	Doc# PRO-2016-0078-add_array_dataType.doc
Change Request
	[image: image1.png]

	

	CHANGE REQUEST

	Meeting:*
	PRO 22.0

	Source:*
	FUJITSU

	Date:*
	2016-03-07

	Contact:*
	Shingo Fujimoto,FUJITSU,shingo_fujimoto@jp.fujitsu.com

	Reason for Change/s:*
	<exact change/s to be provided below>

	CR against: Release*
	<Release> Only ONE Release shall be indicated

	CR against: WI*
	 FORMCHECKBOX
 Active <Work Item number>

 FORMCHECKBOX
 MNT maintenace / < Work Item number(optional)>
 FORMCHECKBOX
 STE Small Technical Enhancements / < Work Item number (optional)>
Only ONE of the above shall be ticked

	CR against: TS/TR*
	TS-0004 V.2.4.0

	Clauses/Sub Clauses*
	

	Type of change: *
	 FORMCHECKBOX
 Editorial change
 FORMCHECKBOX
 Bug Fix or Correction
 Change to existing feature or functionality
 FORMCHECKBOX
 New feature or functionality
Only ONE of the above shall be ticked

	Post Freeze checking:*
	This CR contains only essential changes and corrections? YES FORMCHECKBOX
 NO FORMCHECKBOX

This CR may break backwards compatibility with the last approved version of the TS? YES
 NO
This CR is a mirror CR? YES FORMCHECKBOX
 if YES, please indicate the document number of the original CR: <Document Number) : NO FORMCHECKBOX

	Template Version:27 May 2015 (Dot not modify)

oneM2M Notice

The document to which this cover statement is attached is submitted to oneM2M. Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.

GUIDELINES for Change Requests:

Provide an informative introduction containing the problem(s) being solved, and a summary list of proposals.

Each CR should contain changes related to only one particular issue/problem.
In case of a correction, and the change apply to previous releases, a separated “mirror CR” should be posted at the same time of this CR
Follow the principle of completeness, where all changes related to the issue or problem within a deliverable are simultaneously proposed to be made E.g. A change impacting 5 tables should not only include a proposal to change only 3 tables. Includes any changes to references, definitions, and acronyms in the same deliverable.
Follow the drafting rules.
All pictures must be editable.
Check spelling and grammar to the extent practicable.
Use Change bars for modifications.
The change should include the current and surrounding clauses to clearly show where a change is located and to provide technical context of the proposed change. Additions of complete sections need not show surrounding clauses as long as the proposed section number clearly shows where the new section is proposed to be located.
Multiple changes in a single CR shall be clearly separated by horizontal lines with embedded text such as, start of change 1, end of change 1, start of new clause, end of new clause.
When subsequent changes are made to content of a CR, then the accepted version should not show changes over changes. The accepted version of the CR should only show changes relative to the baseline approved text.
Introduction
It is useful to have the array data structure for designing API.

It can allow to define resource type which has complex data typed attribute.
attributeX as Array of string ->

XML:

<attributeX>
 <ai>a</ai><ai>b</ai><ai>c</ai>

</attributeX>

JSON:

{ "attributeX ":

 ["a","b","c"]}

-----------------------Start of change 1---
6.3.5
Complex data types
(snipped)
6.3.5.x
m2m:array
Used to represent array data structure.

Table 6.3.5.x-1: Type Definition of m2m:array
	Element Path
	Element Data Type
	Multiplicity
	Note

	array
	m2m:array
	1
	array

	array/item
	m2m:arrayItemType
	0..n
	array item

-----------------------End of change 1---

-----------------------Start of change 2---

8.2.5
Complex data types members

In protocol bindings complex data types member names shall be translated into short names of Table 8.2.5-1.

