
	[image: image1.png]

	oneM2M
Technical Report

	Document Number
	oneM2M-TR-0019-V-0.0.4

	Document Name:
	Dynamic Authorization for IoT

	Date:
	2015-September-15

	Abstract:
	This technical report analyzing the requirements for, and elaborating, dynamic authorization solutions suitable for open IoT scenarios

This Specification is provided for future development work within oneM2M only. The Partners accept no liability for any use of this Specification.
The present document has not been subject to any approval process by the oneM2M Partners Type 1. Published oneM2M specifications and reports for implementation should be obtained via the oneM2M Partners' Publications Offices.
About oneM2M

The purpose and goal of oneM2M is to develop technical specifications which address the need for a common M2M Service Layer that can be readily embedded within various hardware and software, and relied upon to connect the myriad of devices in the field with M2M application servers worldwide.

More information about oneM2M may be found at: http//www.oneM2M.org

Copyright Notification

No part of this document may be reproduced, in an electronic retrieval system or otherwise, except as authorized by written permission.

The copyright and the foregoing restriction extend to reproduction in all media.

© 2013, oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TTA, TTC).

All rights reserved.

Notice of Disclaimer & Limitation of Liability

The information provided in this document is directed solely to professionals who have the appropriate degree of experience to understand and interpret its contents in accordance with generally accepted engineering or other professional standards and applicable regulations. No recommendation as to products or vendors is made or should be implied.

NO REPRESENTATION OR WARRANTY IS MADE THAT THE INFORMATION IS TECHNICALLY ACCURATE OR SUFFICIENT OR CONFORMS TO ANY STATUTE, GOVERNMENTAL RULE OR REGULATION, AND FURTHER, NO REPRESENTATION OR WARRANTY IS MADE OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR AGAINST INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS. NO oneM2M PARTNER TYPE 1 SHALL BE LIABLE, BEYOND THE AMOUNT OF ANY SUM RECEIVED IN PAYMENT BY THAT PARTNER FOR THIS DOCUMENT, WITH RESPECT TO ANY CLAIM, AND IN NO EVENT SHALL oneM2M BE LIABLE FOR LOST PROFITS OR OTHER INCIDENTAL OR CONSEQUENTIAL DAMAGES. oneM2M EXPRESSLY ADVISES ANY AND ALL USE OF OR RELIANCE UPON THIS INFORMATION PROVIDED IN THIS DOCUMENT IS AT THE RISK OF THE USER.

Contents

3Contents

1
Scope
4
2
References
4
2.1
Normative references
4
2.2
Informative references
4
3
Definitions, symbols, abbreviations and acronyms
4
3.1
Definitions
4
3.2
Symbols
5
3.3
Abbreviations
5
4
Conventions,
5
5
Use Cases
6
6
High Level Architecture
6
7
Working Assumptions, Requirements and Principles
6
8
Description and Analysis of Available Options
6
9
Conclusion and Recommendations
6
Proforma copyright release text block
6
Annexes
7
Annex <y>: Bibliography
7
History
8

1
Scope

Development of the Internet of Things implies convenient ways to enable interactions between M2M Applications depending on different actors, and possibly affiliated to different M2M Service Providers. In the context of an M2M Service Platform, this requires a practical mean for a Resource consuming application to obtain possibly temporary and restricted access to a Resource exposed by a Resource producing application. The Access Control Policies mechanism of TS-0003 [i.3] was suitable under the assumption of centralized (client-server style) M2M deployments where required interactions between Resource producers and Resource consumers are mainly predictable at the time of resource creation and restricted within a known (reduced) set of interacting entities that is not constantly evolving. This assumption is no longer valid in IoT scenarios where many-to-many application level interactions between multitudes of devices would result in exponential explosion in the number of Access Control Policies to establish and manage, while their unpredictable and fast evolving nature would create a bottleneck where the ACPs are maintained and evaluated.

This work item will therefore investigate the suitability of alternative authorization schemes. This could include e.g. token-based models, where the grant of authorization is directly embodied by a virtual ticket delivered to the requester that carries a scope of authorization as well as validation means.

2
References

The following text block applies.

References are either specific (identified by date of publication and/or edition number or version number) or non‑specific. For specific references,only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.

2.1
Normative references

As a Technical Report (TR) is entirely informative it shall not list normative references.
The following referenced documents are necessary for the application of the present document.
Not applicable.

