	Doc# oneM2M-Template-Input-Contribution-2013.doc
Input Contribution
	[image: image1.png]

	INPUT CONTRIBUTION

	Group Name:*
	WG3 - Protocols

	Title:*
	CoAP Analysis Update

	Source:*
	Cisco Systems: Mukesh Taneja and Gale Lightfoot

	Contact:
	

	Date:*
	<2013-09-21>

	Abstract:*
	Update to Section 7 of the Protocol Analysis document: That dealing with the CoAP Protocol

	Agenda Item:*
	Protocol Analysis

	Work item(s):
	

	Document(s)

Impacted*
	M2M Protocol Analysis Technical Report

	Intended purpose of

document:*
	xx Decision

 FORMCHECKBOX
 Discussion

 Information

 Other <specify>

	Decision requested or recommendation:*
	Replacement of Section 7.1 with the text contained herein. That section dealing with the analysis of the CoAP Protocol.

oneM2M Notice
The document to which this cover statement is attached is submitted to oneM2M. Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.
We suggest the alterations to Section 7.1 as highlighted below.
7.1
CoAP - Constrained Application Protocol
The following clauses describe the Constrained Application Protocol CoAP. [i.4]
7.1.1
Background
The Constrained Application Protocol (CoAP) is a specialized web transfer protocol for use with constrained nodes and constrained (e.g., low-power, lossy) networks. The nodes often have 8-bit microcontrollers with small amounts of ROM and RAM, while constrained networks such as 6LoWPAN often have high packet error rates and a typical throughput of 10s of kbit/s. The protocol is designed for machine-to-machine (M2M) applications such as smart energy and building automation. CoAP provides a request/response interaction model between application endpoints, supports built-in discovery of services and resources, and includes key concepts of the Web such as URIs and Internet media types. CoAP is designed to easily interface with HTTP for integration with the Web while meeting specialized requirements such as multicast support, very low overhead and simplicity for constrained environments.

One of the main goals of CoAP is to design a generic web protocol for the special requirements of this constrained environment, especially considering energy, building automation and other machine-to-machine (M2M) applications. The goal of CoAP is not to blindly compress HTTP [RFC2616], but rather to realize a subset of REST common with HTTP but optimized for M2M applications. Although CoAP could be used for refashioning simple HTTP interfaces into a more compact protocol, it more importantly also offers features for M2M such as built-in discovery, multicast support and asynchronous message exchanges.

CoAP is designed to easily translate to HTTP for simplified integration with the web, while also meeting specialized requirements such as multicast support, very low overhead, and simplicity. Multicast, low overhead, and simplicity are extremely important for M2M devices, which tend to be deeply embedded and have much less memory and power supply than traditional internet devices have.

CoAP can run on most devices that support UDP or a UDP analogue, and is intended to be used for M2M / IoT segments such as home building automation and smart metering.

7.1.2
Status
The IETF Constrained RESTful environments (CORE) Working Group has done the major standardization work for this protocol. In order to make the protocol suitable to IoT and M2M applications, various new functionalities have been added. The protocol has completed IETF last call and received approved status on July 15, 2013.

CoAP is particularly targeted for small low power sensors, switches, valves and similar components that need to be controlled or supervised remotely, through standard Internet networks. CoAP is an application layer protocol that is intended for use in resource-constrained internet devices, such as wireless sensory network (WSN) nodes.

CoAP is getting standardized in the IETF CORE group.

Key WG documents of IETF CoRE group are as follows:

· CoRE Link Format – RFC6690

· CoAP Protocol – With IESG for publication as an RFC

· Blockwise transfer in CoAP: IETF draft. WG document.

· Observing resources in CoAP – IETF draft. WG document.

· CoRE Resource Directory – IETF draft. WG document

· Group communication for CoAP – IETF draft. WG document.

· Best practices for HTTP to CoAP Mapping Implementation – IETF draft. WG document.

