Doc# MAS-2017-0245R01-ontology_management_cleanup_TS-0034
Change Request

	CHANGE REQUEST

	Meeting ID:*
	MAS#32

	Source:*
	Yongjing Zhang, Huawei, zhangyongjing@huawei.com

	Date:*
	2017-11-03

	Reason for Change/s:*
	This contribution proposes changes to resolve two editor’s notes in clause 7.9.2. The solution is to move clause 7.9.2 to clause 6.8 and update 7.9.1. accordingly. Small enhancement to support SPARQL update to <ontology> is also introduced to improve the efficiency.

	CR against: Release*
	Release 3

	CR against: WI*
	 FORMCHECKBOX
 Active WI-0053

 FORMCHECKBOX
 MNT maintenance / < Work Item number(optional)>
Is this a mirror CR? Yes FORMCHECKBOX
 No FORMCHECKBOX

mirror CR number: (Note to Rapporteur - use latest agreed revision)
 FORMCHECKBOX
 STE Small Technical Enhancements / < Work Item number (optional)>
Only ONE of the above shall be ticked

	CR against: TS/TR*
	TS-0034. v0.4.0

	Clauses *
	7.9, 6.8

	Type of change: *
	 FORMCHECKBOX
 Editorial change

 FORMCHECKBOX
 Bug Fix or Correction

 Change to existing feature or functionality

 FORMCHECKBOX
 New feature or functionality
Only ONE of the above shall be ticked

	Impacted other TS/TR(s)
	<TS/TR number>, <Version Number>, and <Description on which aspect should be reflected in this TS/TR>

	Post Freeze checking:*
	This CR contains only essential changes and corrections? YES FORMCHECKBOX
 NO FORMCHECKBOX

This CR may break backwards compatibility with the last approved version of the TS? YES
 NO

	Template Version: January 2017 (Do not modify)

oneM2M Notice

The document to which this cover statement is attached is submitted to oneM2M. Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.

GUIDELINES for Change Requests:

Provide an informative introduction containing the problem(s) being solved, and a summary list of proposals.

Each CR should contain changes related to only one particular issue/problem.
In case of a correction, and the change apply to previous releases, a separate “mirror CR” should be posted at the same time of this CR

Mirror CR: applies only when the text, including clause numbering are exactly the same.

Companion CR: applies when the change means the same but the baselines differ in some way (e.g. clause number).
Follow the principle of completeness, where all changes related to the issue or problem within a deliverable are simultaneously proposed to be made E.g. A change impacting 5 tables should not only include a proposal to change only 3 tables. Includes any changes to references, definitions, and acronyms in the same deliverable.
Follow the drafting rules.

All pictures must be editable.
Check spelling and grammar to the extent practicable.
Use Change bars for modifications.
The change should include the current and surrounding clauses to clearly show where a change is located and to provide technical context of the proposed change. Additions of complete clauses need not show surrounding clauses as long as the proposed clause number clearly shows where the new clause is proposed to be located.
Multiple changes in a single CR shall be clearly separated by horizontal lines with embedded text such as, start of change 1, end of change 1, start of new clause, end of new clause.
When subsequent changes are made to content of a CR, then the accepted version should not show changes over changes. The accepted version of the CR should only show changes relative to the baseline approved text.
Introduction
There are two editor’s notes in clause 7.9.2 about where to put the content. They need to be solved before R3 publication. The proposed solution is to move the content of clause 7.9.2 to clause 6.8 alongside the <ontology> CRUD operations to be more consistent from the document structure perspective. Accordingly, clause 7.9.1 is also updated.
In addition, the UPDATE operation of the <ontology> resource is enhanced (as similar to the <semanticDescriptor> resource) to support fine-grained triple-level update by using SPARQL to improve the efficiency.
-----------------------Start of change 1--
6.8 <ontology> Operations

6.8.2 Create <ontology>
This procedure shall be used for deleting an existing <ontology> resource.

Table 6.8.1-1: <ontology> CREATE
	<ontology> CREATE

	Associated Reference Point
	Mca, Mcc and Mcc'

	Information in Request message
	All parameters defined in table 8.1.2-2 in oneM2M TS-0001 [1] apply with the specific details for:

Content: The resource content shall provide the information as defined in clause 9.6.51 in oneM2M TS-0001 [1].

	Processing at Originator before sending Request
	According to clause 10.1.2 in oneM2M TS-0001 [1].

	Processing at Receiver
	According to clause 10.1.2 in oneM2M TS-0001 [1].