2.2
Informative references
Clause 2.2 shall only contain informative references which are cited in the document itself.

The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.
[i.1]
oneM2M Drafting Rules (http://member.onem2m.org/Static_pages/Others/Rules_Pages/oneM2M-Drafting-Rules-V1_0.doc)
[i.2]
oneM2M TS-0001 “Functional Architecture”

[i.3]
oneM2M TS-0003 “Security Solutions”

[i.4]
oneM2M TS-0011 “Common Terminology”
[OAuth]
IETF RFC 6749: “The OAuth 2.0 Authorization Framework”, 2012

[UMA]

User Managed Access Profile of OAuth 2.0, draft-hardjono-oauth-umacore-13, http://tools.ietf.org/html/draft-hardjono-oauth-umacore-13
[OpenID]

OpenId foundation. OpenID Connect Dynamic Client Registration 1.0. [Online]. http://openid.net/specs/openid-connect-registration-1_0.html
3
Definitions, symbols, abbreviations and acronyms
Delete from the above heading the word(s) which is/are not applicable.
3.1
Definitions

·
·
·
For the purposes of the present document, the terms and definitions given in oneM2M TS-0011 [i.4] and oneM2M TS-0003 [i.3] and the following apply:

access token [OAuth]:
a dynamically issued credential which can be used to access resources. An access token represents an authorization issued to the Originator.
authorization grant [OAuth]:
a dynamically issued credential representing the Grant Approver’s authorization to access resources. An authorization grant can either be used directly access token, or used by the Originator to obtain an access token.

authorization server:
An entity with permission to access tokens to the originator upon presentation of an authorization grant. Performs a functional role similar to an OAuth 2.0 authorization server [OAuth].

Dynamic Authorization: Enables a service provider or resource owner with the ability to provide access privileges, based on one or more authorization checks to an entity such that it is able to perform operations on resource(s) for a finite duration, when a prior relationship or static access control policy does not exist for the operation requested by that entity.
(oneM2M) dynamic authorization architecture: a framework providing dynamic authorization for obtaining access to resources.
grant approver:
An entity with permission to granting access to a protected resource. Provides part of the functionality of an OAuth 2.0 resource owner [OAuth]

grant issuer:
An entity recognised (by the Host CSE and/or an authorization server) as having permission to issue authorization grants. Provides part of the functionality of an OAuth 2.0 resource owner [OAuth].

3.2
Symbols

Clause numbering depends on applicability.

For the purposes of the present document, the symbols given in oneM2M TS-0011 [i.4] and oneM2M TS-0003 [i.3] and the following apply:

Symbol format

<symbol>
<Explanation>

<2nd symbol>
<2nd Explanation>

<3rd symbol>
<3rd Explanation>

3.3
Abbreviations

For the purposes of the present document, the abbreviations given in oneM2M TS-0011 [i.4] and oneM2M TS-0003 [i.3] and the following apply:
AS

Authorization Server

DAA
(oneM2M) Dynamic Authorization Architecture

Daga
DAA Authorization Grant Approval reference point

Dagd
DAA Authorization Grant Data reference point

Dagi
DAA Authorization Grant Issuance reference point

Datd
DAA Access Token Data reference point

Dati
DAA Access Token Issuance reference point

Datu
DAA Access Token Usage reference point

OAuth
Web Authorization Protocol (denotes an IETF Working Group and specifications produced by that working group)

RO

Resource Owner

RPT

Requesting Party Token

RS

Resource Server

UMA

User Managed Access

4
Conventions

The key words “Shall”, ”Shall not”, “May”, ”Need not”, “Should”, ”Should not” in this document are to be interpreted as described in the oneM2M Drafting Rules [i.1]
5
Use Cases

Editor’s note: this clause describes use cases that need dynamic authorization solutions. Each use case is expected to include text explaining why use of existing access control policy (ACP) resources is not an appropriate solution.

5.1
Use Case for Access Token in Dynamic Authorization
5.1.1
Description
In a oneM2M System the Platform, Gateways and Devices interact each other in the way of many-to-many, furthermore many of these relations may be dynamic and temporary. So the access control mechanism used by the M2M System shall be flexible and efficient.

The use case in the following sections shows using dynamically issued access tokens that carry authorization information to simplify the access control management. In this use case the mobile phone of a tourist is issued with access tokens in which there are access privileges to the resources of M2M Gateways/Devices. The tourist then can use these access tokens to access various M2M Gateways or Devices in the hotel or attractions, such as accessing his/her room, operating electric devices in the room, accessing the VIP area, using the facilities in fitness center, renting bicycle, or using some tourist facilities in the attractions. If using the traditional way, i.e. the privileges are placed in the local stored access control policies, all the access control policies in the gateways or devices related to this tourist shall be updated. As there are so many tourists coming and going, the workload of modifying and uploading access control policies will be very large if it's not impossible.
5.1.2
Actors
The entities involved in this use case are shown in the Figure 5.1.2-1 and described as follows:

M2M Platform: It represents an infrastructure entity that interacts with M2M Gateways/Devices and M2M Application for providing common functionalities. In this use case the M2M Platform provides communication path between two M2M Gateways/Devices that do not have registration relation.

