Doc# PRO-2017-0091R02-Discussion_on_(generic)_Interworking_using_structured_attributes.doc

	Input Contribution

	Meeting ID*
	PRO#28.2

	Title:*
	Discussion on (generic) Interworking using structured attributes

	Source:*
	Joerg Swetina, NEC, joerg.swetina@neclab.eu

	Date:*
	2017-05-15

	Input related to*
	WI 0063, Release 3 Enhancements on Base Ontology & Generic Interworking)

	Intended purpose of

document:*
	 FORMCHECKBOX
 Decision

 FORMCHECKBOX
 Discussion

 Information

 Other <specify>

	Impacted other TS/TR(s)
	TS/-0030, v0.2.0 (Generic Interworking), TS-001, TS-004

	Decision requested or recommendation:*
	MAS and PRO should give feedback and comment on it.
Further contributions would follow in MAS, ARC and PRO
R01 gives a better overview section in addition to detailed data descriptions

	Template Version: January 2017 (Do not modify)

oneM2M Notice

The document to which this cover statement is attached is submitted to oneM2M. Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.

Introduction

Generic Interworking aims at providing a means for interworking with other, non-oneM2M systems (NoDN devices and their input / output data operations) without the need to compile the structure of input/output datapoints, actions, events, etc. (as e.g. in TS-0023 and othet TSs for interworking).
Generic Interworking (GI) is relying on three main concepts:

1. The GI-IPE that translates oneM2M internal communication and data structures into the native, non-oneM2M protocol of the specific technology

2. An ontology, that describes the data model (Device Information Model) of that native protocol
3. A mapping rule how the ontology describing the Device Information Model is mapped into oneM2M resources and how these resources are used by communicating entities inside oneM2M to communicate with the GI-IPE
2.) and 3.) need to be known to a communicating entity in oneM2M (AE, CSE) for interacting with the GI-IPE.

The problem:

In Rel-2 a solution for avoiding the need to compile the structure of input/output datapoints, actions, events … was specified that uses containers/contentInstances that are linked to mimick the structures of these datapoints, etc. but this is a clumsy, complicated solution.
For the Rel-2 solution only two new resource types needed to be specified: <genericInterworkingService> and <genericInterworkingOperationInstance>.

The present paper proposes a different solution which relies on structured attributes, that can be created at run-time. Also in this case only two new resource types and only a couple of new types for attributes are needed.

An important part of the problem is that multiple communicating entities can (concurrently) communicate with the GI-IPE. Therefore any solution needs to make sure that single, atomic UPDATE primitives are used to change all parameters of the communication at once. E.g. all (potentially structured) data of a dataPoint for input to the interworked device need to be updated at once.
Similarly, all the results of an operation need to be created in a new resource by the IPE with a single, atomic CREATE primitive. This new resource needs to contain the results together with the invocationParameters that caused these results. That ensures that the output of the operation is aligned to its input.

This is the reason why a dataPoint is modelled as a single, structured attribute, which can be updated in a single UPDATE operation.

Note: most of this proposal is stage-3 style, as the structure of these attributes refers to an issue for PRO (WG3)

Proposal

The communication between the communicating entity and the IPE should happen as shown below. This is not very different to what is currently contained in TS-0030.

However, in the current proposal every dataPoints is realized as a single (structured) attribute of the service resource.
Similarly any operation is realized as a single (structured) attribute of the service plus child resources of the service that contain operation results

The following figure shows communication via dataPoints (data transferred in one diection only):

[image: image1.emf]IPE

comm.

entity

CSE

•

Communicating entity has subscribed to <AE> resource of IPE

•

IPE has discovered Interworked Device and has created child resource “<AE>“

(type <AE> or similar) as proxy (Proxied Device) for the Interworked Device

•

Communicating entity and IPE have subscribed to “<AE> “

CREATE <serviceResource> as

child resource of “<AE>“ ,

containing attributes for

dataPoints and operations

Subscribe to <serviceResource>

Subscribe to <serviceResource>

Notify on creation of

<serviceResource>

UPDATE dataPoint attribute

of <serviceResource>

Notify on update of dataPoint

attribute of <serviceResource>

Inter-

worked

Device

Sending a command to the interworked Device by using a dataPoint of the service

Command

<= (data of dataPoint)

serialize data of data point

Service creation and communication via dataPoints

If a communicating entity wants to send a command to the interworked device it needs to tell this to the IPE.
The IPE provides for each interworked device a oneM2M resource (<AE>, <container> <flexContainer> type) that represents that interworked device and which is called “Proxied Device”.
The Proxied Device contains child resources that represent the individual services that are offered by the device, including their datapoints and operations to invoke commands.
E.g. a light switch could have a service “ON/Off_Service” which could offer (a) a datapoint to set the switch to “On” or Off” and (b) an operation “Toggle”.

