	Doc# oneM2M-Template-Input-Contribution-2013.doc 
Input Contribution
	[image: image4.png]






	INPUT CONTRIBUTION

	Group Name:*
	WG3  - Protocols

	Title:*
	XMPP Analysis

	Source:*
	Cisco Systems: Mukesh Taneja

	Contact:
	

	Date:*
	<2013-09-29>

	Abstract:*
	XMPP Analysis for  Section 7 of the Protocol Analysis document

	Agenda Item:*
	Protocol Analysis

	Work item(s):
	

	Document(s) 

Impacted*
	M2M Protocol Analysis Technical Report

	Intended purpose of

document:*
	 FORMCHECKBOX 
Decision

Discussion

 Information

 Other <specify>

	Decision requested or recommendation:*
	Addition of XMPP section in the M2M Protocol Analysis Technical Report


oneM2M Notice
The document to which this cover statement is attached is submitted to oneM2M.  Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.
We propose addition to Section 7 as highlighted below.
7.x
XMPP: eXtensible Messaging and Presence Protocol
The following clauses describe the eXtensible Messaging and Presence Protocol (XMPP). [i.4]
7.x.1
Background
XMPP was first proposed by Jabber open source community and later formalized by IETF in RFC3920.  It is an open XML based protocol for near real-time messaging, presence and request – response services.  Several extensions have been added to achieve other capabilities.
7.x.2
Status
IETF RFCs and drafts:
· RFC6120: XMPP: Core (Standards Track RFC. Obsoleted RFC3920). It defines the base XMPP protocol along with RFC6121.
· RFC6121: XMPP: Instant Messaging and Presence. Standards track RFC (obsoletes RFC 3921)

· RFC6122: XMPP Address Format (Standards Track).  Updates RFC3920
XEP (XMPP Extension Protocol) documents specify extensions to XMPP and are standardized by XSF (XMPP Standards Foundation, http://xmpp.org/extensions/). 

7.x.3
Category and Architectural Style
·            XMPP uses a federated client-server model with multiple interconnected servers as shown in Figure 1.  Each server is responsible for managing its own domain and works cooperatively with servers of other domains as peers.  
· XMPP supports Availability for Concurrent Transactions (ACT) style where asynchronous end-to-end exchange of structured data is carried out using direct and persistent XML streams among a distributed network of globally addressable, presence aware clients and servers (RFC6120).
[image: image1.jpg]Gateway Client
(XMPP — another | «——5| {non-XMPP)
Protocol Y)
XMPP Client
()
XMPP server .
XMPP Server | (Home server [« XMPP Client
(of¥) for client X) (x)

XMPP Client X — XMPP ClientY communication:
XMPP Client X — Server {(Home server for X) — Server for Y — XMPP Client Y




Figure 1: XMPP Federated Client – Server Model
7.x.4
Intended use
It is intended to be used for P2P, P2M and M2M / IoT purposes.

7.x.5
Deployment Trend
· Millions of users world-wide use XMPP for instant messaging and presence based applications.

· List of some servers that support XMPP is given at http://xmpp.org/xmpp-software/servers/.  These servers provide basic messaging, presence and XML routing features.  These servers are available for different platforms such as Linux, Solaris, Windows and Mac OS X.

· A list of XMPP clients is available at http://xmpp.org/xmpp-software/clients/. These clients are available for different platforms such as Linux, Windows, Android, Blackberry, iOS, Mac OS X, J2ME, Palm OS and Browser.
· List of XMPP software libraries is available at http://xmpp.org/xmpp-software/libraries/. These libraries are implemented in various languages such as C, C++, Java, Perl, Ruby, PHP, Python, JavaScript, Tcl, Objective C, Flash / Action Script and C # /.Net/Mono.
· It is used by Jabber client. First instant messaging service based on  XMPP was Jabber.org.

· Jabber is used for text conferencing of IETF meetings.

· Cisco / WebEx uses XMPP.
· Google Talk uses XMPP protocol for instant messaging and presence.   It uses extensions of XMPP for VoIP, video and peer-to-peer communication. 
· Microsoft provides XMPP interface to its Microsoft Messenger Service and have XMPP gateways integrated in their messaging systems.

· Facebook presents an XMPP interface to its clients for its chat feature
7.x.6
Key Features
· XMPP supports Availability for Concurrent Transactions (ACT) style (RFC6120).

· It supports distributed client server architecture where a client needs to connect with a server to gain access to network. Only after that, it is allowed to exchange XML stanzas with other entities in the network (e.g. in a different domain). End-to-end communication is logically peer-to-peer but physically client-to-server, server-to-server and server-to-client.