There are several options proposed to be used with CoAP. Some of these are as follows:

· Conditional observe in CoAP: IETF draft

· CoAP Patience option: IETF draft

· Enhanced sleep mode support of IoT / M2M devices: IETF draft

· Stateful observation in CoAP (to optimize re-registration traffic in the network): IETF draft

· Minimum request interval for successive CoAP requests – IETF draft

· Transport of CoAP over SMS – IETF draft

· TCP transport for CoAP – IETF draft

· CoAP option to indicate payload length – IETF draft

· CoAP over SMS – IETF draft

7.1.3
Category and Architectural Style

The Constrained Application Protocol (CoAP) is a specialized web transfer protocol for use with constrained nodes and constrained (e.g., low-power, lossy) networks. The nodes often have 8-bit microcontrollers with small amounts of ROM and RAM, while constrained networks such as 6LoWPAN often have high packet error rates and a typical throughput of 10s of kbit/s. The protocol is designed for machine-to-machine (M2M) applications such as smart energy and building automation. CoAP provides a request/response interaction model between application endpoints, supports built-in discovery of services and resources, and includes key concepts of the Web such as URIs and Internet media types. CoAP is designed to easily interface with HTTP for integration with the Web while meeting specialized requirements such as multicast support, very low overhead and simplicity for constrained environments.

The use of web services (web APIs) on the Internet has become ubiquitous in most applications, and depends on the fundamental Representational State Transfer [REST] architecture of the web. The Constrained RESTful Environments (CoRE) work aims at realizing the REST architecture in a suitable form for the most constrained nodes (e.g. 8-bit microcontrollers with limited RAM and ROM) and networks (e.g. 6LoWPAN, [RFC4944]). Constrained networks such as 6LoWPAN support the fragmentation of IPv6 packets into small link- layer frames, however incurring significant reduction in packet delivery probability. One design goal of CoAP has been to keep message overhead small, thus limiting the need for fragmentation.

One of the main goals of CoAP is to design a generic web protocol for the special requirements of this constrained environment, especially considering energy, building automation and other machine-to-machine (M2M) applications. The goal of CoAP is not to blindly compress HTTP [RFC2616], but rather to realize a subset of REST common with HTTP but optimized for M2M applications. Although CoAP could be used for refashioning simple HTTP interfaces into a more compact protocol, it more importantly also offers features for M2M such as built-in discovery, multicast support and asynchronous message exchanges.

The protocol supports the caching of responses in order to efficiently fulfil requests. Simple caching is enabled using freshness and validity information carried with CoAP responses. A cache could be located in an endpoint or an intermediary.

Proxying is useful in constrained networks for several reasons, including network traffic limiting, to improve performance, to access resources of sleeping devices or for security reasons. The proxying of requests on behalf of another CoAP endpoint is supported in the protocol. When using a proxy, the URI of the resource to request is included in the request, while the destination IP address is set to the address of the proxy.

As CoAP was designed according to the REST architecture [REST] and thus exhibits functionality similar to that of the HTTP protocol, it is quite straightforward to map from CoAP to HTTP and from HTTP to CoAP. Such a mapping may be used to realize an HTTP REST interface using CoAP, or for converting between HTTP and CoAP. This conversion can be carried out by a cross-protocol proxy ("cross-proxy"), which converts the method or response code, media type, and options to the corresponding HTTP feature.

7.1.4
Intended use

CoAP (Constrained Application Protocol) over UDP is used for resource constrained, low-power sensors and devices connected via lossy networks, especially when there is a high number of sensors and devices within the network. Soon to be released as a suite of IETF RFCs, CoAP has already found success as a key enabling technology for electric utility AMI (advanced metering infrastructure) and DI (distributed intelligence) applications

CoAP makes use of two message types, requests and responses, using a simple binary base header format. The base header may be followed by options in an optimized Type-Length-Value format. CoAP is by default bound to UDP and optionally to DTLS, providing a high level of communications security.