Note, that in ARC there is currently a discussion ongoing to create a new resource type, similar to <AE>, for proxied devices in order to avoid usage of different types. In the figure this type of resource is shown as “<AE>”.
Communication via datapoints in the reverse direction (Interworked Device => IPE => Communicating entity(s)) works analogously.

The following figure shows communication via operations (data transferred to the interworked device, related operationresults received from the interworked device):

[image: image2.emf]IPE

comm.

entity

CSE

UPDATE operation attribute of

<serviceResource>

(each operation attribute contains

0..n invocationParameter as

elements)

NOTIFY on update of operation

attribute of <serviceResource>

serialize invocation parameters

of operation

Inter-

worked

Device

Command

<= (invocation parameters)

=> (result parameters)

Sending a command to the interworked Device by using an operation of the service

de-serialize result parameters

CREATE

<operationResultResource> as

child of <serviceResource>, with

•

attributes for (0..m)

resultParameter and

•

attributes for (0..n)

invocationParameter, copied

from operation attribute

NOTIFY on creation of

<operationResultResource>

RETRIEVE resultParameters

 Communication via operations
In the reverse direction (Interworked Device invoking an operation from the IPE) will work analogously. If the Interworked Device invokes an operation the IPE will UPDATE the operation attribute of <serviceResource>.

However, if the operation contains results that are expected by the Interworked Device then some communicating resource (subscribed to changes in that opertation attribute) needs to CREATE the related <operationResultResource>. That allows the IPE to serialize the result parameters and send them back to th Interworked Device.

The above scheme models dataPoints and operations of a service as attributes of the related resource of type <serviceResource>.

In particular:

a) dataPoints are modelled as (sequences of) 0..n attributes of a single, but flexible, attribute type m2m:attributeType
b) operations as (sequences of) 0..n attributes of a single, but flexible, attribute type m2m:operationAttributeType
c) each operation attribute references 0..m child resources of type <operationResultResource>, each contains attributes for the result parameters and and invocation parameters of one operation invocation

This modelling allows to use single, atomic UPDATE operations for invoking commands, using dataPoints or operations.

The following figure shows this relationship

[image: image3.emf]<serviceResource>

<operationResult

Resource>

dataPoint

m2m:attributeType

operation

m2m:operationAttributeType

invocationParameter

m2m:attributeType

resultParameter

m2m:attributeType

invocationParameter

m2m:attributeType

(0..n)

(0..n)

(0..n)

(0..n)

(0..n)

operationResultRef

m2m:childResourceRef

(0..n)

operationState xs:string

Resource

attribute

type

???

 Resource types for dataPoints and operations
One question arises: can individual attributes of type m2m:operationAttributeType contain the references to child resources of type <operationResultResource> or do they need to be child resources of the <servicResource>?
The needed new attribute type definitions are shown below:

[image: image4.emf]m2m:anyContentType

m2m:attributeType

attributeName

typedContent

xs:NCName

m2m:simpleContentType

m2m:listType

type

typedContent

xs:string "INTEGER"

xs:integer

type

typedContent

xs:string "STING"

xs:string

or

or

xs:choice or or

xs:choice

type

typedContent

xs:string "LIST"

m2m:anyContentType

itemName (0..1)

xs:NCName

typedContent

m2m:anyContentType

itemName (0..1)

xs:NCName

xs:sequence (0..n)

m2m:structuresType

type

typedContent

xs:string "STRUCTURE"

m2m:anyContentType

attributeName

xs:NCName

typedContent

m2m:anyContentType

attributeName

xs:NCName

xs:sequence (0..n)

…

… …

TypeDefinition

element

 Flexible, structured attribute types
The above scheme defines

a) a simpleContentType that is a choice among all simple XML types. Any attribute of simple XML type can be covered with this overlay type

b) a listType that represents a list (sequence of) entities, which themselves can be of any content type. Eiach list item can, but need not, be given an itemName

c) a structuredType that is analogous to the listType, however here the items represent attributes of the structure and must have a neme.

For the three types an overlay type anyContentType is defined.Note, this constitutes a recursive type definition.

