	Doc# PRO-2014-0584R01-XML_serialization.doc
Change Request
	[image: image1.png]

	Change Request

	Group Name:*
	WG3 (PRO)

	Source:*
	QUALCOMM Incorporated (TIA)

	Format:*
	PRO#14.2

	Date:*
	2014-12-12

	Contact:*
	Wolfgang Granzow, Qualcomm, wgranzow@qti.qualcomm.com

Nobu Uchida, Qualcomm, nuchida@qti.qualcomm.com

	Reason for Change/s:*
	This CR proposes text for the currently empty section on XML serialization (clause 8.3)

	CR against: Release*
	1

	CR against: TS/TR*
	TS-0004 - V-0.8.0

	Clauses/Sub Clauses*
	8.

	Type of change:*
	 FORMCHECKBOX
 Editorial change

 FORMCHECKBOX
 Bug Fix or Correction

 FORMCHECKBOX
 Change/correction to existing feature or functionality

 New feature or functionality

	Post Freeze checking:*
	This CR contains only essential changes and corrections
 YES FORMCHECKBOX
 NO FORMCHECKBOX

oneM2M Notice
The document to which this cover statement is attached is submitted to oneM2M. Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.
GUIDELINES for Change Requests:

Provide an informative introduction containing the problem(s) being solved, and a summary list of proposals.

Each CR should contain changes related to only one particular issue/problem.
Follow the principle of completeness, where all changes related to the issue or problem within a deliverable are simultaneously proposed to be made E.g. A change impacting 5 tables should not only include a proposal to change only 3 tables. Includes any changes to references, definitions, and acronyms in the same deliverable.
Follow the drafting rules.

All pictures must be editable.
Check spelling and grammar to the extent practicable.
Use Change bars for modifications.
The change should include the current and surrounding clauses to clearly show where a change is located and to provide technical context of the proposed change. Additions of complete sections need not show surrounding clauses as long as the proposed section number clearly shows where the new section is proposed to be located.
Multiple changes in a single CR shall be clearly separated by horizontal lines with embedded text such as, start of change 1, end of change 1, start of new clause, end of new clause.
When subsequent changes are made to content of a CR, then the accepted version should not show changes over changes. The accepted version of the CR should only show changes relative to the baseline approved text.
---------------------------- Start of change 1 ---------------------------------
1.1. Normative references

The following referenced documents are necessary for the application of the present document.

[1]
IETF RFC 5139: "Revised Civic Location Format for Presence Information Data Format Location Object (PIDF-LO)". No normative references to this in the text
[2]
IETF RFC 3986: "Uniform Resource Identifier (URI): Generic Syntax".

[3]
W3C XMLSchemaP2: "W3C Recommendation (2004), XML Schema Part 2:Datatypes Second Edition.".

[4]
oneM2M TS-0005 “Management Enablement (OMA)” No normative references to this in the text
[5]
oneM2M TS-0006 “Management Enablement (BBF)” No normative references to this in the text
[6]
oneM2M TS-0001 "Functional Architecture"

[7]
oneM2M TS-0003 “Security Solutions”

[8]
IEEE 754-2008: IEEE. IEEE Standard for Floating-Point Arithmetic. 29 August 2008. http://ieeexplore.ieee.org/servlet/opac?punumber=4610933

[9]
IETF RFC 3548: "The Base16, Base32, and Base64 Data Encodings". 2003.

[10]
IETF RFC 2045: "Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies". 1996.

[11]
IETF RFC 3987: "Internationalized Resource Identifiers (IRIs)" . January 2005.

[12]
IETF BCP 47: "Best Current Practices 47". Concatenation of RFC 4646:" Tags for Identifying Languages"(2006) and RFC 4647: "Matching of Language Tags"(2006).

[13]
IETF RFC 3588: "Diameter Base Protocol". September 2003.

[14]
IETF RFC 6733: "Diameter Base Protocol". October 2012.

[15]
3GPP TS 23.682: "Architecture enhancements to facilitate communications with packet data networks and applications" Release 11.

