· The resourceName of the [flexContainer] resource of the sub-device shall be identical to the class name of the (ontology specific sub-class of) class:Device of the sub-device in the ontology.
Example: “switchingSubDevice”
· If multiple sub-device instances of the same class exist then the resourceName shall be appended by ‘_’ (underline) and followed by a number to distinguish individual [flexContainer] resources for multiple (sub-)devices of the same type.
Example: “switchingSubDevice_02” when the device is a connector strip containing 5 individual connectors as sub-devices
· Note: the creation of [flexContainer] resources for sub-devices of a device is basically analogous to the creation of [flexContainer] resources for Services of a device (see next section).
· The attribute ontologyRef shall contain the reference (URI) to the class of the ontology that specifies the type of the sub-device.
· The labels attribute of may contain the following key- vale pairs:

· Key: “Iwked-Technology” Value: the name of the ontology, omitting “http://” and changing each “/” (slash) into “_” (underscore).
· Key: “Iwked-Entity-Type” Value: Class name of the class of the sub-device in the ontology (i.e. a sub-class of class:InterworkedDevice of the oneM2M base ontology)
· The IPE may create a <semanticDescriptor>child-resource.

· 6.2.2.4
Creation of resources for Services of devices and sub-devices of a device
For each service, that is supported by a device or sub-device the IPE shall create a specialized [flexContainer] resource, representing the service. The [flexContainer] shall be a child-resource of the Proxied Device representation (<AE>resource in case of an interworked Device, specialized [flexContainer] in case of a sub-device).
The IPE shall subscribe to all specialized [flexContainer] resources representing services, that it creates.
· The services that can be supported by a device or sub-device are specified in the ontology by Object Property: hasService.
· If a service is mandatory for a specific device then Object Property:hasService (or a sub-property) has a Restriction on cardinality: “exactly 1”.
In this case the IPE shall create the specialized [flexContainer] for the Service.
· If a service is optional for a specific device and can have only one instance on the device then Object Property:hasService (or a sub-property) has a restriction on cardinality: “max 1”.
In this case the IPE shall create the specialized [flexContainer] for the Service only if the the IPE can determine (using methods of the interworked solution) that the (sub)device actually supports the service
· If a service can have multiple instances on a device then Object Property:hasService (or a sub-property) has no restriction on cardinality or a restriction: “min [x]”.
In this case the IPE may create multiple specialized [flexContainer]s for the Service. Note, that multiple instances of the same service are always distinguishable by (a) the Function they expose (Object Property:exposesFunction), if the Function is specified in the ontology and (b) by the datapoints and operations they have.
· The specialization type of the [flexContainer] is determined by the XSD file – a <contentInstance> in the XSD-storage – that correlates with the class of the service in the ontology
· Note: the XSD file for the service also includes XSD descriptions for the service’s DataPoints – which are represented as customAttributes of the[flexContainer]for the Service.
· The resourceName of the [flexContainer] resource of the service shall be identical to the class name of the (ontology specific sub-class of) class:Service in the ontology.
Example: “liquidRemaining”
· If multiple service instances of the same class:Service exist but expose different Functions (via Object Property:exposesFunction) then the resourceName shall be appended by ‘_’ (underline), followed by the class name of the function in the ontology.
Example: “liquidRemaining_ waterStatus”, “liquidRemaining_ milkStatus”.
· f multiple service instances of the same class:Service exist that expose the same function then the resourceName shall be appended by ‘_’ (underline), followed by a number to distinguish individual [flexContainer] resources for multiple services of the same type.
Example: “liquidRemaining_ waterStatus_01”, “liquidRemaining_ waterStatus_02”.
· The attribute ontologyRef shall contain the reference (URI) to the class of the ontology that specifies the type of the service.
· The labels attribute of may contain the following key- vale pairs:

· Key: “Iwked-Technology” Value: the name of the ontology, omitting “http://” and changing each “/” (slash) into “_” (underscore).
· Key: “Iwked-Entity-Type” Value: Class name of the class of the service in the ontology (i.e. a sub-class of class:Service of the oneM2M base ontology)
· The IPE may set access rights for the [flexContainer] resource of the service to restrict/allow AEs to use (UTDATE and / or RETRIEVE and SUBSCRIBE to) the the [flexContainer] that represents the Service.

· The IPE may create a <semanticDescriptor>child-resource of the [flexContainer] resource of the service.
6.2.2.3
Creation of resources for operations of a service of a device
6.2.2.3.1
Introduction

An Operation is the means of a Service to communicate in a procedure-type manner. An operation is invoked by the communicating entity or by the device and can – but need not – have OperationInputparameters. As a result of the Operation result parameters can – but need not – be returned.

