	Doc# PRO-2016-0486-CR_TS0004_rootElement_in_primitives.doc
Change Request
	[image: image1.png]

	
	

	CHANGE REQUEST

	Meeting:*
	PRO#26

	Source:*
	Qualcomm Inc. (TIA)

	Date:*
	2016-12-07

	Contact:*
	Nobu Uchida, Qualcomm, nuchida@qti.qualcomm.com
Wolfgang Granzow, Qualcomm, wgranzow@qti.qualcomm.com

	Reason for Change/s:*
	Removal of encapsulation in JSON serialized primitives

	 CR against: Release*
	R2

	CR against: WI*
	 FORMCHECKBOX
 Active <Work Item number>

 FORMCHECKBOX
 MNT maintenance / <Work Item number(optional)>
 FORMCHECKBOX
 STE Small Technical Enhancements / < Work Item number (optional)>
Only ONE of the above shall be ticked

	CR against: TS/TR*
	TS-0004 V2.8.0

	Clauses/Sub Clauses*
	8.4, 8.5

	Type of change: *
	 FORMCHECKBOX
 Editorial change
 FORMCHECKBOX
 Bug Fix or Correction
 FORMCHECKBOX
 Change to existing feature or functionality
 FORMCHECKBOX
 New feature or functionality
Only ONE of the above shall be ticked

	Post Freeze checking:*
	This CR contains only essential changes and corrections? YES FORMCHECKBOX
 NO FORMCHECKBOX

This CR may break backwards compatibility with the last approved version of the TS? YES FORMCHECKBOX
 NO FORMCHECKBOX

This CR is a mirror CR? YES FORMCHECKBOX
 if YES, please indicate the document number of the original CR: NO FORMCHECKBOX

	Template Version:27 May 2015 (Dot not modify)

oneM2M Notice

The document to which this cover statement is attached is submitted to oneM2M. Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.

GUIDELINES for Change Requests:

Provide an informative introduction containing the problem(s) being solved, and a summary list of proposals.

Each CR should contain changes related to only one particular issue/problem.
In case of a correction, and the change apply to previous releases, a separated “mirror CR” should be posted at the same time of this CR
Follow the principle of completeness, where all changes related to the issue or problem within a deliverable are simultaneously proposed to be made E.g. A change impacting 5 tables should not only include a proposal to change only 3 tables. Includes any changes to references, definitions, and acronyms in the same deliverable.
Follow the drafting rules.
All pictures must be editable.
Check spelling and grammar to the extent practicable.
Use Change bars for modifications.
The change should include the current and surrounding clauses to clearly show where a change is located and to provide technical context of the proposed change. Additions of complete sections need not show surrounding clauses as long as the proposed section number clearly shows where the new section is proposed to be located.
Multiple changes in a single CR shall be clearly separated by horizontal lines with embedded text such as, start of change 1, end of change 1, start of new clause, end of new clause.
When subsequent changes are made to content of a CR, then the accepted version should not show changes over changes. The accepted version of the CR should only show changes relative to the baseline approved text.
Introduction
This CR proposes clarifications in TS-0004 to address an issue raised at the 3rd interoperability test event about the presence of root elements in JSON serialized primitives, see TP-2016-0250R01.
This CR suggests to clarify that JSON serialized request and response primitives shall not include “root elements” m2m:rqp and m2m:rsp, respectively. In contrast to JSON serialized primitives, XML serialized primitives shall include these root elements since otherwise this representation does not comply with the underlying XSD. For JSON serialization, compliance with the XSD cannot be mandated anyway.

This proposes clarification requires following changes:

TS-0004:
1) clarification in clause 8.4 that JSON serialization are not encapsulated under member names corresponding to XML root elements.
2) Clarification on the level of XSD compliance

3) Update of CBOR examples in clause 8.5 (applicable to Rel-2 only)

TS-0020: (see PRO-2016-0488)
Update of all given examples of JSON serialized primitives. This applies to clause 5.2 and Annex A.1.
-----------------------Start of change 1---

8.1 JSON serialization
8.1.1 Terminology

The following conventions are used in the clause that follows.

The italicized terms object, member, name, array, number, string, boolean and null are to be interpreted as in IETF RFC 7159 [19].

The italicized term element is to be interpreted to encompass oneM2M Primitive Parameters, Resource Attributes and other elements or attributes used inside oneM2M complex type definitions.

8.1.2 Method

The primitive shall be encoded as a JSON object, conforming to the requirements of IETF RFC 7159 [19]. This JSON object shall be restricted to Unicode characters defined in The Unicode Standard and encoded using UTF-8 as described in IETF RFC 3629 [21]. The names in each object in the JSON shall be unique.
The structure of the top-level primitive object shall be determined by the data type definitions in clause 6 and clause 7 of the present document, as follows:

1) All member's names shall be the short name defined in clause 8.2.