[16]
3GPP TS 29.368: "Tsp interface protocol between the MTC Interworking Function (MTC-IWF) and Service Capability Server (SCS)" Release 11.

[17]
3GPP TS 23.003: "Numbering, addressing and identification".

[18]
IETF RFC 4282: "The Network Access Identifier".

[19]
IETF RFC 7159: "The JavaScript Object Notation (JSON) Data Interchange Format".

[20]
Unicode: "The Unicode Consortium. The Unicode Standard.”

[21]
IETF RFC 3629: "UTF-8, a transformation format of ISO 10646".

[22]
oneM2M TS-0008 CoAP Binding

[23]
oneM2M TS-0009 HTTP Binding

[24]
oneM2M TS-0010 MQTT Binding

[25]
oneM2M TS-0011 Definitions and Acronyms

[26]
IETF RFC 6837: "Media Type Specifications and Registration Procedures".

[27]
ISO 3601:2004; "Data elements and interchange formats -- Information interchange -- Representation of dates and times".
[xx]
W3C, Extensible Markup Language (XML) 1.1 (Second Edition), W3C Recommendation 16 August 2006, edited in place 29 September 2006.
---------------------------- End of change 1 ---------------------------------

---------------------------- Start of change 2 ---------------------------------
8 Representation of primitives in data transfer
1.2. Introduction

This clause defines the canonical (i.e. preferred) representation of request and response primitives as XML documents or JSON objects. The process of translating objects (i.e. primitives in the present context) into a format that can be stored or exchanged between network entities is commonly denoted as serialization or marshalling.
In the following, we use the terms canonical XML serialization or canonical JSON serialization to describe the method of translating primitives into XML documents or JSON objects, respectively.
As described in clause 5.3, primitives may be exchanged directly between Originator and Receiver processes, or are mapped to messages used by communication protocols such as HTTP, CoAP or MQTT. When applying a particular protocol binding, it is permitted to adapt the serialization approach, in order to make use of protocol-specific features. For example, one or more primitive parameters may be mapped to protocol-specific header fields rather than to include them into the protocol-specific serialized JSON or XML which represents the message body.
In order to avoid verbose message content and to enable efficient communication, the short names introduced in clause 8.2 shall be applied in canonical XML and JSON serializations to identify primitive parameters and resource attribute names. This implies that short names are applied in any communication over the Mca, Mcc and Mcc’ reference points. Whether short or long names are applied in the Originator or Receiver processors, however, is left to implementation.
---------------------------- End of change 2 ---------------------------------

---------------------------- Start of change 3 ---------------------------------

1.3. Canonical XML serialization
This clause specifies XML serialization of Request or Response primitives, i.e. the process of representing a primitive as well-formed XML document compliant with W3C XML 1.1 [xx] and the additional requirements listed in clause 8.3.2 below.
1.3.1. Terminology
The following conventions are used in this clause:
· The terms XML document, root, entity, document entity, element, value, declaration and comment shall be interpreted as defined in W3C-Rec XML 1.1 [xx].
An XML document is composed of units called entities. An entity may refer to other entities to cause their inclusion into the document. A document begins in a "root" or document entity. Logically, an XML document is composed of declarations, elements, comments, character references, and processing instructions, all of which are indicated in the document by explicit markup.
1.3.2. Method
When representing a primitive as an XML document, conforming to the requirements of XML1.1 [xx], the additional requirements apply as described below:
The XML file shall be restricted to Unicode characters defined in [20] and encoded using UTF-8 as described in RFC 3629 [21].
The structure (i.e. simple, enumerated, complex types), and datatypes of each element of the XML document shall comply with the definitions in clause 6 and clause 7 of this specification, as follows:

1. The XML document entity (root element) of a primitive shall be named either “req” (for a request primitive) or “rsp” (for a response primitive)
2. Each primitive parameter applicable to the specific primitive type appears as an element of the document entity.

