[image: image1.png]

	oneM2M
Technical Specification

	Document Number
	oneM2M-TS-0010-MQTT Protocol Binding-V-0.1.0

	Document Name:
	MQTT Protocol Binding Technical Specification

	Date:
	2014-Feb-10

	Abstract:
	 This specification will cover the protocol specific part of communication protocol used by oneM2M compliant systems as ‘MQTT binding’

This Specification is provided for future development work within oneM2M only. The Partners accept no liability for any use of this Specification.
The present document has not been subject to any approval process by the oneM2M Partners Type 1. Published oneM2M specifications and reports for implementation should be obtained via the oneM2M Partners' Publications Offices.
About oneM2M

The purpose and goal of oneM2M is to develop technical specifications which address the need for a common M2M Service Layer that can be readily embedded within various hardware and software, and relied upon to connect the myriad of devices in the field with M2M application servers worldwide.

More information about oneM2M may be found at: http//www.oneM2M.org

Copyright Notification

No part of this document may be reproduced, in an electronic retrieval system or otherwise, except as authorized by written permission.

The copyright and the foregoing restriction extend to reproduction in all media.

© 2014, oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TTA, TTC).

All rights reserved.

Notice of Disclaimer & Limitation of Liability

The information provided in this document is directed solely to professionals who have the appropriate degree of experience to understand and interpret its contents in accordance with generally accepted engineering or other professional standards and applicable regulations. No recommendation as to products or vendors is made or should be implied.

NO REPRESENTATION OR WARRANTY IS MADE THAT THE INFORMATION IS TECHNICALLY ACCURATE OR SUFFICIENT OR CONFORMS TO ANY STATUTE, GOVERNMENTAL RULE OR REGULATION, AND FURTHER, NO REPRESENTATION OR WARRANTY IS MADE OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR AGAINST INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS. NO oneM2M PARTNER TYPE 1 SHALL BE LIABLE, BEYOND THE AMOUNT OF ANY SUM RECEIVED IN PAYMENT BY THAT PARTNER FOR THIS DOCUMENT, WITH RESPECT TO ANY CLAIM, AND IN NO EVENT SHALL oneM2M BE LIABLE FOR LOST PROFITS OR OTHER INCIDENTAL OR CONSEQUENTIAL DAMAGES. oneM2M EXPRESSLY ADVISES ANY AND ALL USE OF OR RELIANCE UPON THIS INFORMATION PROVIDED IN THIS DOCUMENT IS AT THE RISK OF THE USER.

Contents

3Contents

1
Scope
4
2
References
4
2.1
Normative references
4
2.2
Informative references
4
3
Definitions, symbols, abbreviations and acronyms
5
3.1
Definitions
5
3.2
Symbols
5
3.3
Abbreviations
5
3.4
Acronyms
6
4
Conventions
6
5
Introduction
7
5.1
MQTT overview
7
5.1.1
MQTT implementations
7
5.1.2
MQTT Details
8
5.1.2.1
Addressing a message – Topics and Subscriptions
8
5.1.2.2
Reliability
9
5.1.2.3
Retained Messages
9
5.2
Binding overview
9
6
Protocol Binding
10
6.1
Connecting to MQTT
10
6.2
Sending and Receiving Messages
11
6.2.1
Request and Response Messages
11
6.2.2
Sending a Request
12
6.2.3
Listening for and responding to a Request
12
7
Security
12
Proforma copyright release text block
12
Annexes
13
Annex <y>: Bibliography
13
History
14

1
Scope

The present document specifies the binding of Mca and Mcc primitives (message flows) onto the MQTT protocol. It specifies
1. How a CSE or AE connects to MQTT
2. How an Originator (CSE or AE) formulates a Request as an MQTT message, and transmits it to its intended Receiver
3. How a Receiver listens for incoming Requests

4. How that Receiver can formulate and transmit a Response
The Scope shall not contain requirements.

2
References

The following text block applies.

References are either specific (identified by date of publication and/or edition number or version number) or non‑specific. For specific references, only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.