7.1.5
Deployment Trend
First IoT CoAP Plugtest interoperability event organized by ETSI, IPSO Alliance and Probe-IT project was held in March 2012. This interoperability event tested features that included the base CoAP specification, CoAP Block Transfer, CoAP Observation and the the CoRE Link Format. As per draft-bormann-core-roadmap-03, it was attended by 18 companies and more than 3000 tests were performed in this event. 2nd plugtest event was held in Nov 2012.

7.1.6
Key features
The key features of CoAP are:

· CoAP is a RESTful protocol.

· Four methods similar to HTTP: Get, Put, Post and Delete. Three types of response code: 2.xx (success), 4.xx (client error) and 5.xx (server error).

· Four different message types: Confirmable, Non-Confirmable, Acknowledgement and Reset (Nack).

· Synchronous message exchange

· Asynchronous message exchange via Observe / Notifications Client uses Observe option with Get request to indicate interest in getting further updates from server. Client receives an asynchronous notification each time state of resource changes at server.

· Conditional Observe allows CoAP clients to be informed only when certain conditions on observed resources are met (such as inform periodically or only inform when observed value changes by a pre-specified step size)

· Easy to proxy to and from HTTP.

· Constrained web protocol fulfilling M2M requirements.

· UDP [RFC0768] binding with optional reliability supporting unicast and multicast requests. Confirmable and Acknowledgement / Reset messages to provide optional reliability when required. Low header overhead and reduced parsing complexity.

· URI and Content-type support.

· Simple proxy and caching capabilities.

· A stateless HTTP mapping, allowing proxies to be built providing access to CoAP resources via HTTP in a uniform way or for HTTP simple interfaces to be realized alternatively over CoAP.

· Security binding to Datagram Transport Layer Security (DTLS) [RFC6347]. A wide variety of key management mechanisms may be used for this purpose.

· CoRE link format that defines use of Web Linking using link formats for use by constrained devices to describe hosted resources, their attributes and relationships between links [RFC6690] A well known URI “./well-known/core” is used as a default entry point for requesting list of links about the resources hosted by a server

· A Resource Directory mechanism where IoT / M2M devices (i.e. CoAP servers) can register / update their list of resources. It stores the URIs (called links) to resources stored on servers. If a device is in sleep mode and not able to communicate with the network, it can be discovered via this resource directory. It could also be used if network doesn’t support multicast traffic efficiently.

· Mechanism to transfer multiple blocks of information from a resource representation in multiple request-response pairs at CoAP message level itself (i.e. without relying on IP fragmentation). Large file transfers (such as firware updates) can be done using this mechanism.

· Group based communication using (unreliable) IP multicast by source sending non-confirmable CoAP message to a multicast IP address (and via serial unicast for links that do not support multicast). Some other group based communication mechanisms being explored include the following: overlay multicast that uses proxies to deliver IP packets to end devices, and support of multicast at CoAP level without any explicit multicast support from lower layers.

· CoAP Patience option that informs a recipient of the preferred time frame for a response or request depending on usage context. Useful for time (or delay) tolerant exchanges

· Proposal for a mechanism where device can register its sleep state and related parameters (such as sleep duration, sleep / active state etc.) with the Resource Directory

· Stateful Observation intends to reduce overhead in the network due to multiple re-registration requests from CoAP client to CoAP server when server (i.e. IoT / M2M device) is not in a position to accept additional clients

· Identification of Proxies between a CoAP client and CoAP server.

· Provides mechanism where a client and server can negotiate the minimum time between two subsequent requests. Helps to reduce excessive load at the CoAP server

· An IETF draft “CoAP Payload Length Option Extension” defines a way to indicate length of the payload when underlying transport layer (such as for RS 232, RS 422 or RS 485) doesn’t indicate payload length.

· Mechanism to transport CoAP over SMS for cellular networks

· Representation of links in JSON format in unconstrained environment

7.1.7
Protocol Stack

The interaction model of CoAP is similar to the client/server model of HTTP. However, machine-to-machine interactions typically result in a CoAP implementation acting in both client and server roles. A CoAP request is equivalent to that of HTTP, and is sent by a client to request an action (using a method code) on a resource (identified by a URI) on a server. The server then sends a response with a response code; this response may include a resource representation.

