	Doc# SEC-2015-0510-TR-0012_CR_8_1_1_Object_Security_Review
Change Request
	[image: image1.png]

	

	CHANGE REQUEST

	Meeting:*
	SEC#17

	Source:*
	Phil Hawkes, Qualcomm, phawkes@qti.qualcomm.com
Wolfgang Granzow, Qualcomm, wgranzow@qti.qualcomm.com

Josef Blanz, Qualcomm, jblanz@qti.qualcomm.com

	Date:*
	2015-05-11

	Contact:*
	As above

	Reason for Change/s:*
	The change introduces a review of object-based security technology that should be considered as options for end-to-end security.

	CR against: Release*
	2

	CR against: WI*
	 FORMCHECKBOX
 Active WI-0016
 FORMCHECKBOX
 MNT Maintenace / < Work Item number(optional)>
 FORMCHECKBOX
 STE Small Technical Enhancements / < Work Item number (optional)>

Only ONE of the above shall be ticked

	CR against: TS/TR*
	TR-0012 and v0.3.0

	Clauses/Sub Clauses*
	New clause 8.1.1 “Review of Object-Based Security Technology”

	Type of change: *
	 FORMCHECKBOX
 Editorial change
 FORMCHECKBOX
 Bug Fix or Correction
 Change to existing feature or functionality
 FORMCHECKBOX
 New feature or functionality
Only ONE of the above shall be ticked

	Post Freeze checking:*
	This CR contains only essential changes and corrections? YES
 NO
This CR is a mirror CR? YES FORMCHECKBOX
 NO FORMCHECKBOX
 if YES, please indicate the document number of the original CR:
<Document Number)<CR Number of the original CR to the current Release>

	Template Version:23 February 2015 (Dot not modify)

oneM2M Notice

The document to which this cover statement is attached is submitted to oneM2M. Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.

Introduction
The purpose of this contribution is to provide a review of object-based security technology for TR-0012. This information is expected to be relevant for analysing the options for end-to-end security protocols. This text attempts only to provide facts and (external) opinions that might be relevant: this text does not provide any technical recommendations – since there are other factors that remain to be considered.

NOTE TO RAPPORTEUR: The references in the text currently use short labels (e.g. [RFC4301]), and the assignment of proper reference labels (e.g. [i.7]) is currently left to the rapporteur. The references are currently highlighted in yellow, to assist in finding the references within the proposed text.
-----------------------Start of change 1---
8
Available Options

Editor’s note: this clause provides a high level description and detailed procedures of available options. The options are also analysed to arrive at a recommended option.
8.1
Review of Existing Technology

8.1.1
Review of Object-Based Security Technology
8.1.1.1
Introduction to Object-Based Security Technology

NOTE: this clause borrows heavily from the introduction to [RFC7165].

Channel-based security technologies such as IPsec [RFC4301], Transport Layer Security (TLS) [RFC5246] and Data gram TLS (DTLS) [RFC6347] create a secure channel at the IP layer or transport layer over which data can flow. In protocols with application-layer intermediaries, channel-based security protocols would protect messages from attackers between intermediaries, but not from the intermediaries themselves.
In the present oneM2M security specifications, the only protection afforded by oneM2M messages is provided by the channel-based TLS or DTLS. Some of the use cases in clause 5 require protecting messages from CSEs acting as intermediaries, and the existing oneM2M security mechanisms cannot offer this protection. Additional technology is required.

Object-based security technologies (see definitions) embed data within “secure object” that can be safely handled by untrusted intermediaries in the scenarios discussed above. Clause 8.1.1 provides a review of well-known standardized object-based security technologies including

· Secure/Multipurpose Internet Mail Extensions (S/MIME) [RFC5751] was proposed as a mechanism for providing an email with end-to-end security protection in the presence of untrusted Mail Transfer Agents en route to its destination. S/MIME provides confidentiality, integrity, and data origin authentication. S/MIME assumes a hierarchical PKI. These specifications are discussed in clause 8.1.1.2.