2.1
Normative references

Clause 2.1 only shall contain normative (essential) references which are cited in the document itself. These references have to be publicly available and in English.
The following referenced documents are necessary for the application of the present document.
· Use the EX style, enclose the number in square brackets and separate it from the title with a tab (you may use sequence fields for automatically numbering references, see clause A.4: "Sequence numbering") (see example).

[1]
MQTT Version 3.1.1. Edited by Andrew Banks and Rahul Gupta. 12 December 2013. OASIS Committee Specification Draft 01 / Public Review Draft 01. http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/csprd01/mqtt-v3.1.1-csprd01.html.
[2]
oneM2M TS-0001: Architecture TS 0.3.1
[3]
oneM2M TS-0004: Core Protocol Specification (on going work)

[4]
IETF RFC 793. Postel, J. Transmission Control Protocol. September 1981. http://www.ietf.org/rfc/rfc793.txt

[5]
IETF RFC 5246. Dierks, T. The Transport Layer Security (TLS) Protocol V1.2, August 2008 http://tools.ietf.org/html/rfc5246
[6]
IETF RFC 6455. Fette, I. The WebSocket Protocol, December 2011 http://tools.ietf.org/html/rfc6455

2.2
Informative references
Clause 2.2 shall only contain informative references which are cited in the document itself.

The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.
· Use the EX style, add the letter "i" (for informative) before the number (which shall be in square brackets) and separate this from the title with a tab (you may use sequence fields for automatically numbering references).
 [i.1]
oneM2M Drafting Rules (http://member.onem2m.org/Static_pages/Others/Rules_Pages/oneM2M-Drafting-Rules-V1_0.doc)
3
Definitions, symbols, abbreviations and acronyms
Delete from the above heading the word(s) which is/are not applicable.
3.1
Definitions

Clause numbering depends on applicability.

· A definition shall not take the form of, or contain, a requirement.

· The form of a definition shall be such that it can replace the term in context. Additional information shall be given only in the form of examples or notes (see below).

· The terms and definitions shall be presented in alphabetical order.
For the purposes of the present document, the following terms and definitions apply:

Originator [2]: The actor that initiates a Request. An Originator can either be an Application or a CSE.
Receiver [2]: The actor that receives the Request. A Receiver can be a CSE or an Application.
Resource [2]: A uniquely addressable entity in oneM2M System such as by the use of a Universal Resource Identifier (URI). A resource can be accessed and manipulated by using the specified procedures.
3.2
Symbols

Clause numbering depends on applicability.

For the purposes of the present document, the [following] symbols [given in ... and the following] apply:

Symbol format

<symbol>
<Explanation>

<2nd symbol>
<2nd Explanation>

<3rd symbol>
<3rd Explanation>

3.3
Abbreviations

Abbreviations should be ordered alphabetically.

Clause numbering depends on applicability.

For the purposes of the present document, the following abbreviations given in [2] apply:
ADN
Application Dedicated Node
ADN-AE
AE which resides in the Application Dedicated Node

AE
Application Entity

ASN
Application Service Node

ASE-AE
Application Entity that is registered with the CSE in the Application Service Node

ASN-CSE
CSE which resides in the Application Service Node

CSE
Common Service Entity

CSF
Common Service Function

EF
Enabler Function

IN
Infrastructure Node

IN-AE
Application Entity that is registered with the CSE in the Infrastructure Node
IN-CSE
CSE which resides in the Infrastructure Node
MN
Middle Node

MN-CSE
CSE which resides in the Middle Node

NSE
Network Service Entity

In addition the following abbreviations apply:
TLS
Transport Level Security
Abbreviation format

<ABREVIATION1>
<Explanation>

<ABREVIATION2>
<Explanation>

<ABREVIATION3>
<Explanation>

3.4
Acronyms

Acronyms should be ordered alphabetically.

Clause numbering depends on applicability.

