	Doc# oneM2M-PRO-2013-0034-Analysis_REST_HTTP_API .doc
Input Contribution
	[image: image1.png]

	INPUT CONTRIBUTION

	Group Name:*
	WG3(PROTOCOL)

	Title:*
	Analysis of HTTP based RESTful API

	Source:*
	Fujitsu (TTC)

	Contact:
	Shingo Fujimoto, FUJITSU, shingo_fujimoto@jp.fujitsu.com

	Date:*
	2013-08-27

	Abstract:*
	This contribution analyze HTTP based RESTful API .

	Agenda Item:*
	Protocol Analysis

	Work item(s):
	WI-0008

	Document(s)

Impacted*
	TR 0009 - oneM2M Protocol Analysis

	Intended purpose of

document:*
	 FORMCHECKBOX
 Decision

 FORMCHECKBOX
 Discussion

 Information

 Other <specify>

	Decision requested or recommendation:*
	Agree to include proposed text as part of Protocol-TR.

oneM2M Notice
The document to which this cover statement is attached is submitted to oneM2M. Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.
1 Introduction
As part of WI-0008, we better to understand pros and cons of HTTP-based RESTful API.

This contribution proposed the text for analysis of HTTP based RESTful API.

====START of Proposed text ====

7.x RESTful API
7.x.1
Background
The REST architectural style was developed by W3C Technical Architecture Group (TAG) in parallel with HTTP/1.1, based on the existing design of HTTP/1.0.
Even though REST is heavily influenced by the Web-Technology, in theory the REST architecture style is not bound to HTTP. However, HTTP is the only relevant instance of the REST.
REST-style architectures conventionally consist of clients and servers. Clients initiate requests to servers; servers process requests and return appropriate responses. Requests and responses are built around the transfer of representations of resources. A resource can be essentially any coherent and meaningful concept that may be addressed. A representation of a resource is typically a document that captures the current or intended state of a resource.

The client begins sending requests when it is ready to make the transition to a new state. While one or more requests are outstanding, the client is considered to be in transition. The representation of each application state contains links that may be used the next time the client chooses to initiate a new state-transition
The REST architectural style describes the following six constraints applied to the architecture, while leaving the implementation of the individual components free to design:

Client–server: A uniform interface separates clients from servers. This separation of concerns means that, for example, clients are not concerned with data storage, which remains internal to each server, so that the portability of client code is improved. Servers are not concerned with the user interface or user state, so that servers can be simpler and more scalable. Servers and clients may also be replaced and developed independently, as long as the interface between them is not altered.

Stateless: The client–server communication is further constrained by no client context being stored on the server between requests. Each request from any client contains all of the information necessary to service the request, and any session state is held in the client.

Cacheable: As on the World Wide Web, clients can cache responses. Responses must therefore, implicitly or explicitly, define themselves as cacheable, or not, to prevent clients reusing stale or inappropriate data in response to further requests. Well-managed caching partially or completely eliminates some client–server interactions, further improving scalability and performance.

Layered system: A client cannot ordinarily tell whether it is connected directly to the end server, or to an intermediary along the way. Intermediary servers may improve system scalability by enabling load-balancing and by providing shared caches. They may also enforce security policies.

Code on demand (optional): Servers can temporarily extend or customize the functionality of a client by the transfer of executable code. Examples of this may include compiled components such as Java applets and client-side scripts such as JavaScript.

Uniform interface: The uniform interface between clients and servers, discussed below, simplifies and decouples the architecture, which enables each part to evolve independently. The four guiding principles of this interface are detailed below.

The only optional constraint of REST architecture is "code on demand". One can characterise applications conforming to the REST constraints described in this section as "RESTful". If a service violates any of the required constraints, it cannot be considered RESTful.
7.x.2 Status
· HTTP version 1.1 was published as RFC 2616 (Official Protocol Standards) in 1996.
· Extensible Markup Language (XML) 1.0 (Fifth Edition) was published as W3C Recommendation on 26 November 2008.

· “The application/json Media Type for JavaScript Object Notation (JSON)” was published as RFC4627 on July 2006.
7.x.3 Intended Use

RESTful API is designed to provide, easy to understand, scalable, secure APIs for Web service in distributed computing environment, like the Internet.
7.x.4 Deployment Trend

According to the ‘API Directory’ provided by independent web site ‘programableweb.com’, over 6000 RESTful APIs are published (as of Aug 27th, 2013).
Since API’s value can be enhanced by combined use of other APIs, called ‘mush up’, choosing API to be ‘RESTful’ potentially increase its value as twice or more.
7.x.5 Key Features

Using HTTP
You can develop robust, secure, scalable system with RESTful API, if you could design the system to use HTTP correctly.
RESTful API also can be secured by applying TLS. Unlike other solutions, TLS will not imply the complexity. Additionally, TLS support by dedicated TLS acceleration hardware or embedded feature on processor chips, can increase performance on secured data transmission.
Using XML and JSON
Both XML and JSON can carry extensible data structures easily.
Even JSON format can transfer same information in smaller size than XML, XML can provide strong message-level security, like partial encryption and/or digital signature which cannot be provided by JSON.

REST isn't just about JSON or XML though, but any of the media types that the browser or platform can natively handle with content negotiation mechanism which is part of HTTP specification.
7.x.6 Security

REST is based on HTTP, and REST services are prone to the same vulnerabilities as standard web applications, including broken authentication, injection attacks, cross-site scripting and cross-site request forgery.
Fortunately, many HTTP security practices can be successfully applied for securing REST services, several rules are recommended as follows:

· Do employ the same security mechanisms for your APIs as any web application your organization deploys. For example, if you are filtering for XSS on the web front-end, you must do it for your APIs, preferably with the same tools.

· Don't roll your own security. Use a framework or existing library that has been peer-reviewed and tested...

· Unless your API is a free, read-only public API, don't use single key-based authentication. It's not enough. Add a password requirement.
· Don't pass unencrypted static keys. If you're using HTTP Basic and sending it across the wire, encrypt it.
· Ideally, use hash-based message authentication code (HMAC) because it's the most secure.

REST services can be secured by those rules with configuring a policy, ensuring that access to the service requires usage of TLS and authorizing service access based on group membership.
7.x.7 Dependencies

REST API depends on HTTP, XML, and JSON specifications.
7.x.8 Benefits and Constrains

Biggest benefit of REST API is using HTTP, but biggest pit hole can be also using HTTP.
The system can be designed badly even if it uses HTTP.

© 2013 oneM2M Partners
 Page 4 (of 4)

[image: image1.png]