· TLS (RFC 4492) is supported for encryption purposes (between client – server and server – server).

· SASL (Simple Authentication and Security Layer, RFC 4422) is used for authentication of initiating entity (e.g. an XMPP client) with the receiving entity (e.g. XMPP server) before the initiating entity is allowed to send XML stanzas to receiving entity.  
· Server to server model allows authenticated and secure inter-domain communication.

· Each domain is controlled by a server in a decentralized architecture. Each domain owner can define level of security needed, QoS and policies that are needed for that domain.
· XEP-0016 Privacy Lists: It can be used to block communication from some XMPP users. It can be potentially used for M2M applications as well. In some sense, it allows to implement simple policies to allow or block access to an M2M device from another M2M device.
· XEP-0030 Service Discovery: Allows to discover XMPP entities and features supported by these entities.

· XEP-0045 Multi-user conferencing service. 

· XEP-0060 Publish-Subscribe service. It enables to generate notifications and deliver those to multiple subscribers. It is more generalized than the special form of publish-subscribe model supported by presence service. Personal Event Profile (XEP-0163) specifies a stripped down profile of pubSub. Publish-Subscribe feature helps to support asynchronous communication for IoT / M2M applications.
· XEP-0079 Advanced-Message Processing. Allows including message expiration feature. It can be useful to indicate expiration time for M2M data that is cached.
· XEP-0080: Allows publishing location information. Useful to associate location information with M2M devices.
· XEP-0136 Message Archiving: In addition to P2P applications, this can be potentially used for caching M2M data at an XMPP server.

· XEP-0138 – Supports application layer compression. Useful in constrained IoT environment.
· XEP-0149 – Allows XMPP entities to specify time period for state, event or activity.
· Jingle specifications (XEP-0166, XEP-0167, XEP-0177, ….) extend XMPP for initiating and managing peer-to-peer media sessions between two XMPP entities.  It uses XMPP for signaling purposes and uses different transport methods (such as TCP, UDP, ….) for data plane packets.  
· XEP-0198 Reliability, Stream Management Protocol
· XEP-0199 : Provides support for application level pings 
· XEP-0124 and XEP-0206 : Allows use of HTTP as transport for XML streams.
· XEP-0203:  In addition to P2P applications, this can potentially be used for M2M applications. It allows an XMPP server to store a message if corresponding XMPP client (e.g. an M2M device) is in offline (e.g. sleep) state and send message as soon as it gets to know that the client / device is available. It gets to know the status via presence notification as the client / device moves from offline (sleep) state to available state.
· XEP-0322 Efficient XML Interchange (EXI) Format for XMPP. Useful for M2M applications.
· XEP-0323 Sensor data:  It provides architecture, data structures and basic operations for sensor (M2M) data communication over XMPP networks. This is designed for implementation in sensors that may have limited amount of memory or processing power.
· XEP-0325 Internet of Things – Control: It provides mechanism to control actuators in XMPP based sensor networks.
· XEP-0326 Internet of Things – Concentrators
7.x.7
Protocol Stack

As described in RFC6120, XMPP is an application profile of XML that enables near real-time exchange of structured yet extensible data between any two or more network aware entities.  An XMPP address (called a Jabber Identifier or JID) is represented as localpart@domainpart/resourcepart. An example of JID is tom@jabber.org/Laptop. 
For client-to-server communication, client resolves FQDN of the receiving entity to an IP address and opens a TCP connection to the advertised port at receiver’s IP address. Channel encryption is optionally supported using TLS and authentication is done using SASL. After a client authenticates with a server, it binds a specific resource to the stream so that server can properly address the client. Address for use over that stream is a full Jabber ID of the form <localpart@domainpart/resource>. Client opens an XML stream over TCP with a server (of its domain) and exchanges XML stanzas. 
Here, an XML stream is a container for carrying XML elements between two elements in a network. XML elements in an XML stream carry XML stanzas (i.e. actual payload message in XML format) or the elements that are used to negotiate the stream (e.g. for TLS and SASL purposes).  Each stream is unidirectional and thus two streams are needed between an initiating entity and a receiving entity for bidirectional transfer of XML stanzas. An XML stanza is a basic unit of meaning in XMPP.  An XML stream begins with an open tag <stream> and ends with a close tag </stream>. Each direction of conversation is represented as a streaming XML document that ends when that connection is terminated. Root node of that streaming document is the <stream/> element. 
For server-to-server communication, a server opens an XML stream over TCP with a server of different domain for inter-server (or inter-domain) communication. Server-to-server streams are typically negotiated in the initialization phase.
[image: image2.jpg]XML Stanzas

XMPP
XML Streams

TCP

SASL: Simple Authentication and Security Layer
TLS: Transport Layer Security
XMPP: eXtensible Messaging and Presence Protocol




Figure 2: XMPP 





















· 
· 
· 

There are three core stanza types, <presence/>, <message/> and <iq/>,  each with its own semantics. 