Token Issuer: It represents a M2M Gateway that is responsible for issuing access tokens to other M2M Gateways/Devices.

Mobile Phone: It represents a M2M Device held by a tourist. Access tokens are issued to the mobile phone, and the tourist uses it to interact with other M2M Gateways/Devices.

M2M Gateway: It is responsible for caching and forwarding the messages exchanging between the M2M Platform and target M2M Devices. It also acts as a control center that stores various information related to the M2M Devices that have registered to it.
M2M Device: It represents various M2M devices such as lock of door, fitness equipment, lock of the bicycle, smart TV, facility for tourists at attractions and so on.

[image: image2.emf]M2M Platform

M2M Gateway 1

(Token Issuer)

Access Resource

Get Token

M2M Gateway 2 M2M Gateway n

M2M Device

(Mobile Phone)

Token

Token

M2M Devices M2M Devices

Figure 5.1.2-1: Using token to carry authorization information

Editor note: Which entities in the M2M System are able to issue tokens is FFS.
5.1.3
Pre-conditions
The issuer (M2M Gateway 1) of access tokens is provisioned with security credentials that are used for providing integrity and confidentiality protection for access tokens.

Other M2M Gateways are provisioned with security credentials that are used for verifying received access tokens.

5.1.4
Normal Flow
The procedure of issuing and using access tokens is:
1. A tourist registers his/her mobile phone as a M2M Device with the M2M Gateway 1 at the hotel reception. The M2M Gateway 1 also plays the role of token issuer.

2. The token issuer issues one or multiple access tokens to the mobile phone according to the services booked by the tourist. Inside the tokens there are some authorization information describing what privileges are assigned to the mobile phone (M2M Device).
The tourist then can use these access tokens to access various M2M Gateways or Devices in the hotel through his/her mobile phone, such as accessing his/her room, operating electric devices in the room, accessing the VIP area, using the facilities in fitness center, renting bicycle, or using some tourist facilities in the attractions.
3. When the tourist arrives some sites such as door of room, the mobile phone may detect a M2M Gateway or a M2M Device with which the mobile can contact. The mobile phone then establishes security association with the detected device via the M2M Gateway 1 and M2M Platform. After that a resource access request with appropriate access tokens are sent to the M2M Gateway/Device.

4. The M2M Gateway/Device verifies the access tokens sent by the mobile phone, extracts the privileges from the token, and evaluates the access request with the privileges. If it is permitted, the M2M Gateway/Device executes the requested operation on the target resource.

5.1.5
Potential requirements
1. The authorized M2M entity shall be able to issue access tokens that describe what privileges are assigned to the holder of access tokens for accessing the resources in other M2M entities.

2. The M2M System shall provide authenticity, integrity and confidentiality protection for access tokens.

3. The M2M System shall be able to revoke the access tokens that are not yet expired.

5.2
Use Case for Role Token in Dynamic Authorization
5.2.1
Description
According to the description in oneM2M TS-0001[i.2], in the oneM2M System the M2M Service Subscription defines the technical part of the contract between an M2M Subscriber and an M2M Service Provider. An M2M Service Subscription establishes a link between one or more AEs; one or more M2M Nodes, one or more M2M Services. In each M2M Service, one or multiple M2M Service role(s) shall be defined by the M2M Service Provider. An M2M Service role is mapped to a created permission pertaining to a resource types which are associated with M2M Service. The M2M Subscriber subscribes to one or multiple Service role(s) within the M2M Services.
In Role Based Access Control (RBAC) roles are assigned to users, and privileges are assigned to roles, users obtain privileges through their assigned roles. There are two ways to implement the role-user assignments, one is both role-user assignments and privilege-role assignments are described in the RBAC policies; another is only privilege-role assignments are described in the RBAC policies, the user-role binding is achieved in the time of access control. One way or another depends on the specific application scenario. In the case of role-user assignment is stable, user-role assignments could be described in RBAC policies, otherwise another way should be considered.

In oneM2M application environment the relations among AEs, CSEs, M2M Nodes and M2M Services may dynamically change. These dynamical changing might bring some access control issues. For example, in the use case shown in the Figure 5.2.1-1, the house owners can subscribe various M2M Services and may also change their service subscriptions from time to time. When the house owners change their Service Subscriptions, it may result in a large number of access control policy revision if user-role assignments is implemented in RBAC policies. So in the oneM2M System security mechanisms or approaches shall be considered to address such issues.

