	Doc# oneM2M-PRO-2013-0034R01-Analysis_REST_HTTP_API .doc.docx
Input Contribution
	[image: image1.png]

	INPUT CONTRIBUTION

	Group Name:*
	WG3(PROTOCOL)

	Title:*
	Analysis of RESTful style protocols

	Source:*
	Fujitsu (TTC)

	Contact:
	Shingo Fujimoto, FUJITSU, shingo_fujimoto@jp.fujitsu.com

	Date:*
	2013-09-10

	Abstract:*
	This contribution analyze HTTP based RESTful API .
R01: revised for moving original texts to new chapter titled “RESTful style protocols” as suggested by WG members

	Agenda Item:*
	Protocol Analysis

	Work item(s):
	WI-0008

	Document(s)

Impacted*
	TR 0009 - oneM2M Protocol Analysis

	Intended purpose of

document:*
	 FORMCHECKBOX
 Decision

 FORMCHECKBOX
 Discussion

 FORMCHECKBOX
 Information

 FORMCHECKBOX
 Other <specify>

	Decision requested or recommendation:*
	Agree to include proposed text as part of Protocol-TR.

oneM2M Notice
The document to which this cover statement is attached is submitted to oneM2M. Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.
1 Introduction
As part of WI-0008, we better to understand pros and cons of HTTP-based RESTful API.
This contribution proposed the text for analysis of HTTP based RESTful API.
====START of Proposed text ====
5.x Analysis of Design Styles
5.x.1 RESTful Style Protocols

The REST architectural style was developed by W3C Technical Architecture Group (TAG) in parallel with HTTP/1.1, based on the existing design of HTTP/1.0.

REST-style architectures conventionally consist of clients and servers. Clients initiate requests to servers; servers process requests and return appropriate responses. Requests and responses are built around the transfer of representations of resources. A resource can be essentially any coherent and meaningful concept that may be addressed. A representation of a resource is typically a document that captures the current or intended state of a resource.

The client begins sending requests when it is ready to make the transition to a new state. While one or more requests are outstanding, the client is considered to be in transition. The representation of each application state contains links that may be used the next time the client chooses to initiate a new state-transition
The REST architectural style describes the following six constraints applied to the architecture, while leaving the implementation of the individual components free to design:

Client–server: A uniform interface separates clients from servers. This separation of concerns means that, for example, clients are not concerned with data storage, which remains internal to each server, so that the portability of client code is improved. Servers are not concerned with the user interface or user state, so that servers can be simpler and more scalable. Servers and clients may also be replaced and developed independently, as long as the interface between them is not altered.

Stateless: The client–server communication is further constrained by no client context being stored on the server between requests. Each request from any client contains all of the information necessary to service the request, and any session state is held in the client.

Cacheable: As on the World Wide Web, clients can cache responses. Responses must therefore, implicitly or explicitly, define themselves as cacheable, or not, to prevent clients reusing stale or inappropriate data in response to further requests. Well-managed caching partially or completely eliminates some client–server interactions, further improving scalability and performance.

Layered system: A client cannot ordinarily tell whether it is connected directly to the end server, or to an intermediary along the way. Intermediary servers may improve system scalability by enabling load-balancing and by providing shared caches. They may also enforce security policies.

Code on demand (optional): Servers can temporarily extend or customize the functionality of a client by the transfer of executable code. Examples of this may include compiled components such as Java applets and client-side scripts such as JavaScript.

Uniform interface: The uniform interface between clients and servers, discussed below, simplifies and decouples the architecture, which enables each part to evolve independently. The four guiding principles of this interface are detailed below.
Editor’s note : this section should be rewritten.
The only optional constraint of REST architecture is "code on demand". One can characterise applications conforming to the REST constraints described in this section as "RESTful". If a service violates any of the required constraints, it cannot be considered RESTful.
Editor’s Note: Actual texts should be generated as original one or declare as reference from source of text.
5.x.
· 1.1 Protocols

The

following protocols adhere to the

principles of

RESTful design:
· HTTP as RESTful API
· CoAP
·
·

·
·
·
·
·

5.x.2 SOAP Style Protocols
5.x.2.1 Protocols
The following protocols adhere to the principles of SOAP style design:

5.x.3 RPC Style Protocols
5.x.3.1 Protocols
The following protocols adhere to the principles of RPC style design:

5.x.4. Comparison of protocol design styles
Editor’s Note <Table> should be inserted with analysis
© 2013 oneM2M Partners
 Page 3 (of 3)

[image: image1.png]