Operations are represented in the oneM2M systems with one or two types of resources, both of them being specialized [flexContainer] resources.
· The first type exists for every operation and is used to invoke the operation. It only contains OperationInput parameters, if they exist.
· The second type is a child-resource of the first type and only exists for operations that can produce OperationOutput parameters. This type contains both, the OperationInputparameters, if they exist, and the OperationOutput parameters, if they exist.
6.2.2.3.2
Creation of resources for operation invocation
For each operation, that is supported by a service of a device the IPE shall create a specialized [flexContainer] resource, representing the operation. The [flexContainer] shall be a child-resource of the specialized [flexContainer] of the service.
The IPE shall subscribe to all specialized [flexContainer] resources representing operations, that it creates.

· The operations that can be supported by a service are specified in the ontology by Object Property:hasOperation.
· An Operation for a specific Service can only have at most a single instance at a time. Unless the Object Property:hasOperation (or a sub-property) has a restriction on cardinality: “max 1” the IPE shall create the specialized [flexContainer] that represents the Operation.
· Note: It is quite well possible, that the Interworked Device supports execution of multiple operation instances of the same operation type at a time. However, mutiple invocations of the same operation type is achieved in oneM2M by consecutively UPDATEing a single specialized [flexContainer] that represents the Operation. Thus a single [flexContainer] resource is sufficient to invoke multiple, concurrent operation instances of that operation in the Interworked Device.
· If an operation is optional for a specific service then Object Property:hasOperation (or a sub-property) has a restriction on cardinality: “max 1”.
In this case the IPE shall create the specialized [flexContainer] for the Operation only if the the IPE can determine (using methods of the interworked solution) that the Service actually supports the operation
· The specialization type of the [flexContainer] is determined by the XSD file – a <contentInstance> in the XSD-storage – that correlates with the class of the operation in the ontology.
Note: the XSD file for the operation also includes XSD descriptions for the operation’s OperationInput parameters which are represented as customAttributes of the[flexContainer]for the operation.
When the IPE creates the [flexContainer] resource it may ignore customAttributes that represent the operation’s OperationOutput parameters.
· The resourceName of the [flexContainer] resource of the operation shall be identical to the class name of the (ontology specific sub-class of) class:Operation in the ontology.
Example: “toggle” as an operation of a service of a light switch, “upVolume” as an operation of a service of a audio device
· The attribute ontologyRef shall contain the reference (URI) to the class of the ontology that specifies the type of the operation.
· The labels attribute of may contain the following key- vale pairs:

· Key: “Iwked-Technology” Value: the name of the ontology, omitting “http://” and changing each “/” (slash) into “_” (underscore).
· Key: “Iwked-Entity-Type” Value: Class name of the class of the operation in the ontology (i.e. a sub-class of class:Operation of the oneM2M base ontology)

· The IPE may set access rights for the [flexContainer] resource of the service to restrict/allow AEs to use (UTDATE and / or RETRIEVE and SUBSCRIBE to) the the [flexContainer] that represents the Operation.

· The IPE may create a <semanticDescriptor>child-resource of the [flexContainer] resource of the Operation.

6.2.2.3.3
Creation of resources for returning operation results
For each operation, that can produce operation result parameters (i.e. its class:Operation is related via Object Property: hasOutput to some class:OperationOutput) the IPE shall create a specialized [flexContainer] resource, representing the result of the operation for a set of invocation parametes. The [flexContainer] shall be a child-resource of the specialized [flexContainer] resource for operation invocation (described in section 6.2.2.3.2).
The IPE shall subscribe to this specialized [flexContainer] resource.

· The specialization type of the [flexContainer] is determined by the XSD file – a <contentInstance> in the XSD-storage – that correlates with the class of the operation in the ontology
Note: the XSD file for the operation also includes XSD descriptions for the operation’s OperationInput and OperationOutput parameters which are represented as customAttributes of the[flexContainer].

· The resourceName of the [flexContainer] resource of the operation shall be identical to the class name of the (ontology specific sub-class of) class:Operation in the ontology, appended by ‘_result’.
Example: “upVolume_result” as the result of an operation that e.g. returns the current volume level as OperationOutput parameter.
· The attribute ontologyRef shall contain the reference (URI) to the class of the ontology that specifies the type of the operation.
· The labels attribute of may contain the following key- vale pairs:

· Key: “Iwked-Technology” Value: the name of the ontology, omitting “http://” and changing each “/” (slash) into “_” (underscore).
· Key: “Iwked-Entity-Type” Value: Class name of the class of the operation in the ontology (i.e. a sub-class of class:Operation of the oneM2M base ontology)

· The IPE may set access rights for RETRIEVEing the [flexContainer] resource of the operation.