3. Each entity under the document entity shall contain only elements that correspond to oneM2M primitive parameters.
4. The name of each element which corresponds to a primitive parameter shall be the short name, as defined in clause 8.2.2.
5. If an element is defined in this specification as having a complex type, then it is serialized as an XML fragment, and its children are recursively serialized as elements of that XML fragment, using short names as defined in clause 8.2.

6. Each element in the XML document shall respect the constraints defined by the corresponding XSD datatype definition, this includes cardinality.
7. Each value assigned to an element in the XML document shall respect the corresponding datatype definition as specified in this document and the referred XSD.
8. Including comments into the XML document is permitted but should be avoided when the size of the message should be kept small.
9. The elements (at each level) may be serialized in any order. The order in which they appear in the corresponding XSD file is immaterial.

The Primitive Content (cn) parameter is serialized just like any other element of complex type. Generally, the Primitive Content parameter may include only a partial set of attributes specified for the resource type as indicated in the Resource type (ty) parameter, e.g. or partial Update Request or Retrieve procedures. For Notification Request primitives, the Primitive Content parameter includes a Notification data object as defined in clause 7.4.1.1 and the datatype definition given in CDT-notification-v1_0_0.xsd.
Editor’s note: Clause 7.4 requires some clarifications to make clear that the data object “notification” defined there represents the unit which goes into the Primitive Content (cn) parameter of a Notification Request primitive. We need to agree on the terminology. Shall we call this unit just “data object” or a “resource” although there is no resource type defined for it?
1.3.3. Examples
An example that shows a request primitive serialized into an XML document is shown below. Only mandatory primitive parameters and resource attributes are shown
<?xml version="1.1" encoding="UTF-8"?>
<m2m:req xmlns:m2m="http://www.onem2m.org/xml/protocols"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.onem2m.org/xml/protocols CDT-requestPrimitive-v0_8_0.xsd">
 <op>1</op>
 <to>//cse1.mym2msp.org/</to>
 <fr>//cse1234/app567</fr>
 <ri>0002bf63</ri>
 <ty>4</ty>
 <cn>
 <cin name="temp754">
 <toc>application/xml</toc>
 <con>PHRpbWU+MTc4ODkzMDk8L3RpbWU+PHRlbXA+MjA8L3RlbXA+DQo=</con>
 <enc>2</enc>
 </cin>
 </cn>
</m2m:req>
The XML elements have the following meaning:
· req: Root element of the Request primitive, which includes a reference to an XSD file which defines its datatype.
· op:
Operation parameter of datatype m2m:operation: in this example value = 1 indicates a “Create” operation.
· to:
To parameter of type m2m:anyURI: URI of the target resource.
· fr:
From parameter of type m2m:ID: ID of the Originator (either AE-ID or CSE-ID).
· ri:
Request Identifier parameter of type m2m:requestID: this could e.g. represent a counter number.
· ty:
Resource Type parameter of datatype m2m:resourceType: indicating type of the resource to be created (value = 4 indicates that a <contentInstance> resource shall be created).
· cn:
Primitive Content parameter of datatype m2m:primitiveContentType: the attributes of the resource to be provided by the Originator.
· cin: Root element of the <contentInstance> resource of datatype m2m:contentInstance: this includes the mandatory attributes (and optional attributes not shown in this example) supplied by the request Originator. The instance name is given in the XML name attribute, here name="temp754". In this example, the cn parameter includes an instance of a <contentInstance> resource which consists of three mandatory attributes: typeOfContent (toc), encoding (enc) referring to base64 encoding and content (con) of the <contentInstance> resource.
1.4. Canonical JSON serialization
1.5. Editor’s note: When the above part on XML serialization has been agreed, we probably need to include some updates into this part on JSON serialization for editorial alignment and correction of the primitive representation. Thereafter, this editor’s note can be removed.
1.5.1. Terminology
The following conventions are used in the clause that follows.