[image: image3.emf]M2M Application

Service Providers

M2M Platform

M2M Service

Provider

Electricity

Company

Home Gateway 1

M2M Devices

Home Energy

Management

System

SecurityService

Company

Home Gateway 2

Home Gateway n

M2M Gateways

Smart Meter

Air Conditioner

Security Facility

Figure 5.2.1-1: Home Facility Management System High Level Illustration
The use case in the following sections shows using dynamically issued security tokens to carry Service Roles in order to avoid modifying RBAC policies at the CSEs in Field Domain.
5.2.2
Actors
The entities involved in this use case are shown in the Figure 5.2.2-1 and described as follows:

M2M Platform: It represents an infrastructure entity that interacts with M2M Gateways/Devices and M2M Application for providing common functionalities for the M2M Services such as collecting the status and configuration information of home devices and controlling them via the home gateway.
M2M Application: It provides some M2M Services for the users through the M2M Service Platform. For example, a Home Energy Management System (HEMS) provides management services for home electronic equipments to minimize energy consumption, and a Security Service Company provides home security related services such as room/house monitoring, fire monitoring and intrusion monitoring.

M2M Gateway: It is responsible for caching and forwarding the messages exchanging between M2M Platform and target M2M Device. It also acts as a house control center that stores various information pertain to M2M Devices in the house, such as smart meter data that is waiting for upload, air conditioner control policy, security monitoring records, and so on.

M2M Devices: They represent various M2M devices such as smart meter, air conditioners, fire alarms, room/house monitors and so on.

[image: image4.emf]M2M Platform M2M Gateway 2 M2M Application

M2M Gateway 1

M2M Gateway 3

M2M Devices

M2M Devices

M2M Devices

Token

Access Resource

Token

Get Token

Figure 5.2.2-1: Using token to carry Service Roles in RBAC
5.2.3
Pre-conditions
The M2M Platform is provisioned with security credentials that are used for providing integrity and confidentiality protection for access tokens.

M2M Gateways are provisioned with security credentials that are used for verifying received access tokens.

5.2.4
Normal Flow
The procedure of issuing and using access tokens is:

1. A M2M Application that has registered with the M2M Platform sends a Service Role Token Request to the M2M Platform.

2. The M2M Platform first authenticates the M2M Application, and then checks the Service Role Token issuing policies. If the issuance is permitted, the M2M Platform issues a Service Role Token to the M2M Application. This token is protected using the provisioned security credentials.

3. The M2M Platform sends the generated Service Role Token to the M2M Application, or the Service Role Token is retrieved by the M2M Application later.

4. The M2M Application sends a resource access request to the M2M Gateway. In the request the Service Role Token is included.

5. The M2M Gateway authenticates the M2M Application, verifies the Service Role Token using the provisioned security credentials, extracts the Service Roles from the Service Role Token, and evaluates resource access request with applicable RBAC policies. If this access is permitted, the M2M Gateway executes the requested operation on the target resource.

5.2.5
Potential requirements
1. The oneM2M System shall support Role Based Access Control.

2. The M2M System shall be able to issue access tokens for carrying role information in order to facilitate Role Based Access Control.
3. The M2M System shall provide authenticity, integrity and confidentiality protection for access tokens.
4. The M2M System shall be able to revoke the access tokens that are not yet expired.
5.3
Use case of Dynamic Authorization Policy Provisioning
5.3.1
Description

In a oneM2M System the Platform, Gateways and Devices interact each other in the way of many-to-many, furthermore many of these relations may be dynamic and temporary. So the access control mechanism used by the M2M System needs to be flexible and efficient and authorization policies that support such dynamic authorization must be tailored accordingly and provisioned to the various authorization components.
In this use case, provisioning of dynamic authorization policies to the various dynamic authorization components is described. An administrator that is authorized uses the Dynamic Authorization Policy Retrieval Point (DA-PRP) to define, create and modify appropriate dynamic authorization policies associated with each of the dynamic authorization components. The DA-PRP then provisions the appropriate policies to the DA-PDP, DA-PEP and information to the DA-PIP on a regular basis.
5.3.2
Actors
The entities involved in the use case are shown in Figure 5.3.2-1 and described as follows:

M2M Platform: It represents an infrastructure entity that interacts with M2M Gateways /Devices and M2M Application for providing common functionalities. In this use case the M2M Platform provides the ability to provision dynamic authorization
policies by implementing a Dynamic Authorization – Policy Retrieval Point (DA-PRP).
M2M Gateway: It represents a gateway that is responsible for hosting a resource. In addition, the M2M Gateway is responsible for implementing the Dynamic Authorization - Policy Enforcement (DA-PEP), Dynamic Authorization - Policy Decision Point (DA-PDP) and Dynamic Authorization - Policy Information Point (DA-PIP) functions.

M2M Device: It represents a sensor application or a sensor device that is responsible for measuring sensor data and hosting a resource on an M2M Gateway.