· The IPE may create a <semanticDescriptor>child-resource of the [flexContainer] resource of the operation.

6.2.3
Handling of DataPoints by the IPE
· When the IPE receives a request (push-request) by the interworked non-oneM2M device via the non-oneM2M reference point to write an OutputDataPoint belonging to a Service – a customAttribute of the [flexContainer] - of the device the IPE shall
· de-serialize the received data and
· UPDATE the OutputDataPoint customAttribute of the [flexContainer] with the output data.

· When the IPE receives a request (pull-request) by the interworked non-oneM2M device via the non-oneM2M reference point to read an InputDataPoint belonging to a Service of the device the IPE shall
· RETRIEVE data from the InputDataPoint customAttribute of the [flexContainer] resource of the Service
· serialize the data and
· return them to the non-oneM2M device.
· When the IPE is notified by the CSE that a customAttribute of the [flexContainer] resource of the Service of the Proxied Device has been changed the IPE shall

·
· read the data of the changed customAttribute and

· invoke the Service, parameterized with data of the InputDataPoint, via the non-oneM2M reference point in the interworked non-oneM2M device.
6.2.4
Handling of Operations by the IPE
When the IPE receives notification from the CSE about an UPDATE of the [flexContainer] resource of the operation the IPE shall perform the following actions:

1. If the operation has OperationInput data the IPE shall RETRIEVE the OperationInput data of the operation (contained in the customAttributes of the [flexContainer] resource of the operation).

2.
3. The IPE shall serialize OperationInput data and invoke the related operation in the non-oneM2M device via the non-oneM2M reference point.

4. If the operation allows OperationOutput data (i.e. a [flexContainer] resource for returning operation results exists as a child-resource of the operation [flexContainer]) the IPE shall handle the result of the operation, when received from the Interworked Device via the non-oneM2M reference point:

· The IPE shall de-serialize OperationOutput data
· The IPE shall UPDATE the [flexContainer] resource for returning operation results. The UPDATE primitive shall contain
· the customAttributes with the values for the OperationInput data with which the operation had been invoked, and
· the customAttributes with the values for the OperationOutput data that had been received as result of the operation
· Note: The IPE needs to await the operation results by the Interworked Device for an operation transaction only only for a configurable time that may depend on the technology of the non-oneM2M solution.

a)
b)
c)

·
When the the non-oneM2M device invokes an operation in the IPE – which may or may not contain OperationInput data – via the non-oneM2M reference point (e.g. when the device reacts on some external event and publishes related output data)
1. the IPE shall de-serialize these data and perform the following actions:
· If the operation invocation contained no OperationInput data the IPE shall UPDATE the [flexContainer] resource for the operation with NULL values for all customAttributes.

· If the operation invocation contained OperationInput data then

· The IPE shall de-serialize OperationInput data
· The IPE shall UPDATE the OperationInput customAttributes of the [flexContainer] resource for the operation with the values received.
2. If the operation allows OperationOutput data (i.e. a [flexContainer] resource for returning operation results exists as a child-resource of the operation [flexContainer]) these OperationOutput data may be provided by a communicating entity (e.g. a oneM2M AE) that had subscribed to the [flexContainer] resource for the operation.
3. When the IPE gets NOTIFYed that a communicating entity has UPDATEd the [flexContainer] resource for returning operation results – including the received values for customAttributes for OperationInput data and possibly including values for customAttributes for OperationOutput data of the [flexContainer]:
· The IPE shall serialize OperationOutput data
· The IPE shall return the OperationOutput data to the Interworked Device and finish the operation transaction with the Interworked Device.
Note: The IPE needs to await the operation results by communicating entity for an operation transaction only for a configurable time.
1)
·
·
2)
a)
b)
c)
3)
4)
5)
·
·

6.2.5
Removing of resources for Proxied Devices.

· When a Interworked Device in the non-oneM2M solution becomes unavailable the IPE shall delete the resource for its Proxied Device and all its child-resources.
· When the IPE detects that an Interworked Device stopped to support a Service of (in case such detection is supported by the technology of the non-oneM2M solution) then the IPE shall delete the <flexContainer> resource for the service and all its child-resources.
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
	
	
	

	
	
	

	
	

	

	
	
	

	
	

	

	
	

	

a)
b)

	
	
	
	
	

	
	
	
	
	

	
	
	
	

	

	
	
	
	
	

	
	
	
	
	

	
	
	

	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	

	

	
	
	
	

	

·
·

	
	
	
	
	

	
	
	
	
	

	
	
	
	

	

	
	
	

	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	

	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	

	

	
	
	
	

	

	
	