For the purposes of the present document, the [following] abbreviations [given in ... and the following] apply:

Acronym format

<ACRONYM1>
<Explanation>

<ACRONYM2>
<Explanation>

<ACRONYM3>
<Explanation>

4
Conventions

The key words “Shall”, ”Shall not”, “May”, ”Need not”, “Should”, ”Should not” in this document are to be interpreted as described in the oneM2M Drafting Rules [i.1]
5
Introduction
5.1
MQTT overview

MQTT is a light weight publish/subscribe messaging transport protocol, particularly well suited to event-oriented interactions. It was specifically designed for constrained environments such as those found in Machine to Machine (M2M) and Internet Of Things (IoT) contexts where a small code footprint is required and/or network bandwidth is at a premium.
MQTT includes reliability features which allow recovery from loss of network connectivity without requiring explicit involvement of the applications that are using it, however it does require an underlying network protocol that provides ordered, lossless, bi-directional connections.
For the purposes of the current specification, we restrict this underlying protocol to be one of the following:
· Raw TCP/IP [3]

· TCP/IP with Transport Level Security (TLS) [4]

· WebSocket [5] – either with or without the use of TLS

The features of MQTT include:
· The use of the publish/subscribe message pattern which provides one-to-many message distribution and decoupling of applications. This is described further in Section 5.1.1.

· Bidirectional communications. An entity can subscribe to receive messages without having a reliable IP address. This could be used to allow unsolicited requests to be sent to a Receiver, or an asynchronous response to be sent to an Originator, where the Originator or Receiver does not have an externally accessible IP address. It thus eliminates the need for long polling and can reduce the need for triggering.
· A messaging transport that is agnostic to the content of the payload. The message payload can be text or binary.

· A Session concept that can survive loss of network connectivity and can persist across multiple consecutive network connections. Messages can be stored and subsequently forwarded when connectivity is restored.
· Three levels of reliability (referred to as “qualities of service”) for message delivery within a Session:

· "At most once", where messages are delivered according to the best efforts of the operating environment. Message loss can occur. This level could be used, for example, with ambient sensor data where it does not matter if an individual reading is lost as the next one will be published soon after.

· "At least once", where messages are assured to arrive but duplicates might occur. This is best suited to messages which have idempotent semantics
· "Exactly once", where message are assured to arrive exactly once. This level could be used, for example, with billing systems where duplicate or lost messages could lead to incorrect charges being applied.
· A small transport overhead and protocol exchanges designed to minimize network traffic, with consequent additional savings on battery power when compared to HTTP.
· A Retained Message option, allowing new subscribers to get the last message to have been published on a topic prior to their subscription.

· A mechanism to notify interested parties when an abnormal disconnection occurs.
5.1.1
MQTT implementations

Like HTTP, the MQTT protocol is asymmetric in that it distinguishes between two different roles: client and server.

In MQTT terms, a Client is a program or device that uses MQTT. It always establishes the Network Connection to the Server. A Client can

•
Publish application messages that other Clients might be interested in.

•
Subscribe to request application messages that it is interested in receiving.

•
Unsubscribe to remove a request for application messages.

•
Disconnect from the Server.

An MQTT Server is an entity that accepts connections from Clients. Unlike HTTP it generally does not run any application logic, instead an MQTT Server acts as an intermediary between Clients publishing application messages and the Clients which have subscribed to receive them.

The MQTT specification [1] recommends the use of IANA registered ports 1883 (MQTT over raw TCP/IP) and 8883 (MQTT running over TLS).

Although the MQTT protocol is relatively simple to implement, applications normally make use of pre-built implementations:
· The applications themselves link to libraries that provide the MQTT client functionality. Libraries are available for a variety of programming languages and operating environments
· The MQTT server functionality can be provided by a standalone software process (possibly running on a server that is remote from the clients), a hardware appliance or a cloud-hosted MQTT service.
The Eclipse foundation through their M2M working group, provides open source MQTT client code via its Paho Project, and an open source server implementation via its Mosquitto project. Other open source and commercial implementations are also available.

