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Introduction
An enumerated data types introduced at clause 6.3.4 in TS-0004 as following.

---------
6.3.4.1 Introduction

The oneM2M Enumeration Types are defined as extension from 'enumeration type' which is defined in XML Schema definition [3]. The oneM2M Enumeration Types are based on <xs:integer>, and the numeric values are interpreted as specified in clause 6.3.4.2. Table 6.3.4.1‑1 shows the example of Enumeration Type definition for m2m:enumFooType.

Table 6.3.4.1‑1: Example of oneM2M Enumeration Type Definition

	Value
	Interpretation
	Note

	1
	Interpretation-1
	

	2
	Interpretation-2
	

	3
	Interpretation-3
	

	NOTE:
See clause x.x.x "title of clause" 


-------------
Based on ‘enumeration type definition’, there are many enumeration data type including 
resourceType, 
cseTypeID, 
locationSource, 
stdEventCats, 
operation, 
responseType, 
resultContent, 
discResType, 
responseStatusCode, 
requestStatus, 
memberType, 
consistencyStrategy, 
cmdType, 
execModeType, 
execStatusType, 
execResultType, 
pendingNotification, 
notificationContentType, 
notificationEventType, 
status, 
batteryStatus, 
mgmtDefinition, 
logTypeId, 
logStatus, 
eventType, 
statsRuleStatusType, 
statModelType,

encodingType,

accessControlOperations,

filterUsage,

notificationTargetPolicyAction,

logicalOperator,

filterOperation,

securityInfoType,

allJoynDirection,

contentFilterSyntax,

contentSecurity,

suid,

esprimKeyGenAlgID,

esprimProtocolAndAlgID,

periodicIndicator,

stationaryIndication,

contentStatus,

networkAction,

triggerPurpose,

serializationType,

authorizationDecision,

authorizationStatus,

acpCombiningAlgorithm.
For example, data type for operation is specified at clause 6.3.4.2.5 as following.
-------------
6.3.4.2.5 m2m:operation

Used for Operation parameter in request and operation attribute in <request> resource.

Table 6.3.4.2.5‑1: Interpretation of operation

	Value
	Interpretation
	Note

	1
	Create
	

	2
	Retrieve
	

	3
	Update
	

	4
	Delete
	

	5
	Notify
	

	NOTE:
See clause 6.4.1 "Request message parameter data types".


-------------
On the other hand, an example of JSON serialization is not consistent enumeration type which is based on <xs:integer>.

Accoding to the RFC 7159, JSON primitives are four types; strings, numbers, booleans and null.

The RFC 7159 says “A number is represented in base 10 using decimal digits.” and “A string begins and ends with quotation marks.” 
Therefore, a short name op for operation and  ty for resourceType shall be used numbers not strings.
root element is deleted based on comments 

-----------------------Start of change 1-------------------------------------------
8.1.1 Examples

An example of a request message serialized using JSON is given below:

{



"op": 1,


"fr": "C2345",


"to": "//example.net/myCSE/99",


"rqi": "A1234",


"pc": {



"m2m:sch": {




"se": {





"sce": ["* 0-5 2,6,10 * * * *"]




}



}


},


"ty": 18


}
· op: operation (in this case it is Create)

· fr: ID of the Originator (an AE in this example)

· to: URI of the target resource

· rqi: request identifier (this is a string)

· pc: attributes of the <schedule> resource with member name "m2m:sch" to be provided by Originator. This is serialized as a nested JSON object

· ty: type of resource to be created (in this case a Schedule resource). This is a number.

Note that the Operation (op) parameter is present only in Request primitives. The presence of this parameter in JSON serialized primitive representations allows to differentiate Request primitives from Response primitives.

The next example shows an <AE> resource serialized using JSON , containing references to three child resources: two <container> resources (type 3) and a <schedule> (type 18).

The top level member, m2m:ae, is an object whose name consists of the prefix m2m: followed by the short name for the <AE> resource defined in Table 8.2.4-1. The members of this object are the attributes of <AE> using the short names from Table 8.2.3-2. 

The ch member is an array containing references to the child resources. Note the use of the special short name val to hold the reference itself, as specified by clause 8.4.2, rule 10.
{ 
 "m2m:ae": { 
   "rn": "appname", 
   "aei": "CAE01", 
   "ct": "20160404T132648", 
   "et": "20160408T004648", 
   "lt": "20160404T132648", 
   "pi": "ONET-CSE-02", 
   "ri": "REQID1", 
   "ty": 2,
   "ch": [{"nm":"container1", "typ":3,  "val":"1234"},
          {"nm":"container2", "typ":3,  "val":"1235"},
 


   {"nm":"mySchedule", "typ":18, "val":"5678"}] 
 } 
}
The third example shows the same <AE> resource, but with the child resources serialized inline.  For brevity it does not include all the attributes of the child resources.
{ 
 "m2m:ae": { 
   "rn": "appname", 
   "aei": "CAE01", 
   "ct": "20160404T132648", 
   "et": "20160408T004648", 
   "lt": "20160404T132648", 
   "pi": "ONET-CSE-02", 
   "ri": "REQID1", 
   "ty": 2,
   "m2m:cnt":[{"rn":"container1", "ty":3,  …},
              {"rn":"container2", "ty":3,  …}],
 
 "m2m:sch":[{"rn":"mySchedule", "ty":18, …}]
  } 
}
-----------------------End of change 1---------------------------------------------
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