	
	

	

	
	
	
	

	

	
	
	
	

	

7
Rules for creation of XSDs from ontologies
7.1
General information
When the non-oneM2M data model is described in the form of a oneM2M compliant ontology which is derived (as sub-classes and sub-properties) from the oneM2M Base Ontology and is available in a formal description language (e.g. OWL) then the IPE can create XSDs for the resources needed by communicating entities to communicate with the IPE.
These resources are specializations of [flexContainer]s for Services and Operations. For these specializations of [flexContainer]s the IPE also needs to create XSDs for customAttributes.
7.1.1
yyy
7.1
XSD creation rules
7.2.1
Creation of XSDs for sub-classes of Base Ontology class: Service

Annex <A> (Normative): FlexContainer specializations for Generic interworking for Release 2 (outdated)

A.1
Introduction

In oneM2M release 2 two specialization types of <flexContainer> are needed: genericInterworkingService and genericInterworkingOperationInstance were used for Generic Interworking (see [4]). These types are described in this Annex A. In release 3 a different solution for Generic Interworking has been chosen.
It is recommended not to continue using these resource types in a release 3 solution. However, if these resource types are used then they shall comply to the specification given in this Annex A.
A.2
Resource Type genericInterworkingService
Resource type genericInterworkingService is used for grouping Input- and/or Output Datapoints and/or OperationInstances of a Service. For Ontology based Interworking Input- and/or Output Datapoints and/or OperationInstances can be grouped as a Service with respect to their usage within a single Device.
A resource of type genericInterworkingService contains references to the <container> or <flexContainer> resources that represent Input- and/or Output Datapoints of the Service in the inputDataPointLinks and outputDataPointLinks attributes.
A resource of type genericInterworkingService is also the parent resource of genericInterworkingOperationInstances for that Service.

A resource of type genericInterworkingService can be a child-resource of:

c) AE, container, flexContainer since Ontology based Interworking allows these three resource types to represent Devices and InterworkeDevices.

d) genericInterworkingService since Ontology based Interworking allows Services to contain (sub-)Services.

[image: image15.emf]<subscription>

0..n

[genericInterworkingService]

0..1

creator

0..1

ontologyRef

<semanticDescriptor>

0..n

serviceName

1

containerDefinition

inputDataPointLinks

1

0..1

outputDataPointLinks

0..1

[genericInterworking

Service]

0..n

[genericInterworking

OperationInstance]

0..n

Figure 8: Structure of [genericInterworkingService] resource

The [genericInterworkingService] resource shall contain the child resource specified in table 1.

Table 1: Child resources of [genericInterworkingService] resource

	Child Resources of [genericInterworking
Service]
	Child Resource Type
	Multiplicity
	Description
	[genericInterworkingServiceAnnc] Child Resource Type

	semanticDescriptor
	<semanticDescriptor>
	0..n
	See clause 9.6.30 in TS-0001 [2]
	<semanticDescriptor>, <semanticDescriptorAnnc>

	[variable]
	<subscription>
	0..n
	See clause 9.6.8
in TS-0001 [2]
	<subscription>

	[variable]
	<flexContainer> specialization: [genericInterworking
Service]
	0..n
	A Service may be composed of (sub)-Services that are contained as child-resources
	[genericInterworkingService]

[genericInterworkingServiceAnnc]

	[variable]
	<flexContainer> specialization: [genericInterworking
OperationInstance]
	0..n
	See clause A.3
For each invocation of an operation of a Service a child-resource of type [genericInterworkingOperationInstance] is created. When the operation is finished this child-resource is deleted by the IPE
	[genericInterworkingOperationInstance]

[genericInterworkingOperationInstanceAnnc]

The [genericInterworkingService] resource shall contain the attributes specified in table 2.

Table 2: Attributes of [genericInterworkingService] resource

	Attributes of
[genericInterworking
Service]
	Multiplicity
	RW/

RO/

WO
	Description
	[genericInterworkingService
Annc]
Attributes

	resourceType
	1
	RO
	See clause 9.6.1.3 in TS-0001 [2]
	NA

	resourceID
	1
	RO
	See clause 9.6.1.3 in TS-0001 [2]
	NA

	resourceName
	1
	WO
	See clause 9.6.1.3 in TS-0001 [2]
	NA

	parentID
	1
	RO
	See clause 9.6.1.3 in TS-0001 [2]
	NA

	accessControlPolicyIDs
	0..1 (L)
	RW
	See clause 9.6.1.3 in TS-0001 [2]
	MA

	labels
	0..1 (L)
	RW
	See clause 9.6.1.3 in TS-0001 [2]
	MA

	stateTag
	1
	RO
	See clause 9.6.1.3 in TS-0001 [2]
	OA

	announceTo
	0..1 (L)
	RW
	See clause 9.6.1.3 in TS-0001 [2]
	NA

	announcedAttribute
	0..1 (L)
	RW
	See clause 9.6.1.3 in TS-0001 [2]
	NA

	dynamicAuthorizationConsultationIDs
	0..1 (L)
	RW
	See clause 9.6.1.3 in TS-0001 [2]
	OA

