	Doc# PRO-2017-0287 example of JSON serialization in TS-0004 Rel-2 mirror
Change Request
	[image: image1.png]

	

	CHANGE REQUEST

	Meeting ID:*
	PRO 31

	Source:*
	Francisco Sang-Eon Kim, KT, kim.sangeon@kt.com

	Date:*
	2017-09-21

	Reason for Change/s:*
	An enumerated data types shall be used numbers not strings.

	CR against: Release*
	Release 2

	CR against: WI*
	 FORMCHECKBOX
 Active <Work Item number>

 FORMCHECKBOX
 MNT maintenance WI-0049
Is this a mirror CR? Yes FORMCHECKBOX
 No FORMCHECKBOX

mirror CR number: PRO-2017-0245R01
 FORMCHECKBOX
 STE Small Technical Enhancements / WI-0050

	CR against: TS/TR*
	TS-0004-V2.13.0

	Clauses *
	8.4.3 Example of JSON serialization

	Type of change: *
	 FORMCHECKBOX
 Editorial change

 FORMCHECKBOX
 Bug Fix or Correction

 FORMCHECKBOX
 Change to existing feature or functionality

 New feature or functionality
Only ONE of the above shall be ticked

	Impacted other TS/TR(s)
	None

	Post Freeze checking:*
	This CR contains only essential changes and corrections? YES FORMCHECKBOX
 NO FORMCHECKBOX

This CR may break backwards compatibility with the last approved version of the TS? YES FORMCHECKBOX
 NO FORMCHECKBOX

	Template Version: January 2017 (Do not modify)

oneM2M Notice

The document to which this cover statement is attached is submitted to oneM2M. Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.

GUIDELINES for Change Requests:

Provide an informative introduction containing the problem(s) being solved, and a summary list of proposals.

Each CR should contain changes related to only one particular issue/problem.
In case of a correction, and the change apply to previous releases, a separate “mirror CR” should be posted at the same time of this CR
Mirror CR: applies only when the text, including clause numbering are exactly the same.

Companion CR: applies when the change means the same but the baselines differ in some way (e.g. clause number).
Follow the principle of completeness, where all changes related to the issue or problem within a deliverable are simultaneously proposed to be made E.g. A change impacting 5 tables should not only include a proposal to change only 3 tables. Includes any changes to references, definitions, and acronyms in the same deliverable.
Follow the drafting rules.
All pictures must be editable.
Check spelling and grammar to the extent practicable.
Use Change bars for modifications.
The change should include the current and surrounding clauses to clearly show where a change is located and to provide technical context of the proposed change. Additions of complete clauses need not show surrounding clauses as long as the proposed clause number clearly shows where the new clause is proposed to be located.
Multiple changes in a single CR shall be clearly separated by horizontal lines with embedded text such as, start of change 1, end of change 1, start of new clause, end of new clause.
When subsequent changes are made to content of a CR, then the accepted version should not show changes over changes. The accepted version of the CR should only show changes relative to the baseline approved text.
Introduction
An enumerated data types introduced at clause 6.3.4 in TS-0004 as following.

6.3.4.1 Introduction

The oneM2M Enumeration Types are defined as extension from 'enumeration type' which is defined in XML Schema definition [3]. The oneM2M Enumeration Types are based on <xs:integer>, and the numeric values are interpreted as specified in clause 6.3.4.2. Table 6.3.4.1‑1 shows the example of Enumeration Type definition for m2m:enumFooType.

Table 6.3.4.1‑1: Example of oneM2M Enumeration Type Definition

	Value
	Interpretation
	Note

	1
	Interpretation-1
	

	2
	Interpretation-2
	

	3
	Interpretation-3
	

	NOTE:
See clause x.x.x "title of clause"

Based on ‘enumeration type definition’, there are many enumeration data type including
resourceType,
cseTypeID,
locationSource,
stdEventCats,
operation,
responseType,
resultContent,
discResType,
responseStatusCode,
requestStatus,
memberType,
consistencyStrategy,
cmdType,
execModeType,
execStatusType,
execResultType,
pendingNotification,
notificationContentType,
notificationEventType,
status,
batteryStatus,
mgmtDefinition,
logTypeId,
logStatus,
eventType,
statsRuleStatusType,
statModelType,

encodingType,

accessControlOperations,

filterUsage,

notificationTargetPolicyAction,

logicalOperator,

filterOperation,

securityInfoType,

allJoynDirection,

contentFilterSyntax,

contentSecurity,

suid,

esprimKeyGenAlgID,

esprimProtocolAndAlgID,

periodicIndicator,

stationaryIndication,

contentStatus,

networkAction,

triggerPurpose,

serializationType,

authorizationDecision,

authorizationStatus,

acpCombiningAlgorithm.
For example, data type for operation is specified at clause 6.3.4.2.5 as following.