Table 8.2.5‑1: Complex data type member short names

	Member Name
	Occurs in
	Short Name

	createdBefore
	filterCriteria, eventNotificationCriteria
	crb

	createdAfter
	filterCriteria, eventNotificationCriteria
	cra

	modifiedSince
	filterCriteria, eventNotificationCriteria
	ms

	unmodifiedSince
	filterCriteria, eventNotificationCriteria
	us

	stateTagSmaller
	filterCriteria, eventNotificationCriteria
	sts

	stateTagBigger
	filterCriteria, eventNotificationCriteria
	stb

	expireBefore
	filterCriteria, eventNotificationCriteria
	exb

	expireAfter
	filterCriteria, eventNotificationCriteria
	exa

	labels
	filterCriteria, eventNotificationCriteria
	lbl *

	resourceType
	filterCriteria
	ty *

	sizeAbove
	filterCriteria, eventNotificationCriteria
	sza

	sizeBelow
	filterCriteria, eventNotificationCriteriay
	szb

	contentType
	filterCriteria
	cty

	limit
	filterCriteria
	lim

	attribute
	filterCriteria, eventNotificationCriteria
	atr

	notificationEventType
	eventNotificationCriteria
	net

	operationMonitor
	eventNotificationCriteria, notificationEvent
	om

	representation
	notificationEvent
	rep

	filterUsage
	filterCriteria
	fu

	eventCatType
	eventCat
	ect

	eventCatNo
	eventCat
	ecn

	number
	batchNotify
	num

	duration
	batchNotify
	dur

	notification
	aggregatedNotification,
Request Primitive Content
	sgn

	notificationEvent
	notification
	nev

	verificationRequest
	notification
	vrq

	subscriptionDeletion
	notification
	sud

	subscriptionReference
	notification
	sur

	creator
	notification
	cr*

	notificationForwardingURI
	notification
	nfu*

	operation
	operationMonitor
	op*

	originator
	operationMonitor
	or*

	accessId
	externalID
	aci

	MSISDN
	externalID
	msd

	action
	actionStatus
	acn

	status
	actionStatus
	sus

	childResource
	All except execInstance, announced resource, management resources from firmware
	ch

	accessControlRule
	privileges, selfPrivileges
	acr

	accessControlOriginators
	accessControlRule
	acor

	accessControlOperations
	accessControlRule
	acop

	accessControlContexts
	accessControlRule
	acco

	accessControWindow
	accessControlContexts
	actw

	accessControlIpAddresses
	accessControlContexts
	acip

	ipv4Addresses
	accessControlIpAddress
	ipv4

	ipv6Addresses
	accessControlIpAddress
	ipv6

	accessControlLocationRegion
	accessControlContexts
	aclr

	countryCode
	accessControlLocationRegion
	accc

	circRegion
	accessControlLocationRegion
	accr

	name
	attribute, anyArgType, mgmtLinkRef, childResourceRef
	nm*

	value
	attribute
	val

	type
	anyArgType
	typ

	maxNrOfNotify
	rateLimit
	mnn

	timeWindow
	rateLimit
	tww

	scheduleEntry
	scheduleElement
	sce

	aggregatedNotification
	Request Primitive Content
	agn

	attributeList
	Request Primitive Content
	atrl

	aggregatedResponse
	Response Primitive Content
	agr

	resource
	Response Primitive Content
	rce

	URIList
	Response Primitive Content
	uril

	anyArg
	resetArgsType, rebootArgsType, uploadArgsType, downloadArgsType, softwareInstallArgsType softwareUpdateArgsType, softwareUninstallArgsType, execReqArgsListType
	any

	fileType
	downloadArgsType
	ftyp

	URI
	resourceWrapper
	uri

	URL
	downloadArgsType
	url*

	username
	uploadArgsType, downloadArgsType, softwareUpdateArgsType, softwareUninstallArgsType,
	unm

	password
	uploadArgsType, downloadArgsType, softwareUpdateArgsType, softwareUninstallArgsType,
	pwd

	filesize
	downloadArgsType
	fsi

	targetFile
	downloadArgsType
	tgf

	delaySeconds
	downloadArgsType
	dss

	successURL
	downloadArgsType
	surl

	startTime
	downloadArgsType
	stt

	completeTime
	downloadArgsType
	cpt

	UUID
	softwareInstallArgsType softwareUpdateArgsType, softwareUninstallArgsType,
	uuid

	executionEnvRef
	softwareInstallArgsType softawareUpdateArgsType, softwareUninstallArgsType,
	eer