These three core stanzas are briefly described below:
· presence stanza: It is a basic publish-subscribe mechanism that allows several entities to receive information (about presence or availability) of a specific entity to which they have subscribed. In an IM application, presence information of a user’s (or client’s) contacts is displayed in user’s contact list or roster. When a user gets online, XMPP software announces user’s current status to server of user’s domain and that server informs user’s contacts about its online status. It is a simple broadcast mechanism in that sense. That server also informs the presence status of user’s contacts to user. 
· 
· 
· 
· 
An M2M device if not available for processing some action can use “do not disturb” to indicate that it is not available. 
· message stanza: This supports push mechanism where one entity pushes information to another entity. It supports real-time as well as delayed (i.e. store and push) delivery of messages. In IM scenario, message typically encapsulates chat data.  Messages are also used for group chat, event delivery and notifications. Message type includes the following: normal, chat, groupchat, headline and error. Message type “headline” is used to send alert and notifications.  Type “chat” is used for Instant Messaging.  
· 
· 
· 
· 
· 
· 
· 
· 
For IM, XMPP servers are optimized to handle large number of small messages. As an XMPP server knows about the availability (or presence) status of XMPP clients, it can quickly take an appropriate decision. It can either send message to that client quickly if that client is available or can store it in buffer and send as soon as it gets to know that the client is available. This feature can also be used for M2M purposes.
· IQ (Info/Query) stanza: It is a request-response mechanism that allows structured exchange of data between an initiating entity and a requesting entity in somewhat reliable way.  It allows operations such as get (reading), set (a variable), result and error. Values of type attribute used with IQ stanza are get, result, set and error.
· 
· 
· 
· 
· 
· 




Editor’s Note: Merging IoT related text from oneM2M-PRO-2013-0058-XMPP_Analysis_-_An_Update:
XEP-0323 describes framework for sensor data exchange in an XMPP based sensor network (SN).  Specific support of XMPP SN feature is indicated by including “urn”xmpp:sn” in the service discovery procedure.  A sensor device, an actuator or a gateway is an example of a node in a sensor network. A Concentrator is a device that handles multiple nodes (e.g. a node handling multiple sensors) behind it. Field Name is name of a field of sensor data  (e.g. pressure or vibration level).  Possible values of Field Type include the following: momentary value, calculated value, peak value, status value, historical value etc.

XEP-0325 specifies mechanisms to control actuators in an XMPP based sensor network.  <message> or <iq> stanzas can be used for this purpose.  Response from device is suppressed when using <message> stanza but <iq> stanza can be used if an acknowledgement is needed from the actuator.  Operation “Set” and the xmlns “urn:xmpp:sn:control” are used for this purpose in the message stanza. A control form can also be used to set values for various fields at the actuator. Actuators behind a concentrator can be controlled by specifying node elements for those actuators.

XEP-0326 deals with IoT Concentrators. A concentrator is defined to be a device that concentrates management of a subset of devices (of a sensor network) at a point.  A concentrator can be small (e.g. a PLC managing a set of sensors and actuators), medium (e.g. a branch of a network using a different communication protocol), large (e.g. a sub-system managed by a partner organization) or massive.  A concentrator works with multiple data sources where a data source is defined to contain a collection of nodes.  There are three types of data sources: Singular, Flat and Tree.  There is only one node object in a singular data source while a flat data source contains list of node objects.  Nodes are represented in a tree structure in a tree data source.  Asynchronous events are sent from a concentrator to each client that has subscribed to these using message stanzas. A concentrator can also store data from sensors locally (or at a remote server but controlled locally). 
A client that needs to communicate with a concentrator can get type of commands supported by getting capabilities of the concentrator. The xmlns ‘urn:xmpp:sn:concentrators’ is used for this purpose. Some such commands are given below:

· Get all data sources managed by the concentrator, 

· Get root data sources,

· Get child data sources (of a root data source), 

· Given node id, check to see if a node is supported by a (given) concentrator,

· Get basic information about a node supported by a concentrator (e.g. is it readable? Is it configurable? what are the parameters supported by a node e.g. location of a meter? etc.)