	containerDefinition
	1
	WO
	See clause 9.6.1.2.2 in TS-0001 [2]
The value shall be “org.onem2m. genericInterworkingService”
	MA

	creator
	0..1
	RO
	See clause 9.6.35 in TS-0001 [2]
	NA

	ontologyRef
	0..1
	RW
	See clause 9.6.35 in TS-0001 [2]
	OA

	serviceName
	1
	RW
	The attribute contains the name of the Service. The name of the Service is given by the class name of that Service in the used ontology (which needs to be derived from the Base Ontology)
	MA

	inputDataPointLinks
	0..1
	RW
	This attribute contains a list of triples, each triple containing the following fields:

1.
A text string with the name of an inputDatapoint of the Service

2.
A URI of the resource (container or flexContainer) that holds the data of the inputDataPoint

3.
A field for identifying simple-type data

If the inputDataPoint contains simple-type data then

i.
If the resource type of the inputDataPoint is <container> then this field shall contain the text string “latest”

ii.
If the resource type of the inputDataPoint is <flexContainer> then this field shall contain the name of the [customAttribute] (which is identical to the name of the inputDataPoint)

If the inputDataPoint contains complex-type data then this field shall remain empty.

	MA

	outputDataPointLinks
	0..1
	RW
	This attribute contains a list of triples, each triple containing the following fields:

1.
A text string with the name of an outputDatapoint of the Service

2.
A URI of the resource (container or flexContainer) that holds the data of the outputDataPoint

3.
A field for identifying simple-type data

If the outputDataPoint contains simple-type data then

i.
If the resource type of the outputDataPoint is <container> then this field shall contain the text string “latest”

ii.
If the resource type of the outputDataPoint is <flexContainer> then this field shall contain the name of the [customAttribute] (which is identical to the name of the outputDataPoint)

Otherwise, if the outputDataPoint contains complex-type data then this field shall remain empty.

	MA

A.3
Resource Type genericInterworkingOperationInstance
In the context of Ontology based Interworking resources of resource type genericInterworkingOperationInstance are created as child-resources of a Service by the CSE. The originator of a request can be:

· the AE (for AE initiated communication for notifying communicating entities);
· a communicating entity (to notify the AE about an operation that needs to be performed by the AE and to receive output back from the AE).
After the expirationTime the AE may delete the operationInstance and all linked operationInput and operationOutput resources (contained in the references in attributes: inputLinks and outputLinks)

An OperationInstance resource holds in its attributes inputDataPointLinks and inputLinks references to resources of type <container> and <flexContainer> from which the AE should retrieve input of the operation. Similarly the attributes outputDataPointLinks and outputLinks references to resources of type <container> and <flexContainer> to which the AE should write its output of the operation.

[image: image16.emf]<subscription>

0..n

[genericInterworking

OperationInstance]

0..1

creator

0..1

ontologyRef

<semanticDescriptor>

0..n

operationName

1

containerDefinition

inputDataPointLinks

1

0..1

outputDataPointLinks

0..1

inputLinks

0..1

outputLinks

0..1

operationState

1

expirationTime

1

Figure 9: Structure of [genericInterworkingOperationInstance] resource

The [genericInterworkingOperationInstance] resource shall contain the child resource specified in table 3.

Table 3: Child resources of [genericInterworkingOperationInstance] resource

	Child Resources of [genericInterworkingOperationInstance]
	Child Resource Type
	Multiplicity
	Description
	[genericInterworkingOperationInstanceAnnc]
Child Resource Type

	semanticDescriptor
	<semanticDescriptor>
	0..n
	See clause 9.6.30 in TS-0001 [2]
	<semanticDescriptor>, <semanticDescriptorAnnc>

	[variable]
	<subscription>
	0..n
	See clause 9.6.8
in TS-0001 [2]
	<subscription>

The [genericInterworkingOperationInstance]resource shall contain the attributes specified in table 4.