· OpenPGP [RFC4880] provides security services similar to S/MIME. Open PGP supports both hierarchical PKIs (as used in S/MIME) and a decentralized PKI known as a “Web-of-Trust” [WebOfTrust]. OpenPGP is discussed in clause 8.1.1.3.

· The XML security specifications XML Signature [XML-SIGv1.1] and XML Encryption [XML-ENCv1.1] can be applied to any content type, with the result represented in an XML object. These mechanisms are used by several security token systems (e.g., Security Assertion Markup Language (SAML) [OASIS-SAML), and the Common Alerting Protocol (CAP) emergency alerting format [OASIS-CAP]. XML security discussed in clause 8.1.1.4.

· The IETF JSON Object Signing and Encryption (JOSE) working group [JOSE] has been chartered to develop a secure object format based on JSON with roughly equivalent features to the XML security specifications in the preceding bullet. JSON Security is discussed in clause 8.1.1.5.

In addition to a high level description of the protocols, the following issues are considered:

oneM2M Protocol Binding support for natively identifying the object-based security protocol media type. Internet media types [RFC2046] are identified by a string, such as "application/xml", registered in the IANA Media Types registry [IANA-MediaTypes]. All the above object-based security protocols use one of the registered media types. Note that the media types currently supported by oneM2M systems are defined in clause 6.7 of TS-0004 [i.2].

· HTTP [RFC7230]: HTTP natively supports identification of all registered media string-based identifiers, including the media type for the above object-based security protocols.

· CoAP [RFC7252]: CoAP In order to minimize the overhead of using the string-based media type identifiers, CoAP natively recognizes only the small set of Internet media types recorded in the "CoAP Content-Formats" sub-registry of the IANA "CoRE Parameters" registry (see [IANA-CoAPContentFormats]). Recognition of the object-based security protocol media type in CoAP is examined on a case by case basis.

· MQTT [OASIS-MQTT]: MQTT leaves identification of the media type to the application layer. For all choices of object-based security protocol, oneM2M would be required to specify how the object-based security protocol media type is identified when MQTT is used.

Formatting and Parsing Complexity: some of the above object-based security protocols include complex rules for formatting and parsing of messages. This is worth consideration, because application developers that lack the tools or motivation to handle complex rules are likely to avoid developing applications using such security protocols. Execution environments could provide function calls that apply complex formatting and/or parsing on behalf of AEs– thus reducing the burden on the application developers. However, it is unclear if the scope of oneM2M includes defining function calls. Consequently, it is unclear if the formatting and parsing complexity is a factor in making decisions. This review (clause 8.1.1) only reports on the formatting and parsing complexity; the review avoids drawing any recommendations based on the complexity.

Canonicalization: Consider a scenario where a signed object of some media type (e.g. XML) is parsed at an intermediary server, with the information later reconstructed same media type before being forwarded to another entity. For many media types, there are multiple legitimate equivalent serializations (representations) of the original signed object, so the second serialization of the object may differ slightly from the original serialization in the object. If the serializations differ, then a signature on the original serialization of the object would no longer apply for the second serialization– even though the serializations are logically equivalent. Consequently, an entity who receives the second serialization of the object cannot use the original signature to verify the origin of the object.

For example, in XML the nature of the whitespace may not convey any meaning – so the intermediary server may reconstruct XML with different whitespace to the original serialization. Similarly, the order of attributes in XML does not convey any meaning, so the intermediary server may reconstruct XML with attributes in a different order to the original serialization. In both cases, a signature on the original serialization of the object would no longer apply for the second serialization– even though the serializations are logically equivalent.

To address this issue, some media types define a canonical form that is uniquely and unambiguously representable in the environment where the signature is created and the environment where the signature will be verified. The process of producing the canonical form from a particular serialization is called canonicalization.
Canonicalization has the advantage that signatures can always be verified, even if the object gets parsed and reconstructed by an intermediary. This benefit does not come for free, since canonicalization can add to the complexity of formatting and parsing. Furthermore, if the original serialization of the object is always sent with the digital signature, then the complexity of canonicalization provides no technical benefit. Consequently, canonicalization can be an advantage in some scenarios and disadvantage in others.