	Information in Response message
	According to clause 10.1.2 in oneM2M TS-0001 [1].

	Processing at Originator after receiving Response
	According to clause 10.1.2 in oneM2M TS-0001 [1].

	Exceptions
	According to clause 10.1.2 in oneM2M TS-0001 [1].

6.8.3 Retrieve <ontology>
This procedure shall be used for deleting an existing <ontology> resource.

Table 6.8.2-1: <<ontology> RETRIEVE

	<ontology> RETRIEVE

	Associated Reference Point
	Mca, Mcc and Mcc'.

	Information in Request message
	All parameters defined in table 8.1.2-2 in oneM2M TS-0001 [1].

	Processing at Originator before sending Request
	According to clause 10.1.3 in oneM2M TS-0001 [1].

	Processing at Receiver
	According to clause 10.1.3 in oneM2M TS-0001 [1].

	Information in Response message
	All parameters defined in table 8.1.3-1 in oneM2M TS-0001 [1] apply.

	Processing at Originator after receiving Response
	According to clause 10.1.3 in oneM2M TS-0001 [1].

	Exceptions
	According to clause 10.1.3 in oneM2M TS-0001 [1].

6.8.3 Update <ontology>
This procedure shall be used for deleting an existing <ontology> resource.

Table 6.8.3-1: <ontology> UPDATE

	<ontology> UPDATE

	Associated Reference Point
	Mca, Mcc and Mcc'

	Information in Request message
	All parameters defined in table 8.1.2-2 in oneM2M TS-0001 [1].

	Processing at Originator before sending Request
	According to clause 10.1.4 in oneM2M TS-0001 [1].

	Processing at Receiver
	According to clause 10.1.4 in oneM2M TS-0001 [1].

	Information in Response message
	According to clause 10.1.4 in oneM2M TS-0001 [1].

	Processing at Originator after receiving Response
	According to clause 10.1.4 in oneM2M TS-0001 [1].

	Exceptions
	According to clause 10.1.4 in oneM2M TS-0001 [1].

6.8.4 Delete <ontology>
Table 6.8.4-1: <ontology> DELETE

	<ontology> DELETE

	Associated Reference Point
	Mca, Mcc and Mcc'

	Information in Request message
	All parameters defined in table 8.1.2-2 in oneM2M TS-0001 [1] apply.

	Processing at Originator before sending Request
	According to clause 10.1.5 in oneM2M TS-0001 [1].

	Processing at Receiver
	According to clause 10.1.5 in oneM2M TS-0001 [1].

	Information in Response message
	According to clause 10.1.5 in oneM2M TS-0001 [1].

	Processing at Originator after receiving Response
	According to clause 10.1.5 in oneM2M TS-0001 [1].

	Exceptions
	According to clause 10.1.5 in oneM2M TS-0001 [1].

6.8.5 Semantic query on <ontology> resource via Retrieve
Table 6.8.5-1: Semantic query on <ontology> resource via RETRIEVE
	Semantic query on <ontology> resource via RETRIEVE

	Associated Reference Point
	Mca, Mcc and Mcc'

	Information in Request message
	All parameters defined in table 8.1.2-2 in oneM2M TS-0001 [1] apply.
In addition, the semantic query request shall be issued as a RETRIEVE operation with:

1) a SPARQL query statement in the semanticsFilter condition tag of the Filter Criteria request parameter.
2) a Result Content request parameter with the value set to ‘semantic-content’.
3) a Semantic Query Indicator request parameter with the value set to ‘TRUE’
See more details in clause 7.5

	Processing at Originator before sending Request
	According to clause 10.1.3 in oneM2M TS-0001 [1].

	Processing at Receiver
	According to clause 10.1.3 in oneM2M TS-0001 [1] with the following specific details:
The hosting CSE shall execute the SPARQL query statement against the content attribute of the <ontology> resource and return the SPARQL result to the Originator. If the content attribute contains IRI of an external ontology, the hosting CSE shall retrieve the referenced ontology following the IRI and perform the SPARQL query against it. If the content attribute contains the RDF triples, the SPARQL query can be performed directly against it.

	Information in Response message
	According to clause 10.1.3 in oneM2M TS-0001 [1].

	Processing at Originator after receiving Response
	According to clause 10.1.3 in oneM2M TS-0001 [1].

	Exceptions
	According to clause 10.1.3 in oneM2M TS-0001 [1].

Semantic query defined in clause 7.5 shall be used for retrieving the semantic information (triples) from an <ontology> resource.