[image: image5.emf]M2M

Device

M2M

Gateway

DA-PEP

DA-PDP

DA-PIP

M2M

Platform

DA-PRP

Figure 5.3.2-1: Entities involved in provisioning of Dynamic Authorization policies

5.3.3
Pre-Conditions
M2M Platform that implements the DA-PRP, has access to a policy database that is configured with dynamic authorization rules

It is assumed that the communications between the M2M Platform and the M2M Gateway occurs over a secure communications channel.

It is assumed that the communications between the M2M Device and the M2M Gateway occurs over a secure communications channel.

5.3.4
Normal Flow
Procedure for provisioning of dynamic authorization policies:
1. An administrator that has authorized access to the M2M Platform configures appropriate policies that are to be provisioned using a DA-PRP

2. The DA-PRP at the platform, provisions appropriate decision policies to the DA-PDP, enforcement policies to the DA-PEP and information to the DA-PIP. The provisioning process is performed periodically.

5.3.5
Potential Requirements
The M2M system shall support provisioning of dynamic authorization policies.
5.4
Use case of Dynamic Authorization
5.4.1
Description

In a oneM2M System the Platform, Gateways and Devices interact with each other in the way of many-to-many, furthermore many of these relations may be dynamic and temporary. So the access control mechanism used by the M2M System shall be flexible and efficient.
In this use case an M2M Device would like to perform CRUD operations on resource(s) hosted on an M2M Gateway. The M2M device may be registered with the M2M Gateway or may even be completely unknown to it. Even if the M2M Device is registered to the Gateway, it is deemed that the Device is restricted from being able to perform one or more of the CRUD operations on the resource based on a traditional static access control policy. Dynamic authorization enables a previously restricted M2M Device to be able to perform newer operations on resource(s) hosted at the M2M Gateway. Dynamic authorization checks may be dictated based on dynamic authorization policies which may dictate the types of checks (e.g. higher-level of authentication checks, payment based authorization, platform validation checks etc.) that are performed. The authorization provided may be for a finite period of time and may be added to the static access control policy.
5.4.2
Actors
The entities involved in the use case are shown in Figure 5.4.2-1 and described as follows:

M2M Gateway: It represents a gateway that is responsible for hosting a resource. In addition, the M2M Gateway is responsible for implementing the Dynamic Authorization – Policy Administration Point (DA-PRP), Dynamic Authorization Policy Enforcement (DA-PEP), Dynamic Authorization Policy Decision (DA-PDP) functions and storing Policy Information Point (DA-PIP).

M2M Device: It represents a sensor application or a sensor device that is responsible for measuring sensor data and hosting
a resource on an M2M Gateway.

[image: image6.emf]M2M

Device

M2M

Gateway

DA-PRP

DA-PEP

DA-PDP

DA-PIP

Figure 5.4.2-1: Entities involved in Dynamic Authorization

5.4.3
Pre-Conditions
M2M Gateway is provisioned with appropriate dynamic authorization policies based on which, it decides on the dynamic authorization checks that will have to be performed.

It is assumed that the communications between the M2M Device and the M2M Gateway occurs over a secure communications channel.
5.4.4
Normal Flow
Procedure for dynamic authorization:
1. An M2M Device requests to perform a CRUD operation on a resource hosted on the M2M Gateway

2. The M2M Gateway determines that the M2M Device does not have the appropriate authorization based on a check with the static ACPs.

3. The DA-PDP at the M2M Gateway then consults its dynamic authorization polices in order to determine if the M2M Device can be provided with authorization. If dynamic authorization can be carried out, then the M2M Gateway determines the types of authorization checks that will have to be
performed with the M2M Device.

4. The M2M Gateway in conjunction with the M2M Device performs one or more dynamic authorization checks (e.g. multi-factor authentication checks, platform validation checks, payment-based authorization, subscription etc.
)

5. If the authorization checks have been successfully completed then the DA-PDP updates the relevant entries within the DA-PEP in order that the M2M Device is able to perform one or more CRUD operations on a resource for finite amount of time. Additionally, in certain cases, the DA-PDP may update the ACP to include the M2M Device and the resource / operations that it is allowed to perform based on the dynamic authorization results.

6. The M2M Gateway provides a response to the M2M device indicating the authorization that was provided to it.
5.4.5
Potential Requirements
1 The M2M system shall support all the dynamic authorization functions to reside at the same M2M Gateway.
2 The M2M system shall support various authorization checks (e.g. multi-factor authentication, platform validation, payment authorization etc.
) in order to enable dynamic authorization.
3 The M2M system shall enable an authorized entity (e.g. DA-PDP) to update the ACP based on results of the dynamic authorization checks.
5.5
Use case of Dynamic Authorization
5.5.1
Description