In summary: canonicalization is required in scenarios where the object is parsed and reconstructed at an intermediate server. However, if objects are not parsed and reconstructed then canonicalization simply adds an un-necessary and complex step. This review (clause 8.1.1) only reports whether the object-based security technologies provide canonicalization; the review does not investigate which scenarios warrant canonicalization, and avoids drawing any recommendations based on the support for canonicalization.

8.1.1.2
Secure/Multipurpose Internet Mail Extensions (S/MIME)

8.1.1.2.1
High Level Description of S/MIME

NOTE: This description borrows heavily from the S/MIME specification [RFC5751].

S/MIME [RFC5751] (Secure/Multipurpose Internet Mail Extensions) provides a consistent way to send and receive secure MIME data. S/MIME provides authentication, message integrity and non-repudiation of origin (using digital signatures), and data confidentiality (using encryption). As a supplementary service, S/MIME provides for message compression.

S/MIME is not restricted to mail; it can be used with any transport mechanism that transports MIME data, such as HTTP or SIP. As such, S/MIME takes advantage of the object-based features of MIME and allows secure messages to be exchanged in mixed-transport systems.
S/MIME defines the creation and processing of a MIME body part that has been cryptographically enhanced according to the Cryptographic Message Syntax (CMS) [RFC5652]. CMS is used to digitally sign, digest, authenticate, or encrypt arbitrary message content. The CMS values are generated using ASN.1 [X.208-88], using BER-encoding (Basic Encoding Rules) [X.209-88].

8.1.1.2.2
Considerations regarding of S/MIME

8.1.1.2.2.1
CoAP identification of S/MIME media types
S/MIME [RFC5751] registers the internet media type identifiers “application/pkcs7-mime” and “application/pkcs7-signature” in the IANA Media Types registry [IANA-MediaTypes].

At the time of writing, the S/MIME media types are not in the “CoAP Content-Formats” registry [IANA-CoAPContentFormats], so CoAP cannot natively identify the S/MIME media types. If oneM2M decides to use S/MIME, then oneM2M will need to specify how the CoAP binding indicates that S/MIME has been used.

8.1.1.2.2.2
Formatting, Parsing and Canonicalization Complexity for S/MIME

Recall that S/MIME uses CMS which in turn uses ASN.1 [X.208-88], with BER-encoding (Basic Encoding Rules) [X.209-88].
 [RFC7165] states the following opinion regarding the use of ASN.1
“In recent years, usage of ASN.1 has decreased (along with other binary encodings for general objects), while more applications have come to rely on text-based formats such as the Extensible Markup Language (XML) [W3C.REC-xml] or the JavaScript Object Notation (JSON) [RFC7159].

“Many current applications thus have much more robust support for processing objects in these text-based formats than ASN.1 objects; indeed, many lack the ability to process ASN.1 objects at all.”
S/MIME provides simple guidance for canonicalization of text. Otherwise, S/MIME does not impose any canonicalization rules, but requires that the original MIME entity is already canonicalized according to the media type and subtype of the original MIME entity. The complexity of this canonicalization then depends on the media type of the original MIME entity.

For example, if S/MIME is used to secure XML, then XML canonicalization must be applied (see clause 8.1.1.4.2.3). XML Security also requires canonicalization, so the overhead of canonicalization is the same where S/MIME or XML security is applied.
8.1.1.3
OpenPGP
8.1.1.3.1
High Level Description of OpenPGP
The OpenPGP message format specification [RFC4880] uses a combination of strong public-key and symmetric cryptography to provide security services for electronic communications and data storage. These services include confidentiality, key management, authentication, and digital signatures.
OpenPGP supports both hierarchical PKIs (as used with S/MIME) and a decentralized PKI known as a “Web-of-Trust”. The web-of-trust model is mostly useful for authenticating people, but has not gained significant momentum.
8.1.1.3.2
Considerations for OpenPGP

8.1.1.3.2.1
CoAP identification of the OpenPGP media type

MIME Security with OpenPGP [RFC3156] defines three content types in the IANA Media Types registry [IANA-MediaTypes] for implementing security and privacy with OpenPGP: "application/pgp-encrypted", "application/pgp-signature" and "application/pgp-keys".