· The italicized terms object, member, name, array, number, string, boolean and null are to be interpreted as in RFC 7159 [19]

· The italicized term element is to be interpreted to encompass oneM2M Primitive Parameters, Resource Attributes and other elements or attributes used inside oneM2M complex type definitions
1.5.2. Method
The primitive shall be encoded as a JSON object, conforming to the requirements of RFC 7159 [19]. This JSON object shall be restricted to Unicode characters defined in [20] and encoded using UTF-8 as described in RFC 3629 [21]. The names in each object in the JSON shall be unique.
The structure of the top-level primitive object shall be determined by the datatype definitions in clause 6 and clause 7 of this specification, as follows:

1. Each primitive parameter appears as a member of the top-level primitive object.

2. The top-level member’s name shall be the short name of the parameter, as defined in clause 8.2.

3. The top-level primitive object shall contain only members that correspond to oneM2M primitive parameters.

4. If an element is defined in this specification as having a complex type, then it is serialized in the JSON member as an object and its children are recursively serialized as members of that object, using short names as defined in clause 8.1.

5. The membership of each nested object shall respect the cardinality constraints from the corresponding XSD complex type definition,

10. If an element is defined in this specification as having an atomic data type that is numeric in nature (e.g. xs:integer or a type derived from it) then its value is serialized into the JSON member as a number.

6. If an element is defined as having an atomic data type that is non-numeric then its value is serialized into the JSON member as a string.

7. If an element is defined as xs:boolean (or a type derived from xs:boolean) then it is serialized in the JSON member as a boolean.

8. If an element is defined as having an xs:list type in the corresponding XSD then it is serialized in the JSON member as an array.

9. If an element instance has a null value then it is serialized into the JSON member as a null, regardless of the datatype that it has in the corresponding XSD.
10. If an element is defined as having maxOccurs > 1 in the corresponding XSD then its parent JSON member is serialized as an array.
11. If an element has an XSD data type that is a simple type with XML attributes, then it is serialized in the JSON member as an object. The XML attributes appear as members of that object (using their short names) and the value of the element is serialized as a member of that object with the special name “val”.
12. The members (at each level) may be serialized in any order. The order in which they appear in the corresponding XSD file is immaterial.

The Content parameter is treated just like any other parameter of complex type. It is serialized as an object and its members are the attributes and/or child resource references of the Resource that is being transferred. The Content parameter is not required to contain all the attributes of the Resource.

Editor’s note: The method and rules described in this clause are subject to further review.

1.5.3. Examples
Here is an example that shows the payload of a request message serialized using JSON:
{“op”: “C”, “fr”: “//xxxxx/2345”, “to”: “//xxxxx/99”, “ri”: “A1234”, “cn”: {“se”: “0-5 2,6 * 10/1 * 2014/1”}, “ty”: 20}

· op: operation (in this case it’s Create)

· fr: ID of the Originator (either the AE or CSE)

· to: URI of the target resource
· ri: request identifier (this is a string)
· cn: attributes of the resource to be provided by Originator. This is serialized as a nested JSON object

· ty: type of resource to be created (in this case a Schedule resource). This is a number.
---------------------------- End of change 3 ---------------------------------

CHECK LIST

· Does this change request include an informative introduction containing the problem(s) being solved, and a summary list of proposals.?
· Does this CR contain changes related to only one particular issue/problem?
· Does this change request make all the changes necessary to address the issue or problem? E.g. A change impacting 5 tables should not only include a proposal to change only 3 tables. Includes any changes to references, definitions, and acronyms in the same deliverable?
· Does this change request follow the drafting rules?
· Are all pictures editable?
· Have you checked the spelling and grammar?
· Have you used change bars for all modifications?
· Does the change include the current and surrounding clauses to clearly show where a change is located and to provide technical context of the proposed change? (Additions of complete sections need not show surrounding clauses as long as the proposed section number clearly shows where the new section is proposed to be located.)
· Are multiple changes in this CR clearly separated by horizontal lines with embedded text such as, start of change 1, end of change 1, start of new clause, end of new clause.?
© 2014 oneM2M Partners
 Page 8 (of 8)

[image: image1.png]