	version
	softwareUninstallArgsType
	vr*

	reset
	execReqArgsListType
	rst

	reboot
	execReqArgsListType
	rbo*

	upload
	execReqArgsListType
	uld

	download
	execReqArgsListType
	dld

	softwareInstall
	execReqArgsListType
	swin

	softwareUpdate
	execReqArgsListType
	swup

	softwareUninstall
	execReqArgsListType
	swun

	tracingOption
	dekiveryMetaData
	tcop

	tracingInfo
	dekiveryMetaData
	tcin

	responseTypeValue
	responseTypeInfo
	rtv

	notificationURI
	responseTypeInfo
	Nu

	arrayItem
	arrayItemType
	ai

	NOTE: * marked short names have been already assigned in attribute Table 8.2.3-1.

-----------------------End of change 2---

-----------------------Start of change 3--

8.3
XML serialization
8.3.1
Method
XML serialization of request or response primitives refers to the process of representing the primitive as an XML document.
The XML document shall be a well-formed XML document compliant with W3C XML 1.0 [1]. It shall be restricted to Unicode characters and encoded using UTF-8 as described in RFC 3629 [21].
The structure and data types of XML serialized request and response primitives shall be consistent with the XSD defined in CDT-requestPrimitive-v2_4_0.xsd and CDT-responsePrimitive-v2_4_0.xsd, respectively. The data types used in these XSD files comply with the definitions in clause 6 and clause 7 of the present document.

Note that the XSD files included in the present release employ the long names for primitive parameters and other XML elements and attributes, but the primitive serialization is required to use the corresponding short names (as defined clause 8.2 of the present document).

The primitive Content parameter is serialized just like any other element of complex type. Generally, the Content parameter may include only a partial set of attributes specified for the resource type as indicated in the Resource Type parameter, e.g. for partial Update or Retrieve Request procedures. For Notification Request primitives, the Content parameter includes a Notification data object as defined in clause 7.5.1.1 and the datatype definition given in CDT-notification-v2_4_0.xsd.

8.3.2
Examples
An example that shows a request primitive serialized into an XML document is shown below. This example shows the create request for an instance of a <contentInstance> resource. Only mandatory primitive parameters and resource attributes are shown.

<?xml version="1.0" encoding="UTF-8"?>
<m2m:rqp xmlns:m2m="http://www.onem2m.org/xml/protocols"
>
 <op>1</op>
 <to>//cse1.mym2msp.org/</to>
 <fr>/cse1234/app567</fr>
 <rqi>0002bf63</rqi>
 <ty>4</ty>
 <pc>
 <cin>
 <cnf>application/xml:1</cnf>
 <con>PHRpbWU+MTc4ODkzMDk8L3RpbWU+PHRlbXA+MjA8L3RlbXA+DQo=</con>
 </cin>
 </pc>
</m2m:rqp>

The XML elements have the following meaning:

· rqp: Root element of the Request primitive, which includes a reference to an XSD file which defines its datatype.

· op:
Operation parameter of datatype m2m:operation: in this example value = 1 indicates a "Create" operation.

· to:
To parameter of type m2m:anyURI: URI of the target resource.

· fr:
From parameter of type m2m:ID: ID of the Originator (either AE-ID or CSE-ID).

· rqi:
Request Identifier parameter of type m2m:requestID: this could e.g. represent a counter number.

· ty:
Resource Type parameter of datatype m2m:resourceType: indicating type of the resource to be created (value = 4 indicates that a <contentInstance> resource shall be created).

· pc:
Content parameter of datatype m2m:primitiveContent: the attributes of the resource to be provided by the Originator.

· cin: Root element of the <contentInstance> resource of datatype m2m:contentInstance: this includes the mandatory attributes (and optional attributes not shown in this example) supplied by the request Originator. In this example, the cn parameter includes an instance of a <contentInstance> resource which consists of two attributes: contentInfo (cnf) – which specifies base64 encoding - and the content (con) itself.

-----------------------End of change 3---

-----------------------Start of change 4---

8.4
JSON serialization
8.1.1 Terminology

The following conventions are used in the clause that follows.