At the time of writing, the OpenPGP media types are not in the “CoAP Content-Formats” registry [IANA-CoAPContentFormats], so CoAP cannot natively identify the OpenPGP media types. If oneM2M decides to use OpenPGP, then oneM2M will need to specify how the CoAP binding indicates that OpenPGP has been used.
8.1.1.3.2.2
Formatting, Parsing and Canonicalization Complexity for OpenPGP
OpenPGP messages are ASCII radix-64 representations of binary data. The data elements have (type, length, value) format with registered types recorded at IANA Pretty Good Privacy (PGP) registry [IANA-PGP].

The opinion about binary encodings in clause 8.1.1.2.2.1 “Formatting and Parsing Complexity for S/MIME” would also be relevant to OpenPGP formatting and parsing.
OpenPGP provides simple guidance for canonicalization of text, and all other data is treated as binary data.
8.1.1.4
XML Security

8.1.1.4.1
High Level Description of XML Security
XML security specifications are generated by the W3C’s XML Security Working Group [XML-SEC] in the form of “W3C recommendations”. The latest recommendations, published in in 2013, are described below - (the descriptions borrow heavily from the respective documents).

· XML Encryption Syntax and Processing Version 1.1 [XML-ENCv1.1] specifies how to encrypt data and represent the result in XML. The result of encrypting data is an XML Encryption EncryptedData element that contains (via one of its children's content) or identifies (via a URI reference) the cipher data. The data may be in a variety of formats, including octet streams and other unstructured data, or structured data formats such as XML documents, an XML element, or XML element content.
· XML Signature Syntax and Processing Version 1.1 [XML-SIGv1.1] provides integrity, message authentication, and/or signer authentication services for data of any type, whether located within the XML that includes the signature or elsewhere. An XML Signature may be applied to the content of one or more resources. Enveloped or enveloping signatures are over data within the same XML document as the signature; detached signatures are over data external to the signature element.
· XML Signature Properties [XML-SIG-properties] defines a namespace and three properties to be used in XML Signatures: a Profile Property (a URI) identifying how in the signature is to be used (e.g. constraining the choice of algorithms); a Role Property (a URI) specifying an application specific role for the signature; and an Identifier Property enabling use cases where a unique identifier needs to be associated with the signature.

NOTE: There are a variety of additional technical reports on “XML Security 2.0”, but these have status of “WG Notes”, and are not endorsed as “W3C Recommendations”.

XML Encryption and XML Signatures can be applied to provide desired combinations of confidentiality, integrity, message authentication, and/or signer authentication.
8.1.1.4.2
Considerations for XML Security
8.1.1.4.2.1
CoAP identification of the XML Security media type
The output of XML encryption and XML signatures are represented in XML. XML parsers processing the XML will be able to identify the XML encryption elements and XML signature elements. Consequently, an oneM2M Protocol binding can support transporting XML encryption and XML signatures provided the protocol can identify the XML media type.
XML uses the media type “application/xml” in the IANA Media Types registry [IANA-MediaTypes].
CoAP identities the XML media type using the CoAP Content-Format ID “41” (see [IANA-CoAPContentFormat]).
8.1.1.4.2.2
Formatting, Parsing and Canonicalization Complexity for XML Security

XML formatting and parsing is relatively easy and well supported. However, the need for XML canonicalization [XML-Canon] in XML Encryption and XML Signatures introduces significant complexity.