In a oneM2M System the Platform, Gateways and Devices interact each other in the way of many-to-many, furthermore many of these relations may be dynamic and temporary. The M2M System needs to ensure that the access control mechanisms are flexible and efficient.
In this use case an M2M Device would like to perform CRUD operations on resource(s) hosted on an M2M Gateway. The M2M device may be registered with the M2M Gateway or may even be completely unknown to it. Even if the M2M Device is registered to the Gateway, it is deemed that the Device is restricted from being able to perform one or more of the CRUD operations on the resource based on a pre-configured access control policy. Dynamic authorization enables an M2M Device to be able to perform operations on resource(s) hosted at the M2M Gateway even when pre-configured access policies do not allow it. Dynamic authorization checks may be dictated based on dynamic authorization policies which may dictate the types of checks (e.g. higher-level of authentication checks, payment based authorization, platform validation checks etc.) that are performed. The authorization provided may be for a finite period of time and may be added to the static access control policy.
5.5.2
Actors
The entities involved in the use case are shown in Figure 5.5.2-1 and described as follows:

M2M Gateway: It represents a gateway that is responsible for hosting a resource. In addition, the M2M Gateway is responsible for implementing the Dynamic Authorization - Policy Enforcement (DA-PEP).

Trusted Third-Party: It represents an entity that is trusted
both by an M2M Device as well by an M2M Gateway that is responsible for implementing the Dynamic Authorization – Policy Decision Point (DA-PDP) functionality as well as Dynamic Authorization – Policy Information Point (PIP). In addition it may be implement or enable various types of authorization checks (e.g. multi-factor authentication, payment / subscription, platform integrity checks).

M2M Device: It represents a sensor application or a sensor device that is responsible for measuring sensor data and hosting a resource on an M2M Gateway.

[image: image7.emf]M2M

Device

M2M

Gateway

DA-PEP

 Trusted

Third-Party

(TTP)

DA-PDP

DA-PIP

Figure 5.5.2-1: Entities involved in Dynamic Authorization

5.5.3
Pre-Conditions
The M2M Gateway and the Trusted Third-party are provisioned with appropriate dynamic authorization policies based on which, it decides on the dynamic authorization checks that will have to be performed.

It is assumed that all the communications that occur between the M2M Device, the M2M Gateways and the
TTP occur over secure communications channel.

5.5.4
Normal Flow
Procedure for dynamic authorization:
1. An M2M Device requests to perform a CRUD operation on a resource hosted on the M2M Gateway

2. The M2M Gateway determines that the M2M Device does not have the appropriate authorization based on a check on the pre-configured ACPs.

3. The M2M Gateway performs a request to the DA-PDP on the TTP in order to determine if the M2M Device can be granted access privileges via dynamic authorization.

4. The DA-PDP on the TTP determines that dynamic authorization can be carried out, then it determines the types of authorization checks that will have to be performed either with the M2M Device or on behalf of the device.

5. The DA-PDP on the TTP in conjunction with either the M2M Device or M2M Gateway performs one or more dynamic authorization checks (e.g. multi-factor authentication checks, platform validation checks, payment-based authorization, subscription etc.
) or enables the M2M Device to communicate with other authorization enabling functions in order to achieve the authorization.

6. If the authorization checks are successfully completed, then the DA-PDP on the TTP sends a response message containing authorization information (e.g. authorization level, validity of the authorization, operation / resources that can be performed by the M2M Device etc.) to the DA-PEP on the M2M Gateway. The authorization information may be represented in varied forms (e.g. signed token(s), un-signed token(s), XML message, oneM2M messaging / resource structures etc.
). Additionally, in certain cases, the DA-PDP may optionally update the ACP to include the information about the M2M Device and the resource / operations that it is allowed to perform based on the dynamic authorization results.

7. The DA-PEP on the Gateway updates the relevant entries such that the M2M Device is able to perform the requested CRUD operations on resource(s).

8. The M2M Gateway provides a response to the M2M device indicating the authorization that was provided to it.
5.5.5
Potential Requirements
1 The M2M system shall support distributed dynamic authorization functions
2 The M2M system shall support and enable various authorization checks (e.g. multi-factor authentication, platform validation, payment authorization etc.
) in order to enable dynamic authorization.
3 The M2M system shall support various means to provide authorization information (e.g by means of signed token(s), un-signed token, XML messaging, JSON data, oneM2M messaging / resource structures)
4 The M2M system shall support an authorized entity (e.g. DA-PDP) to update the relevant ACPs based on dynamic authorization results
6
High Level Architecture

Editor’s note: this clause provides a high level view of architecture and some basic figures that can be used as a common bases for describing available options.

6.1
Review of existing frameworks
NOTE: Materials in this section are inspired from deliverables developed under European Projects SITAC and SUNSEED.