· Change order of nodes in a tree (by moving nodes up or down among siblings),

· Get and set parameters of a node,

· Create or destroy a node, 

· Get commands that are supported by a node,

· Subscribe to changes in data source by allowing devices to register for asynchronous events,

· Allow retrieval of historic events

XEP-0324, IoT provisioning, deals with access rights, user privileges and provisioning of services in a sensor network. This architecture uses distributed third parties that provide the following services:

· Control who can communicate with whom (i.e. control friendship)

· Control read access

· Control configure / write access

· Provide a user interface to set / update these policies

· Provide interoperability services (such as unit conversion)

A trust relationship is created between a device and a provisioning server using some mechanisms.   A device, client or user can get a token from a provisioning server that it can use to validate access rights with the server. <iq> stanza with xmlns ‘urn:xmpp:sn:provisioning’ is used for this purpose.  If a device supports provisioning feature, it advertises this feature in service discovery.

If there are multiple provisioning servers, device / client / user has one token from each of the provisioning server. While sending request to another entity (e.g. read or write some data), it includes all these tokens.  As an IoT device gets a request to read or write some data, it contacts a provisioning server with the tokens provided in the request and validates access rights of the requesting entity (Figure 1).  As an IoT device gets friendship request from a third party, it contacts provisioning server and checks whether or not to accept that request. A provisioning server can also delegate a secondary trust to a device by which that device can add its own friends. 
[image: image3.jpg]user X loT device (e.g. sensor) Provisioningserver

Request to read or write
{along with all the tokens
that user has received from
provisioningservers earlier)

loT device checks access
rights of user X

< | Acceptorrejectthe
request of user X,
dependingonthe
access status provided
by the provisioning
server





                 Figure 3: Validation of access rights during a read or write operation
Editor’s Note: To add more about IoT related extensions. 
7.x.8
Data Model
· XMPP is based on XML. 

· EXI is also supported for M2M applications.

7.x.9
Security
· TLS is supported for encryption of client-to-server and server-to-server communication. It is optional to use. Receiving entity (such as a client or a peer server) can mandate initiating entity to use TLS for data encryption.

· Initiating entity needs to authenticate with receiving entity before sending XML stanzas. If TLS is used, it is used before negotiating for SASL (Simple Authentication and Security Layer Protocol). It helps protect the authentication information exchanged during SASL negotiation. 

7.x.10
Dependencies
· XMPP streams as defined in RFC6120 use TCP as transport

· Use of HTTP as transport is allowed as per XEP-0124 and XEP-0206

· Uses TLS and SASL for security.

· Jingle extensions use XMPP for signalling but data plane packets are sent over other transport mechanisms such as TCP, UDP, ….
· XML
7.x.11
Benefits and Constraints
7.x.11.1  Benefits
· It is an open standard. IETF has approved XMPP RFCs for core methods (RFC6121), instant messaging and presence technology (RFC6121) and address format (RFC6122). XMPP standard foundation and IETF continue to extend this.

· XMPP is easily extensible. It provides basic set of features that can be expanded by protocol extensions (XEPs) to provide new set of features.

· Resource location is specified in the address itself and that makes it easy to identify different resources of an XMPP user.

· XMPP is already used by some devices for IM applications.  In that sense, it improves Person-to-Machine  (P2M) communication as user is able to directly interact with smart object running XMPP. It does not necessarily require use of protocol gateways as may be needed with CoAP (e.g. for HTTP to CoAP conversion) and MQTT.
· It supports a federated client-server architecture where no (global) centralized server is needed. Anyone with a domain name can run an XMPP server on its own domain. Public XMPP servers are available for everyone.

· Support of message, presence and IQ stanza types helps meet needs of several IoT applications.

· As it uses “store and push” mechanism to transfer data, it can store contents if the receiving entity is offline (e.g. if IoT device is in sleep mode).

· <xml:lang> common attribute enables internationalization.

· An XMPP address (or JID) can include any Unicode character and is not restricted to ASCII characters. 

· Some of the existing mechanisms (such as publish-subscribe, caching, delayed delivery, support for EXI, etc.) are applicable for IoT use cases as well. 
7.x.11.2 Constraints
· Uses of TCP may not be desirable for some IoT segments.  
· Overhead may be high if XML data is used but EXI extensions available for IoT applications.
7.x.12
Support of oneM2M requirements

Support of oneM2M Requirements [i.2] by XMPP  is shown in the following clauses:

7.1.12.1  Fully Supported Requirements
Editor’s Note: To be completed

7.1.12.2   Partially Supported Requirements
Editor’s Note: To be completed

7.1.12.3
Disallowed Requirements
Editor’s Note: To be completed

© 2013 oneM2M Partners
                                                                                                     Page 12 (of 14)



[image: image4.png]