The JOSE use cases document [RFC7165] expresses this opinion on formatting and parsing complexity for XML Security:
In practice, however, XML-based secure object formats introduce similar levels of complexity to ASN.1 (e.g., due to the need for XML canonicalization), so developers that lack the tools or motivation to handle ASN.1 aren’t likely to use XML security either.”
This quote should be interpreted as an opinion, rather than technical fact, but it worthy of consideration.
8.1.1.4.2.3
Canonicalization and XML Security
Canonical XML is specified in recommendation [XML-Canon]. XML encryption and XML Signature convert all XML to the Canonical XML prior to applying cryptographic processes. See clause 8.1.1.4.2.2 for discussion on the impact of canonicalization on formatting and parsing complexity for XML security.
8.1.1.5
JSON Security

8.1.1.5.1
High Level Description of JSON Security

The IETF JSON Object Signing and Encryption (JOSE) working group [JOSE] has been chartered to develop a secure object format based on JSON. At the time of writing, the only published RFC from the JOSE working groups is a document containing use cases and requirements. [RFC7165]. The use cases include security tokens, OAuth, OpenID Connect, XMPP, emergency alerting, constrained devices (including object security for CoAP). The following internet-drafts are nearing publication (the descriptions in this clause borrow heavily from the respective documents):

· JSON Web Algorithms (JWA) [JOSE-JWA] registers cryptographic algorithms and identifiers to be used with JOSE specifications.
· [JOSE-JWK] JSON Web Key (JWK) defines JSON-based data structures that represent a cryptographic key (JWK) and a set of JWKs (JWK set).”

· [JOSE-JWE] JSON Web Encryption (JWE) represents encrypted content using JSON based data structures. The JWE cryptographic mechanisms encrypt and provide integrity protection for an arbitrary sequence of octets.
· [JOSE-JWS] JSON Web Signature (JWS) represents content secured with digital signatures or Message Authentication Codes (MACs) using JSON-based data structures. The JWS cryptographic mechanisms provide integrity protection for an arbitrary sequence of octets.”

The JOSE cookbook [JOSE-cookbook] provides a representative set of examples of protecting content using JOSE.

The secured objects produced using JOSE specifications can use either a JSON serialization or a compact, URL-safe text serialization (intended for space constrained environments such as HTTP Authorization headers and URI query parameters).
8.1.1.5.2
Considerations for JSON Security
8.1.1.5.2.1
CoAP identification of the JSON Security media type
The output of JWK, JWE and JWS can use a JSON serialization. JSON parsers processing the JSON will be able to identify the JWK, JWE and JWS elements. Consequently, an oneM2M Protocol binding can identify JWK, JWE and JWS provided the protocol can identify the JSON media type.
JSON uses the media type “application/json” in the IANA Media Types registry [IANA-MediaTypes].
CoAP identities the JSON media type using the CoAP Content-Format ID “50” (see [IANA-CoAPContentFormat]).

8.1.1.5.2.2
Formatting, Parsing and Canonicalization Complexity for JSON Security
The formatting and parsing complexity of XML is comparable to the formatting and parsing complexity of JSON; formatting and parsing is relatively easy and well supported. JWK, JWE and JWS do not use canonicalization, which makes the formatting and parsing of JWK, JWE and JWS less complex than formatting and parsing for XML Security (which requires canonicalization).

-----------------------End of change 1---

-----------------------Start of Changes to References Section -------------

2.2
Informative references
Clause 2.2 shall only contain informative references which are cited in the document itself.

The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.
[i.1]
oneM2M drafting rules (draft)

[i.2]
TR-0004 Definitions and Acronyms

[i.3]
TS-0002 Requirements
[i.4]
TS-0001 Functional Architecture (draft)

[i.5]
TR-0001 Use Cases (draft)
[i.6] TS-0003 Security Solutions
[IANA-CoAPContentFormats] IANA, “Constrained RESTful Environments (CoRE) Parameters, CoAP Content-Formats”: http://www.iana.org/assignments/core-parameters/core-parameters.xhtml#content-formats
[IANA-MediaTypes] IANA, “Media Types”, http://www.iana.org/assignments/media-types/media-types.xhtml

[IANA-PGP]
IANA, “Pretty Good Privacy (PGP)”, http://www.iana.org/assignments/pgp-parameters/pgp-parameters.xhtml

[JOSE-cookbook]
IETF draft-ietf-jose-cookbook-08 “Examples of Protecting Content using JavaScript Object Signing and Encryption (JOSE)”, https://tools.ietf.org/html/draft-ietf-jose-cookbook-08