Some SPARQL query statement examples are given as follows:
1) get all classes of an ontology
SELECT ?subject WHERE { ?subject rdfs:subClassOf+ owl:Thing }

2) get all object | data properties of ontology
SELECT ?subject WHERE { {?subject rdf:type+ owl:ObjectProperty } UNION {?subject rdf:type+ owl:DatatypeProperty } }
3) get direct subclasses of class A
SELECT ?subject WHERE { ?subject rdfs:subClassOf saref:Command }
4) get also transitive subclasses class A
e.g. if information from instances of class A is requested, all subclasses of class A also need to be included as they are also instances of class A;
SELECT ?subject WHERE { ?subject rdfs:subClassOf + saref:Command }

5) get all the superclasses of class A
e.g. if for derived ontologies the class of the base ontology needs to be found from which the class is derived, for example to apply rules defined for the base ontology, e.g. for creating a resource structure;
SELECT ?object WHERE { saref:SetAbsoluteLevelCommand rdfs:subClassOf + ?object }
6) get all object | data properties where class A is in the domain
e.g. to find out what properties an instance of class A can possibly have;
SELECT ?subject ?object WHERE { ?subject rdfs:domain saref:Service }
7) get all object | data properties where class A is in the range
SELECT ?subject ?object WHERE { ?subject rdfs:range saref:Command }
8) get all sub-properties of a property A
e.g. if information concerning property A is requested all sub-properties of A also need to be included;
SELECT ?subject WHERE { ?subject rdfs:subPropertyOf om:singular_unit
9) get classes that are equivalent to class A
SELECT ?class WHERE {{ saref:Device owl:equivalentClass ?class} UNION {?class owl:equivalentClass saref:Device}}
-----------------------End of change 1--
-----------------------Start of change 2--
7.9 Ontology Management

In general, the oneM2M system needs to represent knowledge as a hierarchy of concepts (ontologies), either external or internal to the oneM2M domain, using a shared vocabulary to denote the classes, properties and interrelationships of those concepts. Storage, discovery and management of ontologies (including both oneM2M Base Ontology and external ontologies e.g. SSN [i.1], SAREF [i.2]) within the oneM2M platform are key for supporting basic and advanced semantic functionalities within the oneM2M platform.
An ontology repository as represented by a <ontologyRepository> resource is capable of storing multiple ontologies in the unified languages adopted by the oneM2M system, e.g. RDFS/OWL. Each of the ontology under management is represented as an <ontology> resource in the oneM2M system. An <ontology> resource may contain the full representation of an ontology or the IRI reference to it. SPARQL queries can be applied directly on the <ontology> resource to perform semantic query and triple-level update.
An ontology repository may also provide the semantic validation service (see more in clause 7.10) via the <semanticValidation> child virtual resource. The service is triggered by sending a UPDATE request that contains the <semanticDescriptor> resource to be validated to the <sematnicValidation> virtual resource.
The resource type definitions of <ontologyRepository>, <ontology> and <semanticValidation> are specified in oneM2M TS-0001 [1], while the corresponding resource procedures are specified in clause 6 of this document.

10)
11)
12)
13)
14)
15)
16)
17)
18)
-----------------------End of change 2--
-----------------------Start of change 3--
7.5 Semantic Queries and Query Scope
Note: In the following descriptions, the general term semantic resource is used to refer to <semanticDescriptor>, <ontology> resources, <contentInstance> resource containing semantic triples, and any other future resources containing semantic information (e.g. semantic content resources, etc.).
This clause describes semantic query procedures on semantic descriptions represented as RDF triples, given that an overall semantic description (i.e. a logical tree) may be distributed across several semantic resources.

In general, semantic queries enable the retrieval of both explicitly and implicitly derived information based on syntactic, semantic and structural information contained in data (such as RDF data). The result of a semantic query is the semantic information/knowledge for answering/matching the query. By comparison, the result of a semantic resource discovery is a list of identified resource URIs. Detailed comparison aspects between semantic query and semantic resource discovery are listed in table 7.5-1.

Table 7.5-1: Comparison between semantic query and semantic resource discovery

	Aspects
	Semantic Query
	Semantic Resource Discovery

	Objective
	The objective of Semantic Query is extracting “useful knowledge” over a set of “RDF data basis”.
	Semantic resource discovery is targeted to discovery of resources for further resource use (e.g., CRUD operations).

	Technical Focus
	Semantic Query is a more advanced feature leveraging semantics to derive knowledge from distributed semantic descriptors, based on a query statement.
	Semantic resource discovery is a resource-oriented feature to leveraging semantics to enable sophisticated resource discovery.

