Doc# PRO-2017-0091-Discussion_on_(generic)_Interworking_using_structured_attributes.doc

	Input Contribution

	Meeting ID*
	PRO#28.2

	Title:*
	Discussion on (generic) Interworking using structured attributes

	Source:*
	Joerg Swetina, NEC, joerg.swetina@neclab.eu

	Date:*
	2017-05-15

	Input related to*
	WI 0063, Release 3 Enhancements on Base Ontology & Generic Interworking)

	Intended purpose of

document:*
	 FORMCHECKBOX
 Decision

 FORMCHECKBOX
 Discussion

 Information

 Other <specify>

	Impacted other TS/TR(s)
	TS/-0030, v0.2.0 (Generic Interworking), TS-001, TS-004

	Decision requested or recommendation:*
	MAS and PRO should give feedback and comment on it.
Further contributions would follow in MAS, ARC and PRO

	Template Version: January 2017 (Do not modify)

oneM2M Notice

The document to which this cover statement is attached is submitted to oneM2M. Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.

Introduction
Generic Interworking aims at providing a means for interworking with other, non-oneM2M systems (NoDN devices and their input / output data operations) without the need to compile the structure of input/output datapoints, actions, events, etc. (as e.g. in TS-0023 and othet TSs for interworking).
Generic Interworking (GI) is relying on three main concepts:
1. The GI-IPE that translates oneM2M internal communication and data structures into the native, non-oneM2M protocol of the specific technology

2. An ontology, that describes the data model (Device Information Model) of that native protocol
3. A mapping rule how the ontology describing the Device Information Model is mapped into oneM2M resources and how these resources are used by communicating entities inside oneM2M to communicate with the GI-IPE
2.) and 3.) need to be known to a communicating entity in oneM2M (AE, CSE) for interacting with the GI-IPE.

The problem:

In Rel-2 a solution for avoiding the need to compile the structure of input/output datapoints, actions, events … was specified that uses containers/contentInstances that are linked to mimick the structures of these datapoints, etc. but this is a clumsy, complicated solution.
For the Rel-2 solution only two new resource types needed to be specified: <genericInterworkingService> and <genericInterworkingOperationInstance>.
The present paper proposes a different solution which relies on structured attributes, that can be created at run-time. Also in this case only two new resource types and only a couple of new types for attributes are needed.
An important part of the problem is that multiple communicating entities can (concurrently) communicate with the GI-IPE. Therefore any solution needs to make sure that single, atomic UPDATE primitives are used to change all parameters of the communication at once. E.g. all (potentially structured) data of a dataPoint for input to the interworked device need to be updated at once.
Similarly, all the results of an operation need to be created in a new resource by the IPE with a single, atomic CREATE primitive. This new resource needs to contain the results together with the invocationParameters that caused these results. That ensures that the output of the operation is aligned to its input.
This is the reason why a dataPoint is modelled as a single, structured attribute, which can be updated in a single UPDATE operation.

Note: most of this proposal is stage-3 style, as the structure of these attributes refers to an issue for PRO (WG3)
Structured, type-aware attributes
If a communicating entity wants to send a command to the interworked device it needs to tell this to the GE-IPE. The GE-IPE provides for each interworked device a oneM2M resource (<AE>, <container> <flexContainer> type) that represents that interworked device and which is called “Proxied Device”.
The proxied device contains child resources that represent the individual services that are offered by the device, including their datapoints and operations to invoke commands.
Note, that in ARC there is currently a discussion ongoing to create a new resource type, similar to <AE>, for proxied devices in order to avoid usage of different types.
Additionally, a resource type is needed to represent service of a device. E.g. a light switch could have a service “ON/Off_Service” which could offer a binary datapoint to set the switch to “On” or Off” and an operation “Toggle”.
With the help of structured, type-aware attributes it is possible to model each datapoint and operation as an attribute of the service. However in contrast to e.g. the approach taken in TS-0023, for that purpose only two types of attributes, one for datapoints and one for operations, need to be standardized.
Structured attributes
Current situation
Already today structured attributes are already used (see TS-0004).
Example: the xsd of such an attribute type declares it as “complex type”, as below in the example for the <uploadArgsType> attribute type, which in turn contains (an unbounded number of) elements of structured <anyArgType> type:
<xs:complexType name="uploadArgsType">