5.1.2
MQTT Details

In this section we discuss a few details of MQTT that are relevant to the binding specification.
5.1.2.1
Addressing a message – Topics and Subscriptions

The MQTT protocol is based on the principle of publishing messages and subscribing to topics, or "pub/sub". Multiple clients connect to an MQTT server and subscribe to topics that they are interested in by sending an MQTT request protocol packet to the server. Clients also connect to the server and publish messages to the server, each message being associated with a topic. Many clients can subscribe to the same topics. The combination of the MQTT protocol and its server provides a simple, common interface for clients to connect to. A publisher can publish a message once and it be received by multiple subscribers.
[image: image2.png]Publisher

Figure 5.1 MQTT publish-subscribe messaging
A Message in MQTT is associated with a topic when it is published. Topics are structured into topic trees, which are treated as hierarchies, using a forward slash (/) as a separator. This allows arrangement of common themes to be created. Topics and topic trees can be created administratively, although its more common for a server to create a topic on-demand (subject to security policies) when a client first attempts to publish or subscribe to it.

A client registers its interest in topics by providing one or more topics filters. A topic filter can be a simple topic name, or it can contain special “wildcard” characters, which allow clients to subscribe to multiple topics at once, within a single level or within multiple levels in a topic tree.
5.1.2.2
Reliability
MQTT defines three levels of Quality of Service (QoS). The QoS defines how hard the server & client will try to ensure that a message is received. Messages can be sent at any QoS level, and this affects the way the message is transmitted from the client to the server. When a client requests a subscription, it requests the maximum QoS at which it wants to receive messages on that subscription. This controls the way that messages matching that subscription are transmitted from the server to that client. The QoS used to transmit a message from the server is always less than or equal to the QoS used to transmit it to the server. For example, if a message is published at QoS 2 and a client is subscribed with QoS 0, the message will be delivered to that client with QoS 0. If a second client is also subscribed to the same topic, but with QoS 2, then it will receive the same message but with QoS 2. For a second example, if a client is subscribed with QoS 2 and a message is published on QoS 0, the client will receive it on QoS 0.

QoS 0 messages are the least reliable. They are sent from client to server (or server to client) with no acknowledgement flowing in the opposite direction. A server is free to discard such messages.

QoS 1 is intended for idempotent messages. These messages are transmitted with a short packet ID. When a client (or server) receives such a message it sends an acknowledgement packet back to the message sender. The sender is required to save a copy of that message until it receives the acknowledgement, and if there is a loss of network connectivity before it receives that acknowledgement it is required to resend the message when connectivity is restored.
QoS 2 provides exactly once delivery. It uses a two-step acknowledgement protocol, in which both steps can be repeated an arbitrary number of times (if there’s a loss of connectivity) without causing duplication of the original application message. Both client and server are required to save a copy of the message during this process.

In summary, the higher levels of QoS are more reliable, but involve higher latency and have higher bandwidth requirements.

In order to be able to continue with the QoS1 or QoS2 delivery protocols after a network reconnection, the server needs to have a way of distinguishing the individual clients that connect to it. It does this by means of an identifier called a Client Id. A client provides this Id when it first connects and the server records it and uses it as a key to any server-side state (such as the status of incomplete message delivery) associated with that client. When the the client reconnects it presents the same Id, and that allows message delivery to complete. The client Id in effect represents the Id of the MQTT Session that is maintained between the client and the server.

5.1.2.3
Retained Messages
When a client publishes a message it can request that the message be retained. This means that the server will keep the message even after sending it to all current subscribers. If a new subscription is made that matches the topic of the retained message, then the message will be sent to the client. At most one such message is retained for any single topic. This is useful as a "last known good" mechanism. If a topic is only updated infrequently (such as for “report by exception”), then without a retained message, a newly subscribed client might have to wait a long time to receive an update. With a retained message, the client will receive an instant update.
5.2 Binding overview
The MQTT protocol binding specifies how the Mca or Mcc message flows are to be transported across the MQTT protocol. This assumes the existence of an MQTT server, as shown in the example given in Figure 5.2. This shows an AE communicating with a CSE via MQTT. Both AE and CSE use an MQTT client library, and the communications are mediated via the MQTT server. There is no need for the client libraries or the server to be provided by the same supplier, since the protocol they use to talk to each other is defined by the MQTT specification [1].