6.1.1
OAuth 2.0
OAuth 2.0 [OAuth] is an authorization framework that aims to provide a secure way to allow third-party applications to get access to data on behalf of resource owners through a set of defined request flows. The main purpose of OAuth is to enable the user (resource owner, RO) to grant services and applications (client) access to protected resources stored at a resource server (RS), without sharing user credentials with the application. Instead of using the resource owner's credentials to access protected resources, the client gets an access token. Access tokens are issued to third-party clients by an authorization server (AS) after the approval of the issuance by the resource owner.
This protocol is widely used in the web today, primarily to allow users to register/log in into web platforms using their pre-existing credentials from well-known identity providers, but cannot be directly applied in M2M / IoT scenario. To make it suitable to oneM2M requirements, the main issues that have to be addressed are:
· OAuth-defined flows assume that the user has to operate the third party service that she is authorizing. In oneM2M scenario, in contrast, the user operating the service that requests access to a resource, may not be its owner.
· OAuth resource servers and scopes have to be defined at design time. However, in a distributed IoT architecture where services are deployed by end users at any time, a dynamic registration of resource servers is required to be able to introduce new objects in the oneM2M model.
· The control of user privacy resides on the AS, which is a centralized point in the OAuth architecture. Although OAuth does not prevent to deploy multiple authorization servers, it is a topic not covered in the protocol specification, which raises many issues when using the standard “out-of-the-box” (e.g. authorization servers discovery, how to bind a resource server with a specific AS).
 As discussed earlier, the resource owner is the source in all OAuth flows. The whole protocol is designed around that assumption. On the contrary, in IoT scenario, users may be requesting access to resources that they do not own. As a consequence of that, OAuth alone cannot be used to support all oneM2M use cases.
Regarding the third issue described, it could be argued that OAuth also provides ways to deploy distributed authorization schemes. However, it is very focused on resource-owner driven scenario and most of the existing implementations are mainly focused on the register/log in use case. In spite of that, OAuth, because of is extensibility, can be used to accommodate additional requirements.
6.1.2
User Managed Access (UMA)

User-Managed Access [UMA] is a profile of the OAuth 2.0 protocol that is intended to encompass the scenario where a resource owner wants to manage the access control to protected resources by clients operated by requesting parties, other than the resource owner. While the OAuth specification is focused on Alice-to-client sharing model, UMA focuses on Alice-to-Bob sharing model, where Alice can share proactively her resources before Bob even knows they exist. In addition, Bob may request a permission. In that case, a notification will be sent to Alice for her to decide whether she wants to grant access to Bob. Alice will collect these requirements from the AS.
[image: image8.png]manage consent

esource negotiate

server

access manage

Figure 6.1.2-1 : UMA actors and architecture
To achieve this, UMA defines new roles and interactions on top of OAuth as illustrated in Figure 6.1.2-1. Moreover, the roles defined in OAuth specification are slightly changed to accomplish UMA's objectives. From the UMA viewpoint, RS are clients for the AS, effectively decoupling RS and AS roles. In UMA, an RS can choose the AS where he wants to delegate the authorization. It is important to stress the point that no previous relationship between them is required. The other main difference is the introduction of the requesting party role. A requesting party is an entity that seeks access to a protected resource and may be different to the RO. The whole point of the introduction of this new role is to be able to distinguish between resource owner and resource consumer. Therefore, the RO can share his resources preserving the control over them, while any requesting party other than the resource owner should either request access to the resource or access directly, provided that it has been granted access beforehand.
UMA defines the set of interactions that have to be performed before a requesting party can access a resource. This interactions can be grouped in three phases: protecting a resource, getting access permission for a resource and accessing a resource. UMA is focused on access control management and does not specify data access protocols.

The capability to control access to resources at the action level is referred in this document as “fine grain authorization capability”. Figure 6.1.2-1 shows a resource server holding resources owned by a resource owner. Those resources may need to be accessed by a requesting party using a client application software, e.g. an
oneM2M AE operating on its behalf. The administration of the access control to the resources may be cumbersome or difficult in the case where the resource owner owns multiple resources spread among multiple resource servers, because this administration task has to be performed in multiple places. This is where UMA can help, by enabling each resource server to delegate the administration to some or all of the resources it controls on behalf of the resource owner to a separate authorization server. This is done in a first phase by having the resource server register with the authorization server all resources the administration of which it wishes to delegate. In a second step, the client software acting on behalf of the requesting party will negotiate access to the resource with the authorization server. A successful negotiation will result in the client being provided with a Requesting Party Token (RPT), which when presented to the resource server will enable access to the protected resource.

[image: image9.png]Resource access without Resource server
Requesting Party Token

(RPT) points the client to the
authorization server along wi
ticket

NPublish resources I

Authorization
server

. With Requesting
Party Token (RPT)
client will be granted
access to resources

|

Muest

Requesting Party
Token (RPT) to the
authorization server

Figure 6.1.2-2 : UMA APIs and flow of operations
Figure 6.1.2-2 shows the different APIs and flows of operation involved in UMA.