Unlike HTTP, CoAP deals with these interchanges asynchronously over a datagram-oriented transport such as UDP. This is done logically using a layer of messages that supports optional reliability (with exponential back-off). CoAP defines four types of messages: Confirmable, Non-confirmable, Acknowledgement, Reset; method codes and response codes included in some of these messages make them carry requests or responses. The basic exchanges of the four types of messages are somewhat orthogonal to the request/response interactions; requests can be carried in Confirmable and Non- confirmable messages, and responses can be carried in these as well as piggy-backed in Acknowledgement messages. One could think of CoAP logically as using a two-layer approach, a CoAP messaging layer used to deal with UDP and the asynchronous nature of the interactions, and the request/response interactions using Method and Response codes (see Figure below). CoAP is however a single protocol, with messaging and request/response just features of the CoAP header.

+----------------------+

| Application |

+----------------------+

+----------------------+ \

| Requests/Responses | |

|----------------------| | CoAP
| Messages | |

+----------------------+ /

+----------------------+

| UDP |

+----------------------+
Fig. 7.1.7 Abstract layering of CoAP
7.1.8
Data Model
CoAP allows to explicitly indicate payload of the content type in its header. CoAP Content Format Registry provides following initial entries: plain text, XML, JSON, EXI, octet stream, link-format. New Internet media types may be used depending on the target IoT segment.

7.1.9
Security
As CoAP realizes a subset of the features in HTTP/1.1, the security considerations of [RFC2616] are also pertinent to CoAP. This section analyzes the possible threats to the protocol. There are a number of security limitations with CoAP, and this section will describe those in detail. These will include:

· Protocol Parsing, Processing URIs

· Proxying and Caching

· Risk of amplification

· IP Address Spoofing Attacks

· Cross-Protocol Attacks

· Constrained node considerations

COAP uses DTLS1.2 and security keys generated by DTLS are used to protect CoAP level messages. Some constraints associated with DTLS are as follows:

· It may be challenging to support DTLS in constrained M2M devices that have limited memory (such as RAM ~ 10 KB) and processing power.

· Use of DTLS (handshake protocol) results in high overhead in the network and that may not be desirable.

· No clear standardized definition of a constrained DTLS profile

· No efficient support of multicast with IP DTLS

· No standardized approaches for (dynamic) key management for group based communication

7.1.10
Dependencies
· CoAP is designed to run over datagram transport protocol such as UDP. In this case, it uses DTLS to provide application layer security.

· An IETF draft “A TCP transport for CoAP” is exploring changes needed to run CoAP over TCP. Use of CoAP over RS 232 / 422 / 485 is also being explored.

7.1.11
Benefits and Constraints
7.1.11.1 Benefits
· It is a lightweight application layer protocol designed for constrained devices (such as devices with 8-bit microcontroller and limited memory) and constrained networks (such as low power, low data rate, lossy networks that use IEEE802.15.4)

· It runs over UDP and avoids overhead of TCP

· It is easy to do HTTP – CoAP translation

7.2.11.2 Constraints

· Constraints associated with DTLS (as listed in the Security subsection)

· No standardized framework for authorization and access control for CoAP exists as of now

· No explicit support for real-time IoT application at present.

7.1.12
Support of oneM2M requirements

Support of oneM2M Requirements [i.2] by CoAP is shown in the following clauses:
7.1.12.1 Fully Supported Requirements
OSR-001, OSR-002, OSR-008, OSR-009, OSR-010, OSR-014, OSR-21, OSR-24, OSR-25, OSR-28, OSR-30, OSR-37, (To complete)

7.1.12.2 Partially Supported Requirements
OSR-00, OSR-013, OSR-015, OSR-020, OSR-022, OSR-029, OSR-030, OSR-033,OSR-035, OSR-036, OSR-040,

7.1.12.3
Disallowed Requirements
Editor’s Note: To be completed

© 2013 oneM2M Partners
 Page 1 (of 7)

[image: image1.png]