Furthermore, the binding does not assume that the MQTT client libraries or server implementations are necessarily aware that they are being used to carry Mca, Mcc or any other oneM2M-defined primitives.

The binding is defined in terms of the MQTT protocol flows that take place between the client libraries and the MQTT server in order to effect the transport of an Mca or Mcc primitive. In practice an AE or CSE implementation will make use of an API offered by the client library that it uses, however the mapping between these APIs and the underlying MQTT protocol is usually fairly straightforward.

[image: image3]
Figure 5.2 example of Mca using MQTT
This binding uses MQTT to provide a reliable bi-directional communications channel (with store/forward) between AE and CSE. Note that the AE and CSE each establish their own separate TCP/IP connection with the MQTT server. Thus the server must have an accessible IP address, but AE and CSE need not have. The benefits to oneM2M are thus
· Less need for triggering

· Removes need for long polling

· Store and forward

· Low transport overhead

Note that this bindings does not make use of the one->many pub/sub capabilities of MQTT. Messages are sent 1-1 from an originator to a receiver and vice versa.
6
Protocol Binding

In this section we define the key elements of the binding:
1. How a CSE or AE connects to MQTT

2. How an Originator (CSE or AE) formulates a Request as an MQTT message, and transmits it to its intended Receiver

3. How a Receiver listens for incoming Requests, and how it formulates and transmits a Response

6.1 Connecting to MQTT
In order to communicate, the two client parties (AE and CSE or CSE and CSE) must connect to a common MQTT server or to distinct MQTT servers that are bridged together (bridging is a mechanism that allows messages published to one server to be received by a client subscribed to a different server). There are several options:

· Both client parties use an MQTT server running in the Node that is hosting one of the CSEs

· Each party uses an MQTT server running in its Node, and the two MQTT servers are bridged to one another
· Both parties use an MQTT server running in a separate Node. This could be a single Infrastructure Node hosted by the M2M infrastructure provider and shared by all the CSEs

· A cloud hosted MQTT service. In this case it’s possible for the two parties to use different server addresses, if the cloud service provider bridges them together.
NOTE: How the two parties decide which of these options to follow and how they discover the IP address of the server(s) to use is FFS.
Once each party has determined the server that it should use, it then connects to it using the standard MQTT Connect protocol packet. The following additional considerations apply:

· The Connect packet contains a Client Id as described in section 5.1.2.2
Reliability. The Client Ids must be unique at least among all clients that connect to a given MQTT server instance. This condition will be satisified if an AE uses its App-Inst-ID and a CSE uses its CSE-ID. See Clause 7 of TS-0001 [2] for a discussion of these Identifiers.
· A client must set the “Clean Session” flag in the Connect Packet to false. This means that Session state related to that client will be retained by the MQTT Server in the event of a disconnection (deliberate or otherwise) of that client.

· A client must not set the “Will Flag”, so Will Messages are not enabled

· A client may choose to provide an MQTT KeepAlive value of 10 seconds or more, or to provide a KeepAlive of 0 (this disables the MQTT KeepAlive)

· The MQTT server may require that a client provides a User Name and a password (or other credential). For more information see Section 7 .

NOTE: We might want to use the Will Message to allow a client’s connection status to be tracked. This is FFS.
Also FFS is a discussion of connection strategy, for example a client might choose to keep the MQTT connection open permanently (restarting it as soon as possible after any unforeseen connection loss), it might choose to connect only when it wants to act as an Originator, or it might choose to connect on some kind of schedule.
Once a client has connected to the MQTT server it can then communicate (subject to authorisation policies) with any other client connected to (or bridged to) its server. There is no need for it to create another connection if it wants to communicate with a different counter-party.

When a client determines that it no longer wishes to participate in a Session with its MQTT Server it must perform the following steps:

· Disconnect from that server, if it is currently connected
· Reconnect with the clean Session flag set to true

· Disconnect again

These steps delete any state that the server might be holding on behalf of the client.