[JOSE-JWAlg]
IETF draft-ietf-jose-json-web-algorithms-40 “JSON Web Algorithms (JWA)”, https://tools.ietf.org/html/draft-ietf-jose-json-web-algorithms-40

[JOSE-JWEnc]
IETF draft-ietf-jose-json-web-encryption-40 “JSON Web Encryption (JWE)”, https://tools.ietf.org/html/draft-ietf-jose-json-web-encryption-40

[JOSE-JWKey]

IETF draft-ietf-jose-json-web-key-41 “JSON Web Key (JWK)”, https://tools.ietf.org/html/draft-ietf-jose-json-web-key-41

[JOSE-JWSig]
IETF draft-ietf-jose-json-web-signature-41 “JSON Web Signature (JWS)”, https://tools.ietf.org/html/draft-ietf-jose-json-web-signature-41

[OASIS-CAP]
OASIS Standard, “Common Alerting Protocol Version 1.2”, 2010
[OASIS-MQTT]
OASIS Standard “MQTT Version 3.1.1”, 2014, http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html

[OASIS-SAML]
OASIS Standard, “Assertions and Protocols for the OASIS Security Assertion Markup Language (SAML) V2.0”, 2015

[RFC2046]
IETF RFC 2046: “Multipurpose Internet Mail Extensions, (MIME) Part Two: Media Types”, 1996

[RFC3156]
IETF RFC 3156: “MIME Security with OpenPGP”, 2001

[RFC4301]
 IETF RFC 4301: “Security Architecture for the Internet Protocol”, 2005

[RFC4880]
IETF RFC 4880: “OpenPGP Message Format”, 2007

[RFC5751]
IETC RFC 5751: “Secure/Multipurpose Internet Mail Extensions (S/MIME) Version 3.2 Message Specification”, 2010

[RFC5652]
IETC RFC 5652: “Cryptographic Message Syntax (CMS)”, 2009

[RFC7165]
IETF RFC 7165: “Use Cases and Requirements for JSON Object Signing and Encryption (JOSE)”

[RFC7230]
IETF RFC 7230: "Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing", 2014.
[RFC7252]
IETC RFC 7252: “The Constrained Application Protocol (CoAP)”, 2014

[WebOfTrust]
Ferguson, Niels & Schneier, Bruce. “Practical Cryptography”. Wiley. p. 333. ISBN 978-0471223573, 2003

[X.208-88]
CCITT. Recommendation X.208: Specification of Abstract Syntax Notation One (ASN.1), 1988.

[X.209-88]
CCITT. Recommendation X.209: Specification of Basic Encoding Rules for Abstract Syntax Notation One (ASN.1), 1988.
[XML-Canon]
W3C Recommendation “Canonical XML Version 1.0”, 2001, http://www.w3.org/TR/xml-c14n

[XML-ENC]
W3C Recommendation “XML Encryption Syntax and Processing v1.1”, 2013, http://www.w3.org/TR/xmlenc-core1/
[XML-SEC]
W3C XML Security Working Group. http://www.w3.org/2008/xmlsec/

[XML-SIG]
W3C Recommendation “XML Signature Syntax and Processing v1.1”, 2013, http://www.w3.org/TR/xmldsig-core1/

[XML-SIG-properties]
W3C Recommendation “XML Signature Properties”, 2013, http://www.w3.org/TR/xmldsig-properties/
-----------------------End of Changes to References -------------

-Start of changes to Definitions Symbols Abbreviations Acronyms -

3
Definitions, symbols, abbreviations and acronyms
3.1
Definitions

Canonical:
A unique and unambiguous representation of data [RFC5751]
Canonicalization:
The process of converting a legal representation of data into its canonical form.
Object-based security:
technology embeds application data within a secure object that can be safely handled by untrusted entities [RFC7165]
<defined term>: <definition>

<defined term>[N]: <definition>

3.2
Symbols

<symbol>
<Explanation>

3.3
Abbreviations and Acronyms
<ABBREVIATION/ACRONYM>
<Explanation>
---End of changes to Definitions, Symbols, Abbreviations, Acronyms ---

© 2015 oneM2M Partners
 Page 9 (of 9)

[image: image1.png]