· The italicized terms object, member, name, array, number, string, boolean and null are to be interpreted as in RFC 7159 [19]

· The italicized term element is to be interpreted to encompass oneM2M Primitive Parameters, Resource Attributes and other elements or attributes used inside oneM2M complex type definitions

8.4.2
Method

The primitive shall be encoded as a JSON object, conforming to the requirements of RFC 7159 [19]. This JSON object shall be restricted to Unicode characters defined in The Unicode Standard and encoded using UTF-8 as described in RFC 3629 [21]. The names in each object in the JSON shall be unique.
The structure of the top-level primitive object shall be determined by the data type definitions in clause 6 and clause 7 of the present document, as follows:

1. All member's names shall be the short name defined in clause 8.1.

2. If an element is defined in the present document as having a complex type, then it is serialized in the JSON member as an object and its children are recursively serialized as members of that object, using short names as defined in clause 8.1.

3. The membership of each nested object shall respect the cardinality constraints from the corresponding XSD complex type definition,

4. If an element is defined in the present document as having an atomic data type that is numeric in nature (e.g. xs:integer or a type derived from it) then its value is serialized into the JSON member as a number.

5. If an element is defined as having an atomic data type that is non-numeric then its value is serialized into the JSON member as a string.

6. If an element is defined as xs:boolean (or a type derived from xs:boolean) then it is serialized in the JSON member as a boolean.

7. If an element is defined as having an xs:list type in the corresponding XSD then it is serialized in the JSON member as an array.

8. If an element instance has a null value then it is serialized into the JSON member as a null, regardless of the data type that it has in the corresponding XSD.

9. If an element is defined as having maxOccurs > 1 in the corresponding XSD then its parent JSON member is serialized as an array.
10. If an element has an XSD data type that is a simple type with XML attributes, then it is serialized in the JSON member as an object. The XML attributes appear as members of that object (using their short names) and the value of the element is serialized as a member of that object with the special name "val".

11. The members (at each level) may be serialized in any order. The order in which they appear in the corresponding XSD file is immaterial.
12. If an element is defined as having an m2m:array type in the corresponding XSD then it is serialized in the JSON member as an array with its name.

The Content parameter is treated just like any other parameter of complex type. It is serialized as an object and its members are the attributes and/or child resource references of the Resource that is being transferred. The Content parameter is not required to contain all the attributes of the Resource. The JSON representation of the Content parameter shall be encapsulated by a root elementmember name as defined in the first column of Tables 7.4.2-1 and 7.4.2-2

8.4.3
Examples

Here is an example that shows the payload of a request message serialized using JSON:

{"op": "1", "fr": "//xxxxx/2345", "to": "//xxxxx/99", "ri": "A1234", "pc": {"m2m:sch": {"se": "* 0-5 2,6,10 * * * *"}}, "ty": 18}

· op: operation (in this case it is Create)

· fr: ID of the Originator (either the AE or CSE)

· to: URI of the target resource

· rqi: request identifier (this is a string)

· pc: attributes of the <schedule> resource with member name "m2m:sch" to be provided by Originator. This is serialized as a nested JSON object

· ty: type of resource to be created (in this case a Schedule resource). This is a number.

Note that the Operation (op) parameter is present only in Request primitives. The presence of this parameter in JSON serialized primitive representations allows to differentiate Request primitives from Response primitives.
-----------------------End of change 4---

CHECK LIST

· Does this change request include an informative introduction containing the problem(s) being solved, and a summary list of proposals.?
· Does this CR contain changes related to only one particular issue/problem?
· Have any mirror crs been posted?
· Does this change request make all the changes necessary to address the issue or problem? E.g. A change impacting 5 tables should not only include a proposal to change only 3 tables. Includes any changes to references, definitions, and acronyms in the same deliverable?
· Does this change request follow the drafting rules?
· Are all pictures editable?
· Have you checked the spelling and grammar?
· Have you used change bars for all modifications?
· Does the change include the current and surrounding clauses to clearly show where a change is located and to provide technical context of the proposed change? (Additions of complete sections need not show surrounding clauses as long as the proposed section number clearly shows where the new section is proposed to be located.)
· Are multiple changes in this CR clearly separated by horizontal lines with embedded text such as, start of change 1, end of change 1, start of new clause, end of new clause.?
© 2016 oneM2M Partners
 Page 3 (of 9)

[image: image1.png]