6.2 Sending and Receiving Messages

6.3 6.2.1
Request and Response Messages
MQTT does not have a data model to describe or constrain the content of its Application Message payloads (to that extent it is similar to a TCP socket). Mca and Mcc request messages will be serialized into XML following the serialization process defined in the Core Protocol specification [3].

Since oneM2M messages are idempotent, they should be sent with QoS 1. This provides reliability without incurring the overhead implied by QoS 2.

Note: MQTT messages are subjected to a theoretical maximum message size of 256M, but it is good practice not to send messages that are bigger than a few Megabytes. If a larger amount of data needs to be sent, it should be segmented into multiple messages. This is FFS and is something that might need to be addressed in the Core Protocol specification

6.2.2
Sending a Request

A request is transmitted by sending it as an MQTT Publish protocol packet to the MQTT Server. It uses a Topic that identifies the Receiver of the request. The precise structure of this Topic is FFS, but an initial suggestion is:

/oneM2M/<to>/req
· “oneM2M” is a literal string identifying the topic as being used by oneM2M

· <to> is the URI of the target resource (it is assumed that this includes the AE or CSE id)

· “req” is a literal string identifying this as a request.

NOTE: It might be useful to include some other components in the topic name, such as the Operation type. In particular it might be useful to include a <fr> field for security purposes. This is FFS
6.2.3
Listening for and responding to a Request

A Receiver listens for requests arriving via MQTT by subscribing to its Topic (as described in the previous section). Originator of the request).

When it receives a request, the receiver must check the request expiration timestamp (if any) contained in the request, since it is possible that that time might have passed while the message was being stored by MQTT.
It then transmits a response by sending an MQTT Publish packet to a response topic. This takes the form
/oneM2M/<to>/resp

· “oneM2M” is a literal string identifying the topic as being used by oneM2M

· <to> is the URI of the originator of the request (or the rd information from the request)
· “resp” is a literal string identifying this as a response.

The originator (or other interested party) must subscribe to this topic if it is to see the response.
7
Security

The following text is to be used when appropriate:

Proforma copyright release text block

This text box shall immediately follow after the heading of an element (i.e. clause or annex) containing a proforma or template which is intended to be copied by the user. Such an element shall always start on a new page.

Notwithstanding the provisions of the copyright clause related to the text of the present document, oneM2M grants that users of the present document may freely reproduce the <proformatype> proforma in this {clause|annex} so that it can be used for its intended purposes and may further publish the completed <proformatype>.

<PAGE BREAK>

Annexes

Each annex shall start on a new page (insert a page break between annexes A and B, annexes B and C, etc.).

Use the Heading 9 style for the title and the Normal style for the text.
Annex <A> (Informative/Normative):Remove Informative or Normative as appropriatTitle of annex (style H9)
<Text>

<PAGE BREAK>

Annex (Informative/Normative): Remove Informative or Normative as appropriateTitle of annex (style H9)
<Text>

B.1
First clause of the annex (style H1)
<Text>

B.1.1
First subdivided clause of the annex (style H2)
<Text>

<PAGE BREAK>
The following text is to be used when appropriate:

Annex <y>:
Bibliography

The annex entitled "Bibliography" is optional.

It shall contain a list of standards, books, articles, or other sources on a particular subject which are not mentioned in the document itself
It shall not include references mentioned in the document.

Use the Heading 9 style for the title and B1+ or Normal for the text.

· <Publication>: "<Title>".

OR

<Publication>: "<Title>".

<PAGE BREAK>

History

This clause shall be the last one in the document and list the main phases (all additional information will be removed at the publication stage).
	Publication history

	V1.1.1
	<dd-Mmm-yyyy>
	<Milestone>

	
	
	

	
	
	

	
	
	

	
	
	

	Draft history (to be removed on publication)

	V.0.1.0
	2014-02-08
	Initial Draft Version

	
	
	

	
	
	

	
	
	

	
	
	

 MQTT client library

Mca primitives transported over MQTT

Mca primitives transported over MQTT

OneM2M native AE

 MQTT Server

MN CSE or IN CSE

 MQTT client library

© oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TTA, TTC)
Page 3 of 14
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