2) If an element is defined in the present document as having a complex type, then it is serialized in the JSON member as an object and its children are recursively serialized as members of that object, using short names as defined in clause 8.2.

3) The membership of each nested object shall respect the cardinality constraints from the corresponding XSD complex type definition,

4) If an element is defined in the present document as having an atomic data type that is numeric (including enumeration data types in clause 6.3.4) then its value is serialized into the JSON member as a number.

5) If an element is defined as having an atomic data type that is non-numeric then its value is serialized into the JSON member as a string.

6) If an element is defined as xs:boolean (or a type derived from xs:boolean) then it is serialized in the JSON member as a boolean.

7) If an element is defined as having an xs:list type in the corresponding XSD then it is serialized in the JSON member as an array.

8) If an element instance has a null value then it is serialized into the JSON member as a null, regardless of the data type that it has in the corresponding XSD.

9) If an element is defined as having maxOccurs > 1 in the corresponding XSD then its occurrences are serialized in a single JSON member as an array.
10) If an element has an XSD data type that is a simple type with XML attributes, then it is serialized in the JSON member as an object. The XML attributes appear as members of that object (using their short names) and the value of the element is serialized as a member of that object with the special name "val".

11) The members (at each level) may be serialized in any order. The order in which they appear in the corresponding XSD file is immaterial.

12) If an element has an XSD data type that is a complex type with XML attributes, then it is serialized in JSON as an object. The XML attributes appear as members of that object (using their short names) as do the XML elements.

The Content parameter is treated just like any other parameter of complex type. It is serialized as an object and its members are the attributes and/or child resource references of the Resource that is being transferred. The Content parameter is not required to contain all the attributes of the Resource. The JSON representation of the Content parameter shall be encapsulated by a member name as defined in the first column of Tables 7.5.2-1 and 7.5.2-2.
JSON serialized representations of request and response primitives shall not be encapsulated under member names m2m:rqp and m2m:rsp corresponding to the global elements as defined in the XSD of the primitives. Note that this is in contrast to XML serialized representations of primitives which shall include such root elements in order to assert XSD compliance, cf. clause 8.3.2. XSD compliance is not applicable to JSON representations. However, each individual member value shall comply with the datatype defined for the corresponding element in the respective XSD file.
8.1.3 Examples

An example of a request message serialized using JSON is given below:

{"op": "1", "fr": "//xxxxx/2345", "to": "//xxxxx/99", "rqi": "A1234", "pc": {"m2m:sch": {"se": "* 0-5 2,6,10 * * * *"}}, "ty": 18}

op: operation (in this case it is Create)

fr: ID of the Originator (either the AE or CSE)

to: URI of the target resource

rqi: request identifier (this is a string)

pc: attributes of the <schedule> resource with member name "m2m:sch" to be provided by Originator. This is serialized as a nested JSON object

ty: type of resource to be created (in this case a Schedule resource). This is a number.

Note that the Operation (op) parameter is present only in Request primitives. The presence of this parameter in JSON serialized primitive representations allows to differentiate Request primitives from Response primitives.

The example below shows an <AE> resource serialized using JSON where m2m:ae is a Global Element having an XML attribute "rn" defined in the XSD file with short names associated with the <AE> resource:

{
 "m2m:ae": {
 "rn": "appname",
 "aei": "CAE01",
 "ct": "20160404T132648",
 "et": "20160408T004648",
 "lt": "20160404T132648",
 "pi": "ONET-CSE-02",
 "ri": " REQID1",
 "ty": 2
 }
}

8.2 CBOR serialization
8.2.1 Method

Concise Binary Object Representation (CBOR) is a binary serialization format of structured data specified in IETF RFC 7049 [38]. CBOR provides unambiguous encoding of structured data into a binary representation and reverse decoding.

The specifics on how CBOR can be negotiated between protocol endpoints is protocol specific and defined by the individual bindings.
This clause defines the relationship between JSON objects as defined in clause 8.4 and CBOR representations.
Section 2 of IETF RFC 7049 [38] specifies the applicable CBOR encoding rules.
In particular, the following rules shall apply when using CBOR serialization:

· Text strings (i.e. any names/keys and text string values) shall be encoded as UTF-8 strings, CBOR major type 3.

· Integer numbers shall be encoded as CBOR major types 0 or 1.
· Floating point numbers shall be encoded as CBOR major type 7 with Additional Information 26 for single precision (32-bit) and Additional Information 27 for double precision (64-bit) formats.
Note that CBOR ignores whitespace characters (including space, LF/CR) if used for formatting of JSON objects in textual representations.