<xs:sequence>

<xs:element name="fileType" type="xs:string" />

<xs:element name="URL" type="xs:anyURI" />

<xs:element name="username" type="xs:string" />

<xs:element name="password" type="xs:string" />

<xs:element name="anyArg" type="m2m:anyArgType" minOccurs="0" maxOccurs="unbounded" />

</xs:sequence>

</xs:complexType>
<xs:complexType name="anyArgType">

<xs:sequence>

<xs:element name="name" type="xs:NCName" />

<xs:element name="value" type="xs:anyType" />

</xs:sequence>

</xs:complexType>

Constructing structured, type-aware attributes
A similar approach is propsed for structured, type-aware attributes:
A datapoint would be an attribute of a service resource. The datapoint attribute would in turn contain an sequence (0..n) of structures of type “attributeType” that contains a name of the attribute and (typed) content.

 Type “attributeType” is defined below:
<xs:complexType name="attributeType">

<xs:sequence>

<xs:element name="attributeName" type="xs:NCName" />

<xs:element name="typedContent" type="m2m:anyContentType" />

</xs:sequence>

</xs:complexType>

The “anyContentType” used therein can contain (a) either content of simple type (like integer, boolean...) or (b) lists or (c) structured content:
<xs:complexType name="anyContentType">

<xs:choice>

<xs:element ref="m2m:simpleContentType" />

<xs:element ref="m2m:listType" />

<xs:element ref="m2m:structuredType" />

</xs:choice>

</xs:complexType>

The “simpleContentType” used here is a choice among all existing simple types, each including a tag that indicates the xml type of the content:
<xs:complexType name="simpleContentType">

<xs:choice>

<xs:sequence>

<xs:element name="type" type="xs:string" fixed="INTEGER" />

<xs:element name="typedContent" type="xs:integer" />

</xs:sequence>

<xs:sequence>

<xs:element name="type" type="xs:string" fixed="STRING" />

<xs:element name="typedContent" type="xs:string" />

</xs:sequence>

<xs:sequence>

<xs:element name="type" type="xs:string" fixed="BOOLEAN" />

<xs:element name="typedContent" type="xs:boolean" />

</xs:sequence>

<!-- ... and so on … -->

</xs:choice>

</xs:complexType>

The “listType” is an unbounded sequence of listItems of any type “anyContentType”. The listItems may or may not have an itemName to identify individual items.
<xs:complexType name="listType">

<xs:sequence>

<xs:element name="type" type="xs:string" fixed="LIST"/>

<xs:sequence>

<xs:element name="listItem" minOccurs="0" maxOccurs="unbounded"/>

<xs:sequence>

<xs:element name="itemName" type="xs:NCName" minOccurs="0" />
<!-- Note that each list item may or may not have a name !! -->

<xs:element name="typedContent" type="m2m:anyContentType" />

</xs:sequence>

</xs:sequence>

</xs:sequence>

</xs:complexType>

Similar to the “listType” the “structuredType” is an unbounded sequence of structItems of any type “anyContentType”. However, in contrast to listItems the individual structItems represent attributes of the structuredType and must have an attributeName to identify them.
<xs:complexType name="structuredType">

<xs:sequence>

<xs:element name="type" type="xs:string" fixed="STRUCTURE"/>

<xs:sequence>

<xs:element name="structItem" minOccurs="0" maxOccurs="unbounded"/>

<xs:sequence>

<xs:element name="attributeName" type="xs:NCName" />
<!-- Note that each structure attribute must have a name !!! -->

<xs:element name="typedContent" type="m2m:anyContentType" />

</xs:sequence>

</xs:sequence>

</xs:sequence>

</xs:complexType>

Through this schema a recursive type definition is achieved that allows us to construct any kind of tree-structured attributes, including explicit type information.
Using these attributes
With this a new resource type “serviceResource”, to be used to contain datapoints and operations (for input/output of the service), could be constructed. Those datapoints and operations would be attributes of the serviceResource.