Table 4: Attributes of [genericInterworkingOperationInstance] resource

	Attributes of
[genericInterworking
OperationInstance]
	Multiplicity
	RW/

RO/

WO
	Description
	[genericInterworkingOperation
InstanceAnnc]
Attributes

	resourceType
	1
	RO
	See clause 9.6.1.3 in TS-0001 [2]
	NA

	resourceID
	1
	RO
	See clause 9.6.1.3 in TS-0001 [2]
	NA

	resourceName
	1
	WO
	See clause 9.6.1.3 in TS-0001 [2]
	NA

	parentID
	1
	RO
	See clause 9.6.1.3 in TS-0001 [2]
	NA

	expirationTime
	1
	RW
	See clause 9.6.1.3 in TS-0001 [2]
This attribute shall contain the time after which the operationInstance and its operationInput and operationOutput resources may be deleted by the AE.

If an AE got notified about creation of the operationInstance and if the AE accepts to process the operation (i.e. does not immediately delete the operationInstance) the expirationTime is set by the AE.
	MA

	accessControlPolicyIDs
	0..1 (L)
	RW
	See clause 9.6.1.3 in TS-0001 [2]
	MA

	labels
	0..1 (L)
	RW
	See clause 9.6.1.3 in TS-0001 [2]
	MA

	creationTime
	1
	RO
	See clause 9.6.1.3 in TS-0001 [2]
	NA

	lastModifiedTime
	1
	RO
	See clause 9.6.1.3 in TS-0001 [2]
	NA

	stateTag
	1
	RO
	See clause 9.6.1.3 in TS-0001 [2]
	OA

	announceTo
	0..1 (L)
	RW
	See clause 9.6.1.3 in TS-0001 [2]
	NA

	announcedAttribute
	0..1 (L)
	RW
	See clause 9.6.1.3 in TS-0001 [2]
	NA

	dynamicAuthorizationConsultationIDs
	0..1 (L)
	RW
	See clause 9.6.1.3. in TS-0001 [2]
	OA

	containerDefinition
	1
	WO
	See clause 9.6.1.2.2 in TS-0001 [2]
The value shall be “org.onem2m. genericInterworkingOperationInstance”
	MA

	creator
	0..1
	RO
	See clause 9.6.35 in TS-0001 [2]
	NA

	ontologyRef
	0..1
	RW
	See clause 9.6.35 in TS-0001 [2]
	OA

	operationName
	1
	RW
	The attribute contains the name of the Operation. The name of the Operation is given by the class name of that Operation in the used ontology (which needs to be derived from the Base Ontology)
	MA

	operationState
	1
	RW
	This attribute contains a text string that indicates how far the operation has progressed.
specified values are:

o
“data_received_by_application”

o
 “operation_ended”

o
“operation_failed”

o
“data_transmitted_to_interworked_device”

Additional, application specific values for the text string of the operationState attribute are permissible.
	MA

	inputDataPointLinks
	0..1
	RW
	This attribute contains a list of triples, each triple containing the following fields:

1.
A text string with the name of an inputDatapoint of the operationInstance

2.
A URI of the resource (container or flexContainer) that holds the data of the inputDataPoint

3.
A field for identifying simple-type data

If the inputDataPoint contains simple-type data then

i.
If the resource type of the inputDataPoint is <container> then this field shall contain the text string “latest”

ii.
If the resource type of the inputDataPoint is <flexContainer> then this field shall contain the name of the [customAttribute] (which is identical to the name of the inputDataPoint)

If the inputDataPoint contains complex-type data then this field shall remain empty.

	MA

	outputDataPointLinks
	0..1
	RW
	This attribute contains a list of triples, each triple containing the following fields:

1.
A text string with the name of an outputDatapoint of the OperationInstance

2.
A URI of the resource (container or flexContainer) that holds the data of the outputDataPoint

3.
A field for identifying simple-type data

If the outputDataPoint contains simple-type data then

i.
If the resource type of the outputDataPoint is <container> then this field shall contain the text string “latest”

ii.
If the resource type of the outputDataPoint is <flexContainer> then this field shall contain the name of the [customAttribute] (which is identical to the name of the outputDataPoint)

If the outputDataPoint contains complex-type data then this field shall remain empty.

	MA

	inputLinks
	0..1
	RW
	This attribute contains a list of triples, each triple containing the following fields:

1.
A text string with the name of an operationInput of the operationInstance

2.
A URI of the resource (container or flexContainer) that holds the data of the operationInput

3.
A field for identifying simple-type data

If the operationInput contains simple-type data then

i.
If the resource type of the operationInput is <container> then this field shall contain the text string “latest”

ii.
If the resource type of the operationInput is <flexContainer> then this field shall contain the name of the [customAttribute] (which is identical to the name of the operationInput)

If the Input contains complex-type data then this field shall remain empty.