An attribute (e,g, a dataPoint) is constructed out of data of anyContentType plus an attribute name. This constitutes the type attributeType.
Question 1: is the above sketched type system feasible in oneM2M?

Question 2: The types include a explicit description (like “INTEGER” or “LIST”). This might be useful in some cases, but it is not absolutely necessary, I guess
XSDs of Structured, type-aware attributes (draft)
With the help of structured, type-aware attributes it is possible to model each datapoint and operation as an attribute of the service.
Structured attributes

Proposed xsd structure
<xs:complexType name="attributeType">

<xs:sequence>

<xs:element name="attributeName" type="xs:NCName" />

<xs:element name="typedContent" type="m2m:anyContentType" />

</xs:sequence>

</xs:complexType>

<xs:complexType name="anyContentType">

<xs:choice>

<xs:element name="INTEGER" type="xs:integer" />

<xs:element name="STRING" type="xs:string" />

<xs:element name="BOOLEAN" type="xs:boolean" />

<!-- ... and so on... -->

<xs:element name="LIST" type="m2m:listType" />

<xs:element name="STRUCT" type="m2m:structuredType" />

</xs:choice>

</xs:complexType>
<xs:complexType name="listType">

<xs:sequence>
<xs:element name="listItem" type="m2m:anyContentType" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="structuredType">

<xs:sequence>

<xs:element name="structItem" type="m2m:attributeType" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

Usage:

<xs:element name="serviceResource" substitutionGroup="???">

<xs:complexType>

<xs:complexContent>

<!-- Inherit common attributes -->

<xs:extension base="m2m:regularResource ??? ">

<xs:sequence>

<!-- Resource Specific Attributes -->

<xs:element name="serviceName" type="xs:NCName" />

<xs:element name="dataPoint" type="m2m:attributeType" minOccurs="0" maxOccurs="unbounded"/>

….

·
·
·

·

·
·
·

© 2017 oneM2M Partners

Page 1 (of 2)

IPE

comm.
entity

CSE

UPDATE operation attribute of <serviceResource>
(each operation attribute contains 0..n invocationParameter as elements)

NOTIFY on update of operation attribute of <serviceResource>

serialize invocation parameters
of operation

Inter-
worked
Device

Command

 <= (invocation parameters)
 => (result parameters)

Sending a command to the interworked Device by using an operation of the service

de-serialize result parameters

CREATE <operationResultResource> as child of <serviceResource>, with

attributes for (0..m) resultParameter and

attributes for (0..n) invocationParameter, copied from operation attribute

NOTIFY on creation of <operationResultResource>

RETRIEVE resultParameters

<serviceResource>

<operationResult
Resource>

dataPoint
m2m:attributeType

operation
m2m:operationAttributeType

invocationParameter
m2m:attributeType

resultParameter
m2m:attributeType

invocationParameter
m2m:attributeType

(0..n)

(0..n)

(0..n)

(0..n)

(0..n)

operationResultRef
m2m:childResourceRef

(0..n)

operationState xs:string

Resource

attribute
type

???

m2m:anyContentType

m2m:attributeType

attributeName

typedContent

xs:NCName

m2m:simpleContentType

m2m:listType

type

typedContent

xs:string "INTEGER"

xs:integer

type

typedContent

xs:string "STING"

xs:string

or

or

xs:choice or or

xs:choice

type

typedContent

xs:string "LIST"

m2m:anyContentType

itemName (0..1)

xs:NCName

typedContent

m2m:anyContentType

itemName (0..1)

xs:NCName

xs:sequence (0..n)

m2m:structuresType

type

typedContent

xs:string "STRUCTURE"

m2m:anyContentType

attributeName

xs:NCName

typedContent

m2m:anyContentType

attributeName

xs:NCName

xs:sequence (0..n)

…

…

…

TypeDefinition

element

1

IPE

comm.
entity

CSE

Communicating entity has subscribed to <AE> resource of IPE

IPE has discovered Interworked Device and has created child resource “<AE>“
(type <AE> or similar) as proxy (Proxied Device) for the Interworked Device

Communicating entity and IPE have subscribed to “<AE> “

CREATE <serviceResource> as child resource of “<AE>“ , containing attributes for dataPoints and operations

Subscribe to <serviceResource>

Subscribe to <serviceResource>

Notify on creation of <serviceResource>

UPDATE dataPoint attribute of <serviceResource>

Notify on update of dataPoint attribute of <serviceResource>

Inter-
worked
Device

Sending a command to the interworked Device by using a dataPoint of the service

Command

 <= (data of dataPoint)

serialize data of data point