6.3.4.2.5 m2m:operation

Used for Operation parameter in request and operation attribute in <request> resource.

Table 6.3.4.2.5‑1: Interpretation of operation

	Value
	Interpretation
	Note

	1
	Create
	

	2
	Retrieve
	

	3
	Update
	

	4
	Delete
	

	5
	Notify
	

	NOTE:
See clause 6.4.1 "Request message parameter data types".

On the other hand, an example of JSON serialization is not consistent enumeration type which is based on <xs:integer>.

Accoding to the RFC 7159, JSON primitives are four types; strings, numbers, booleans and null.

The RFC 7159 says “A number is represented in base 10 using decimal digits.” and “A string begins and ends with quotation marks.”
Therefore, a short name op for operation and ty for resourceType shall be used numbers not strings.
root element is deleted based on comments

-----------------------Start of change 1---
8.1.1 Examples

An example of a request message serialized using JSON is given below:

{

"op": 1,

"fr": "C2345",

"to": "//example.net/myCSE/99",

"rqi": "A1234",

"pc": {

"m2m:sch": {

"se": {

"sce": ["* 0-5 2,6,10 * * * *"]

}

}

},

"ty": 18

}
· op: operation (in this case it is Create)

· fr: ID of the Originator (an AE in this example)

· to: URI of the target resource

· rqi: request identifier (this is a string)

· pc: attributes of the <schedule> resource with member name "m2m:sch" to be provided by Originator. This is serialized as a nested JSON object

· ty: type of resource to be created (in this case a Schedule resource). This is a number.

Note that the Operation (op) parameter is present only in Request primitives. The presence of this parameter in JSON serialized primitive representations allows to differentiate Request primitives from Response primitives.

The next example shows an <AE> resource serialized using JSON , containing references to three child resources: two <container> resources (type 3) and a <schedule> (type 18).

The top level member, m2m:ae, is an object whose name consists of the prefix m2m: followed by the short name for the <AE> resource defined in Table 8.2.4-1. The members of this object are the attributes of <AE> using the short names from Table 8.2.3-2.

The ch member is an array containing references to the child resources. Note the use of the special short name val to hold the reference itself, as specified by clause 8.4.2, rule 10.
{
 "m2m:ae": {
 "rn": "appname",
 "aei": "CAE01",
 "ct": "20160404T132648",
 "et": "20160408T004648",
 "lt": "20160404T132648",
 "pi": "ONET-CSE-02",
 "ri": "REQID1",
 "ty": 2,
 "ch": [{"nm":"container1", "typ":3, "val":"1234"},
 {"nm":"container2", "typ":3, "val":"1235"},

 {"nm":"mySchedule", "typ":18, "val":"5678"}]
 }
}
The third example shows the same <AE> resource, but with the child resources serialized inline. For brevity it does not include all the attributes of the child resources.
{
 "m2m:ae": {
 "rn": "appname",
 "aei": "CAE01",
 "ct": "20160404T132648",
 "et": "20160408T004648",
 "lt": "20160404T132648",
 "pi": "ONET-CSE-02",
 "ri": "REQID1",
 "ty": 2,
 "m2m:cnt":[{"rn":"container1", "ty":3, …},
 {"rn":"container2", "ty":3, …}],

 "m2m:sch":[{"rn":"mySchedule", "ty":18, …}]
 }
}
-----------------------End of change 1---
CHECK LIST

· Does this Change Request include an informative introduction containing the problem(s) being solved, and a summary list of proposals.?
· Does this CR contain changes related to only one particular issue/problem?
· Have any mirror CRs been posted?
· Does this Change Request make all the changes necessary to address the issue or problem? E.g. A change impacting 5 tables should not include a proposal to change only 3 tables?Does this Change Request follow the drafting rules?
· Are all pictures editable?
· Have you checked the spelling and grammar?
· Have you used change bars for all modifications?
· Does the change include the current and surrounding clauses to clearly show where a change is located and to provide technical context of the proposed change? (Additions of complete clauses need not show surrounding clauses as long as the proposed clause number clearly shows where the new clause is proposed to be located.)
· Are multiple changes in this CR clearly separated by horizontal lines with embedded text such as, start of change 1, end of change 1, start of new clause, end of new clause.?
© 2017 oneM2M Partners
 Page 1 (of 6)

[image: image1.png]