	MA

	outputLinks
	0..1
	RW
	This attribute contains a list of triples, each triple containing the following fields:

1.
A text string with the name of an operationOutput of the operationInstance

2.
A URI of the resource (container or flexContainer) that holds the data of the outputDataPoint

3.
A field for identifying simple-type data

If the operationOutput contains simple-type data then

i.
If the resource type of the operationOutput is <container> then this field shall contain the text string “latest”

ii.
If the resource type of the operationOutput is <flexContainer> then this field shall contain the name of the [customAttribute] (which is identical to the name of the operationOutput)

If the operationOutput contains complex-type data then this field shall remain empty.

	MA

<Text>

<PAGE BREAK>

Annex (Informative/Normative): Remove Informative or Normative as appropriateTitle of annex (style H9)
<Text>

B.1
First clause of the annex (style H1)
<Text>

B.1.1
First subdivided clause of the annex (style H2)
<Text>

<PAGE BREAK>
The following text is to be used when appropriate:

Annex <y>:
Bibliography

The annex entitled "Bibliography" is optional.

It shall contain a list of standards, books, articles, or other sources on a particular subject which are not mentioned in the document itself
It shall not include references mentioned in the document.

Use the Heading 9 style for the title and B1+ or Normal for the text.

· <Publication>: "<Title>".

OR

<Publication>: "<Title>".

<PAGE BREAK>

History

This clause shall be the last one in the document and list the main phases (all additional information will be removed at the publication stage).
	Publication history

	V1.1.1
	<dd-Mmm-yyyy>
	<Milestone>

	
	
	

	
	
	

	
	
	

	
	
	

	Draft history (to be removed on publication)

	V0.0.1
	16-Oct-2016
	Initial version. CR to TS-0012 moved sections 8 and 9 into sections 6 and 7 of the current document

	V0.1.0
	02-Nov-2016
	Including contributions at MAS#25:
MAS-2016-0215R01-DRAFT_TS-0030-Generic-Interworking-V0_0_0

	V0.2.0
	03-April-2017
	Including contributions at MAS#28:

MAS-2017-0012R05-CR_TS-0030_Specification_of_an_Abstraction_Application_Entity
MAS-2017-0075-CR_TS-0030_Corrections_and_General_section

	
	
	

	
	
	

© oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC)
Page 15 of 35
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

UPDATE InputDataPoints
Translating entity
Communicating entity
Target entity
translate input
CSE
NOTIFY
RETRIEVE
InputDataPoint
Communication initiated by Communicating entity
Communication initiated by Target entity
translate output
UPDATE OutputDataPoints
NOTIFY
RETRIEVE
OutputDataPoints
Invoke Command
Invoke Command

UPDATE Operation result  <flexContainer> with original OperationInput and potentially  with OperationOutput
Command response
Invoke Command
UPDATE Operation invocation  <flexContainer> potentially with OperationInput
IPE
Communicating entity
Interworked Device
translate input
Waiting for answer for configurable maximum time
translate output
CSE
If operation involves an answer
NOTIFY
Communication initiated by Communicating entity
NOTIFY

<flexContainer>

<flexContainer>

<flexCont>

<flexCont>

<flexCont>

<flexCont>

<AE>

<AE>

OutputDataPoint

OperationOutput

OperationInput

CSEBase

<AE>

<flexCont>

OutputDataPoint

Service

<flexCont>

OperationInput

Operation
(invocation)

OperationInput

<flexCont>

Device

(customAttributes)

<AE>

IPE

<node>

<container>

<contentInstance>

<contentInstance>

<contentInstance>

nodeLink

XSDs of classes

XSD storage

<flexContainer>

Sub-device

Operation
(result)

OperationInput

OperationOutput

InputDataPoint

InputDataPoint

node of device

Resources for Generic Interworking

Not shown: <semanticDescriptor>, <subscription>

<node>

node of sub-device

nodeLink

1

Resources for Generic Interworking

Not shown: <semanticDescriptor>, <subscription>

<flexContainer>

<flexContainer>

<flexCont>

<flexCont>

<flexCont>

<flexCont>

OutputDataPoint

OperationOutput

OperationInput

CSEBase

<flexCont>

OutputDataPoint

Service

<flexCont>

OperationInput

Operation
(invocation)

OperationInput

<flexCont>

<AE>

IPE

<container>

<contentInstance>

<contentInstance>

<contentInstance>

nodeLink

XSDs of classes

XSD storage

<flexContainer>

Sub-device

Operation
(result)