If decoding of CBOR serializations results in JSON objects with member names or values not compliant with the underlying XSD, this shall be interpreted as an error by the receiver of the primitive.
8.2.2 Examples

This clause presents some examples of CBOR serialized primitives. Note that due to given encoding options, a CBOR encoder may produce somewhat different binary serializations. However, in any case the CBOR decoding shall produce an equivalent representation in JSON format as shown in the examples below.

Example 1:

JSON representation (a request primitive of message length: 160 bytes):

{"op":1,"to":"//example.net/mncse1234","rqi":"A1000", "rcn":7,"pc":{"m2m:ae":{"rn":"SmartHomeApplication", "api":"Na56", "apn":"app1234"}},"ty":2}
CBOR representation as sequence of hexadecimal characters (length: 108 bytes):

a6427063a1466d326d3a6165a342726e54536d617274486f6d654170706c69636174696f6e43617069444e6135364361706e47617070313233344274790242746f572f2f6578616d706c652e6e65742f6d6e637365313233344372636e07426f700143727169454131303030
Example 2:

JSON representation (a response primitive of message length: 266 bytes):

{"rsc":2001,"rqi":"A1000","pc":{"m2m:ae":{"rn":"SmartHomeApplication","ty":2,"ri":"ae1","api":"Na56","apn":"app1234","pi":"cb1","ct":"20160506T153208", "lt":"20160506T153208","acpi":["acp1","acp2"],"et":"20180506T153208", "aei":"S_SAH25"}}}
CBOR representation as sequence of hexadecimal characters (length: 178 bytes):

a3427063a1466d326d3a6165ab43617069444e6135364361706e47617070313233344265744f3230313830353036543135333230384263744f323031363035303654313533323038427479024272694616531426c744f3230313630353036543135333230384361656947535f534148323542726e54536d617274486f6d654170706c69636174696f6e427069436362314461637069824461637031446163703243727169454131303030437273631907d1

Example 3:

JSON representation (request primitive of message length: 174 bytes):

{"m2m:rsp":{"rsc":2001,"rqi":"A1000","pc":{"m2m:ae":{"rn":"SmartHomeApplication","ty":2,"ri":"ae1","api":"Na56","apn":"app1234","pi":"cb1","ct":"20160506T153208", "lt":"20160506T153208","acpi":["acp1","acp2"],"et":"20180506T153208", "aei":"S_SAH25"}}}}
CBOR representation as sequence of hexadecimal characters (length: 124 bytes):

a6427063a1476d326d3a636e74a3436d6e691901f442726e52536d617274486f6d65436f6e7461696e6572436d62731a000186a04274790342746f582c2f2f6578616d706c652e6e65742f6d6e637365313233342f536d617274486f6d654170706c69636174696f6e4372636e07426f700143727169454131303031

Example 4:

JSON representation (response primitive of message length: 393 bytes):

{"m2m:rsp":{"rsc":2001,"rqi":"A1001","pc":{"m2m:cnt":{"rn":"SmartHomeContainer", "ty":3,"ri":"cnt1","pi":"ae1","ct":"20160506T154048", "lt":"20160506T154048","acpi":["acp1"],"et":"20180506T154048","cr":" S_SAH25","st":0,"mni":500,"mbs":100000,"cni":0,"cbs":0,"mia":3600}}}}
CBOR representation as sequence of hexadecimal characters (length: 188 bytes):

a3427063a1476d326d3a636e74af436362730042726944636e7431436d6e691901f442637247535f53414832354265744f3230313830353036543135343034384263744f323031363035303654313534303438436d62731a000186a042747903436d6961190e1042737400426c744f32303136303530365431353430343842726e52536d617274486f6d65436f6e7461696e657242706943616531446163706981446163703143636e690043727169454131303031437273631907d1
-----------------------End of change 1---

CHECK LIST

· Does this change request include an informative introduction containing the problem(s) being solved, and a summary list of proposals.?
· Does this CR contain changes related to only one particular issue/problem?
· Have any mirror crs been posted?
· Does this change request make all the changes necessary to address the issue or problem? E.g. A change impacting 5 tables should not only include a proposal to change only 3 tables. Includes any changes to references, definitions, and acronyms in the same deliverable?
· Does this change request follow the drafting rules?
· Are all pictures editable?
· Have you checked the spelling and grammar?
· Have you used change bars for all modifications?
· Does the change include the current and surrounding clauses to clearly show where a change is located and to provide technical context of the proposed change? (Additions of complete sections need not show surrounding clauses as long as the proposed section number clearly shows where the new section is proposed to be located.)
· Are multiple changes in this CR clearly separated by horizontal lines with embedded text such as, start of change 1, end of change 1, start of new clause, end of new clause.?
© 2016 oneM2M Partners
 Page 2 (of 7)

[image: image1.png]