	Result
	The semantic query result (representing the derived “knowledge”) is provided as semantic information to answer the query not limited to resources URIs.
	The processed result of a semantic resource discovery is mainly to include a list of identified resource URIs.

A complete semantic query operation shall include the following steps:
· Step 1. The Originator shall be given or form a semantic query statement (i.e. using SPARQL) based on its needs.

· Step 2. The Originator shall form a RETRIEVE request including the semantic query statement in the semanticsFilter condition and shall set the “Semantic Query Indicator” parameter to “TRUE”. The Originator shall send the RETRIEVE request to a Receiver.

· Step 3. The Receiver shall execute the semantic query statement contained in the received semantic query request, for which the following information shall be required: a) the semantic query statement which is received from the Originator; and b) the RDF data basis. The RDF data basis is composed of all the RDF triples in scope of the semantic query. The RDF data basis may be distributed in the resource tree and stored in different semantic resources. Therefore, the Receiver shall perform Semantic Graph Scoping (SGS) which is the process of establishing the “query scope”, i.e. RDF data basis. An illustration of SGS is shown in Figure 7.5-1 and with two approaches described later.
· Step 4. Once the RDF data basis is determined through the SGS process, the Receiver shall apply the semantic query statement to the RDF data basis, yielding the semantic query result.

· Step 5. The semantic query result shall be included in a response message and returned to the Originator.

[image: image1.emf]... ...

oneM2M Normal Resource

oneM2M <semanticDescriptor> Resource

RDF

Data Basis

SD_n

SD_1

SD_1 SD_2

SD_3

SD_2

SD_3

Semantic Graph

Scoping (SGS)

A SPARQL Query

Statement

Executed on

Returns

Figure 7.5-1: An Illustration of SGS in oneM2M Architecture
The following two approaches may be used for the SGS process in Step 3 above, in order to decide the semantic query scope of the semantic query:

Approach-1: The scope of the semantic query is provided implicitly.

In Approach-1, a semantic query request message targets any resource (i.e. as specified by the “To” parameter) and the semantic query shall be executed relative to this target resource, similarly to other request messages. The scope of the semantic query is formed through the aggregation of the semantic contents of the target resource’s descendants. All the contents of semantic resource descendants of the target resource shall form the RDF data basis for this semantic query to be executed on. Thus, by targeting a oneM2M regular resource in the resource tree, the scope of the semantic query is implicitly decided as discussed above.
Approach-2: The scope of the semantic query is provided explicitly.

In Approach-2 the relevant semantic resources are the members of a <group> resource. The scope of the semantic query is formed through the aggregation of the semantic contents of all the group members. In this approach, the request targets the <semanticFanOutPoint> (as specified by the “To” parameter), i.e., the child resources of the <group> resource. As a result, this <group> resource explicitly specifies the RDF data basis of the semantic query (i.e. the scope is explicitly defined by the semantic resources which are the members of the <group> resource).
When the semantic query scope is explicitly defined by the <group> resource, the processing stage can be decoupled from the SGS process. For example, without processing any semantic query, the Receiver (e.g., a CSE) may proactively aggregate relevant semantic resources together using a <group> resource. The Originator may first discover various <group> resources and select the one with the desired RDF data basis, before launching a semantic query request. For example, the <semanticDescriptor> child resource of <group-1> resource may indicate that this group resource includes all the devices deployed in Building-1. The Originator, whose query is to be limited to Building-1, may then send its semantic query request to the <semanticFanOutPoint> child resource of the <group-1> resource.
In Approach-2, the SGS processing (included in step 3 above of the sematic query flow) shall include the following steps:
· The Receiver of the semantic query request targeting a <semanticFanOutPoint> resource shall use the memberIDs attribute of the parent <group> resource to retrieve all the related semantic information. If there are descriptors stored on different CSEs, individual RETRIEVE requests are sent to each CSE for retrieving the semantic information from the external resources.

· All semantic resources are accessed based on the respective access control policies. The <semanticFanOutPoint> resource uses membersAccessControlPolicyIDs attribute in the parent <group> resource for access control policy validation.

· Once all of the related semantic information has been retrieved (which forms the RDF data basis for this semantic query), the SPARQL query statement will be executed on the collected RDF data basis in order to provide the semantic query result.

The RETRIVE operation targeting a <semanticFanOutPoint> for semantic queries is detailed in clause 6.2.2
-----------------------End of change 3--
© 2017 oneM2M Partners

Page 1 (of 2)