OperationInput

OperationOutput

InputDataPoint

InputDataPoint

<node>

node of sub-device

nodeLink

<flexContainer>

<flexContainer>

<flexContainer>

Device

node of device

<node>

node of IPE

<node>

nodeLink

1

UPDATE OutputDataPoint customAttribute  of Service <flexContainer>
UPDATE InputDataPoint customAttribute  of Service <flexContainer>
IPE
Communicating entity
Interworked Device
translate input
CSE
NOTIFY with changed value of InputDataPoint
Communication initiated by Communicating entity
Communication initiated by Interworked Device
translate output
Invoke Command
Invoke Command
NOTIFY with changed value of OutputDataPoint

UPDATE
inputLinks, inputDPLinks
CREATE Operation
Command response
Invoke Command
Invoke Command
UPDATE InputDataPoint, CREATE OperationInput
UPDATE
outputLinks, outputDPLinks
RETRIEVE output
X
OperationState=
"data_received_by_application"
Translating entity
Communicating entity
Target entity
translate input
Waiting for answer
translate output
CSE
Communicating entity expects an answer
NOTIFY
RETRIEVE
operationInput
UPDATE
expirationTime
OperationState=
"data_transmitted_to_interworked_device
OperationState=
"operation_failed“
OR
(
)
NOTIFY
...
expirationTimer expired, Operation resource can be deleted
Communication initiated by Communicating entity
Communicating entity expects no answer
OperationState=
"operation_ended“
NOTIFY
UPDATE OutputDataPoint, CREATE OperationOutput OperationState=
"operation_ended“

UPDATE
outputLinks, outputDPLink
Translating entity
Communicating entity
Target entity
translate output
Waiting for answer
translate input
CSE
Target entity expects an answer
CREATE Operation
NOTIFY
RETRIEVE
operationOutput
OperationState=
"data_transmitted_to_interworked_device
NOTIFY
OperationState=
"operation_ended“
...
expirationTimer expired, Operation resource can be deleted
Communication initiated by Target entity
Target entity expects no answer
OperationState=
"operation_ended“
NOTIFY
RETRIEVE
operationOutput
X
OperationState=
"operation_failed“
OR
(
)
UPDATE
inputLinks, inputDPLinks
Invoke Command
Command response
Command response
UPDATE OutputDataPoint, CREATE OperationOutput set expirationTime
UPDATE InputDataPoint, CREATE OperationInput

oneM2M compliant Solution

Area Network
(e.g. KNX)

Inter
working

Proxy
Entity

Abstract Devices (oneM2M resources) exhibiting the Abstract Information Model

Proxied Devices (oneM2M resources) exhibiting the Device Information Model of the interworked
technology

Interworked Devices (physical devices) in the Area Network

Communicating
entity

Abstraction
Application
Entity

Abstract Information
Model

Device Information
Model

Device Information
Model

Device
type_DD

hasService

hasFunction

Operation
Input
“ID = 0”

exposes
Function

Function
“On Off Function”

Service
“On/Off Cluster”

Operation
“ZigBee
Command”

hasOperation

Command
“On Command”

hasCommand

hasInput

exposes
Command

Device
type_DA

hasFunction

Service
“binary Switch”

Input
DataPoint
“powerState
= TRUE”

hasService

exposes
Function

exposes
Command

hasInput
DataPoint

Variable
Conversion

hasConversion

ontology of the Device Information Model
(example ZigBee)

ontology of the Abstract Information Model
(example: HAIM)

convertsTo

_1547464694.ppt

oneM2M compliant Solution

Area Network

(e.g. KNX)

Interworked Devices (physical devices) in the Area Network

Proxied Devices (oneM2M resources) in the oneM2M System technology

Communicating

entity

REST-ful Resource access

Inter

working

Proxy

Entity

_1533032538.vsd

_1533032754.vsd

_1529510780.ppt

Device <AE>, <container> or <flexContainer> (persistent resource)

<semanticDescriptor>

child-resources

Input- / OutputDataPoint <container> (persistent resource)

Input- / OutputDataPoint <flexContainer> (persistent resource)

contentInstance … …

latest contentInstance

[customAttribute]

child-resources

child-resources

genericInterworkingService (persistent resource)

child-resources

and / or

genericInterworkingOperationInstance (transient resource)

OperationInput / -Output <container> (transient resource)

OperationInput / -Output <flexContainer>

contentInstance … …

latest contentInstance

[customAttribute]

child-resources

child-resources

and / or

<semanticDescriptor>

<semanticDescriptor>

<semanticDescriptor>

[Input_DataPoint_Links]

Descriptor

Descriptor

Descriptor

Descriptor

[Output_DataPoint_Links]

[Output-DataPoint_Links]

[Input -DataPoint_Links]

[Output_Links]

[Input_Links]

<semanticDescriptor>

Descriptor

<semanticDescriptor>

Descriptor

<semanticDescriptor>

Descriptor

Legend:

Persistent child resources

Transient child resources

Links

*