In particular any dataPoint would be modelled as an attribute of structured type “attributeType”.
 [… needs yet a bit more work …]
<xs:element name="serviceResource" substitutionGroup="???">

<xs:complexType>

<xs:complexContent>

<!-- Inherit common attributes -->

<xs:extension base="m2m:regularResource ??? ">

<xs:sequence>

<!-- Resource Specific Attributes -->

<xs:element name="serviceName" type="xs:string" />

<xs:element name="dataPoint" type=”m2m:attributeType" minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="operation" type= "m2m:operationAttributeType" minOccurs="0" maxOccurs="unbounded"/>

<!-- Child Resources -->

<xs:choice minOccurs="1" maxOccurs="1">

<xs:element name="childResource" type="m2m:childResourceRef" minOccurs="1" maxOccurs="unbounded" />

<xs:choice minOccurs="1" maxOccurs="unbounded">

<xs:element ref="m2m:serviceResource" />
<!--- this defines a recursive structure for services, consisting of sub-services as child resources -->

<xs:element ref="m2m:subscription" />

</xs:choice>

</xs:choice>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

</xs:element>

... using these attributes for dataPoints

If a communicating entity wants to send a command of a service to the interworked device it updates the related dataPoint attribute of the serviceResource.
As the IPE has subscribed to changes of attributes of the serviceResource it gets notified about this update of the dataPoint attribute. The IPE converts the information of the dataPoint into the format of the interworked technology and sends it to the interworked device.

The communication in the other direction (IPE => communicating entity) works analogously
... and for operations
Operations are similar to dataPoints. But in contrast to the latter the interworked device may produce output of the operation that needs to be collected by the IPE and returned to the communicating entity.
Using structured attributes operations can also be implemented as attributes of the serviceResource. However these attributes are a bit more complex than those of type ” attributeType", used for dataPoints.
The attribute type used for operations is "operationAttributeType".

The main differences are:
· The operationAttributeType contains a set of invocationParameters of type="m2m:attributeType", similar to a dataPoint.

· That set of invocationParameters may be empty for parameterless operations such as “Toggle” !
· The “operationAttributeType” contains an element “operationState”, that can take at least the following values: “data_received_by_application”, “operation_ended”, “operation_failed”, “data_transmitted_to_interworked_device”
When the IPE returns the output of the operation it creates a new child resource of the serviceResource to which the operation belongs. This new child resource is of (new) type “operationResultResource”.
· The “operationAttributeType” contains the references to all the operationResultResources that have been created due to invocations of the operation.
<xs:complexType name="operationAttributeType">

<xs:sequence>

<xs:element name="operationName" type="xs:NCName" />

<xs:element name="operationState" type="xs:string" />

<!— values: “data_received_by_application”, “operation_ended”, “operation_failed”, “data_transmitted_to_interworked_device” -->

<xs:element name="invocationParameter" type="m2m:attributeType" minOccurs="0" maxOccurs="unbounded" />

<!-- Child Resources -->

<xs:choice minOccurs="0" maxOccurs="1">

<xs:element name="childResource" type="m2m:childResourceRef" minOccurs="1" maxOccurs="unbounded" />

<xs:choice minOccurs="0" maxOccurs="unbounded">

<xs:element ref="m2m:operationResultResource" />

</xs:choice>

</xs:choice>

</xs:sequence>

</xs:complexType>

The operationResult resources
Each new operationResultResource contains
· a copy of the set of invocationParameters with which the operation had been invoked and
· the set of resultParameters.
· In addition it contains an expiration time after whitch the operationResultResource can be deleted.
<xs:element name="operationResultResource" substitutionGroup="???">

<xs:complexType>

<xs:complexContent>

<!-- Inherit common attributes -->

<xs:extension base="m2m:regularResource ??? ">

<xs:sequence>

<!-- Resource Specific Attributes -->

<xs:element name="operationName" type="xs:string" />

<!--

<xs:element name="expirationTime" type="m2m:timestamp" /> Inherited from m2m:regularResource ??? -->

<xs:element name="invocationParameter" type="m2m:attributeType" minOccurs="0" maxOccurs="unbounded" />

<xs:element name="resultParameter" type="m2m:attributeType" minOccurs="0" maxOccurs="unbounded" />

<!-- Child Resources -->

<xs:choice minOccurs="1" maxOccurs="1">

<xs:element name="childResource" type="m2m:childResourceRef" minOccurs="1" maxOccurs="unbounded" />

<xs:choice minOccurs="1" maxOccurs="unbounded">

<xs:element ref="m2m:subscription" />

...

</xs:choice>

</xs:choice>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

</xs:element>

As the communicating entity has subscribed to changes of the operation (of type operationAttributeType) it gets notified wnever a new child operationResultResource is being created and can retrieve the result.
© 2017 oneM2M Partners

Page 1 (of 2)

