PRO-2014-0248-TR009_MQTT_Change_Request

[image: image1.png]

	CHANGE REQUEST

	Group Name:*

	WG3

	Source:*

	IBM

	Format:*

	TP11

	Date:*

	2014-06-07

	Contact:*

	 Peter Niblett (peter_niblett@uk.ibm.com);

	Reason for Change/s:*

	Some clarifications to the MQTT section of TR0009

	Clause/Sub Clause

Affected*

	6.2

	Agenda Item:*

	Contribution

	Work item(s):

	
	Document(s)

Impacted*

	oneM2M-TR 0009 Protocol Analysisv 0 6 3

	Intended purpose of

document:*

	 FORMCHECKBOX
 Decision

 FORMCHECKBOX
 Discussion

 Information

 Other <specify>

	Decision requested or recommendation:*

	Agree to make these changes to the TR (oneM2M-TR-0009)

	

oneM2M Notice
The document to which this cover statement is attached is submitted to oneM2M. Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.
Proposal

Make the following changes to Clause 6.2
The first change is to record the fact that the Eclipse M2M working group has changed its name and is now the Eclipse IoT working group. It also adds a mention of the Eclipse Mosquitto project (an MQTT server)

The next three sets of changes are simply clarifications to the existing text
The final set of changes affects the MQTT Constraints clause:
1. “The simple user name and password scheme is insufficient to support comprehensive access control.”

I wasn't sure quite what the constraint is here. Clearly you can (and most implementations) do implement access control based on the user name and password (which by the way can be a token). You can also base access control on a PKI certificate based identity if your client has one of those. The only constraint I can see is that the identity is established when you make the connection, and is then fixed for the duration of that connection. In the absence of a clearer explanation, I am proposing that we delete this constraint.

2. “MQTT does not permit fragmentation of messages, making it difficult to transmit large messages to constrained memory devices”

It is a bit strong to say "does not permit". It is true that it doesn't define a segmentation scheme as part of the protocol itself, but if you want to transfer a large block of data there's nothing to stop you from breaking the data into chunks and sending each chunk as a separate MQTT Publish message. I am proposing an update to the wording that reflects this.
3. “MQTT does not address connection security”.
You can use TLS to authenticate and/or encrypt the communications that flow over the connection. What is true is that MQTT doesn't provide its own proprietary security mechanisms, but instead you use it in composition with other security mechanisms. I am proposing an update to the wording that reflects this.

======================== START 1ST CHANGE ===========================

6.2.2
Status

Based on the pre-standard MQTT v3.1 specifications [i.3] there is an OASIS standardization process which started in March 2013 to make MQTT an open, simple and lightweight standard protocol for M2M telemetry data communication. The target for completion is August 2014.
The OASIS MQTT TC is producing a standard for the Message Queuing Telemetry Transport Protocol compatible with MQTT V3.1, together with requirements for enhancements, documented usage examples, best practices, and guidance for use of MQTT topics with commonly available registry and discovery mechanisms. It operates under the Non-Assertion Mode of the OASIS IPR Policy. Changes to the input document, other than editorial changes and other points of clarification, will be limited to the Connect command, and should be backward compatible with implementations of previous versions of the specification such that a client coded to speak an older version of the protocol will be able to connect to, and successfully use, a server that implements a newer version of the protocol. Candidates for enhancements include message priority and expiry, message payload typing, request/reply, and subscription expiry.

The Eclipse foundation through their IoT working group, is providing open source MQTT client libraries via their Paho Project. An Open Source server implementation is being developed by the Eclipse Mosquitto project.
======================== END 1ST CHANGE ===========================

======================== START 2ND CHANGE ===========================
6.2.3
Category and Architectural Style

MQTT is an M2M/Internet of Things (IoT) connectivity protocol. It is connection session reliant. It supports 14 command messages; the message format includes a fixed and variable header plus the payload.

The grouped commands are:

•
Client requests a connection to a server, Server acknowledges connection request & Client requests disconnection
•
Publish message & Publish acknowledgment

•
Assured publish received (part 1), Assured publish release (part 2) & Assured publish complete (part 3)

•
Subscribe to named topics & Subscription acknowledgement

•
Unsubscribe from named topics & Unsubscribe acknowledgment

•
Ping request & Ping response

======================== END 2ND CHANGE ===========================

======================== START 3RD CHANGE ===========================

6.2.6.2
Topics/Subscriptions

Messages in MQTT are published on topics. Topics are structured into topic trees, which are treated as hierarchies, using a forward slash (/) as a separator. This allows arrangement of common themes to be created. Topics and topic trees can be created administratively, although its more common for a server to create a topic on-demand (subject to security policies) when a client first attempts to publish or subscribe to it.
A subscription may contain special “wildcard” characters, which allow clients to subscribe to multiple topics at once, within a single level or within multiple levels in a topic tree.
======================== END 3RD CHANGE ===========================

======================== START 4TH CHANGE ===========================

6.2.6.5
Durable and non-Durable sessions
MQTT clients choose whether to use durable connection sessions or not. If a client requests a clean connection then a non-durable session is created. The server / broker discards any previously maintained information about the client, the client needs to re-subscribe to topics of interest, and the server / broker discards any state when the client disconnects.

If it does not request a clean connection a durable session is used. When the client disconnects any subscriptions it has will remain and any subsequent QoS 1 or QoS 2 messages will be stored until it connects again.

======================== END 4TH CHANGE ===========================

======================== START 5TH CHANGE ===========================

6.2.11.2
Constraints

·
· MQTT does not define a standard way of fragmenting application-level messages. Applications that need to transmit large messages to constrained memory devices must come up with their own fragmentation scheme.
· MQTT does not support transactions; there is no way to rollback a message once it has been sent, and no way of grouping a batch of separate messages into a single unit-of-work.

· MQTT does not explicitly address connection security; it relies on the transport layer to provide an appropriate level of integrity and encryption.
· MQTT does not support discovery of clients or servers

· MQTT is not extensible, requiring a new protocol revision to evolve capabilities

======================== END 5TH CHANGE ===========================

© oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TTA, TTC)
Page 1 of 3