In a preliminary phase not shown on this figure the resource server and the authorization server have bootstrapped their relationship and as a result of this the resource server has obtained the possibility to invoke a resource publication REST API exposed by the authorization server for publishing the description of the resources it wishes to place under the protection of the authorization server. (step1).
In step 2, the client attempts to access the resource in the resource server without presenting a requesting party token. It is then pointed to the authorization server and given an “authorization ticket” indicating what needs to be authorized. The list of actions needing to be authorized is described as an array of “scopes”. Upon authentication and check of the authorization policies, the authorization server delivers a Requesting Party Token (RPT) to the client (step 3). Finally, the client is granted access to the resource upon presentation of this token to the resource server (step4).
UMA offers many advantages for M2M / IoT scenarios, where users and organizations want to share their resources while keeping control both over the entities (friends, organizations, services, etc.) that have access to them and over the granularity of the information shared. This scenario can be modeled using UMA features, like resource registration and scope definition. Finally, due to the fact that the RS and the AS are decoupled in UMA, users can choose whom entity they want to delegate the access control of his resources, instead of binding them to a particular provider.
In a dynamic and distributed environment, the access control architecture must be flexible enough not only to accept new entities at any time but also to modify their roles. In the oneM2M ecosystem, users will register new resources when they want to share information, and therefore the architecture must be designed to allow new resource servers at runtime. While OAuth does not allow to introduce new resource servers, UMA is able to handle this case.
6.1.3
OpenID Connect

OpenID Connect [OpenID] represents another extension of OAuth 2.0 protocol, it is focused on the use case of sharing the end-user identity with clients. This use case is usually implemented through OAuth by giving applications an access token that allows them to get information of the user. It is often seen as an “Authorization over my identity” while, in essence, it represents an authentication process. OpenID Connect tries to address this use case and simplifies the protocol flow while preserving extensibility and compatibility with different identity providers.
As oneM2M needs to manage different sources of user identities, OpenID Connect is a good candidate to accomplish this task. UMA can also be integrated with OpenID Connect. While UMA does not enforce the use of unique identifiers in the Authorization Server, unique identifiers are required for access control policies. In this case, the end-user will authorize the AS to query an identity endpoint for their unique (or non-unique) identity data.
6.2
Proposed Architecture Reference Model 1
6.2.1 Overall Description
Figure 6.2.1-1 shows the oneM2M Dynamic Authorization Architecture (DAA) reference model. The DAA reference model is similar to that used for OAuth 2.0 [OAuth].

[image: image10.emf]Originator

Grant Issuer Grant Issuer

Authorization

Server

Host CSE

Grant Approver Dagi Daga

Dati

Datu

Dagd

Datd

Figure 6.2.1-1 oneM2M Dynamic Authorization Architecture Reference Model.

The DAA reference model and OAuth 2.0 both utilizes the two types of dynamically-issued tokens:

· An access token represents an authorization for the Originator to access resources. The Originator presents the Host CSE with a request to access resources and access token(s). The Host CSE verifies the access token and then processes the request based on the authorization represented by the access token.

· An authorization grant describes an authorization to access resources and provides evidence that the Originator obtained authorization from the appropriate sources. There are two “classes” of the authorization grant. Some authorization grants are presented directly to the Host CSE as access tokens. Other authorization grants cannot be used in this way, and the Originator must obtain a separate access token from the Authorization Server; in this case, the authorization grant is presented to the Authorization Server to prove that the Originator has obtained authorization from the appropriate sources.

Some scenarios are better suited to issuing an authorization grant which is used directly as an access token. Other scenarios are better suited to issuing an authorization grant which requires obtaining separate access tokens from an Authorization Server. Allowing both options provides flexibility.

Editor’s note: At some point in the future may be useful to document scenarios best suited to each of the two options. Such discussion is probably better suited to another clause in the document – and not the High Level Architecture clause.
Table 6.2.1-1 lists the functional roles in the DAA reference model. Clause 6.2.2 describes the functions associated with these functional roles. An oneM2M entity may assume multiple roles in this architecture model.

These functional roles generally correspond to functional roles defined for OAuth 2.0 [OAuth]; the main difference is the partitioning of the OAuth 2.0 Resource Owner into a Grant Issuer CSE and Grant Approver, and additionally some names are changed (mostly to align with existing oneM2M terminology). The rationale behind partitioning the Resource Owner functionality is the following.
· The Authorization Server or the Host CSE (whichever processes the authorization grant) will need to verify the digital signature or MIC protecting the authorization grant. Consequently, the Authorization Server or the Host CSE must have credentials for verifying that digital signature or MIC.

· An architecture where the Grant Approver provides the digital signature or MIC (for the authorization grant) will require the Authorization Server or Host CSE to manage credentials and identifiers for all possible Grant Approvers.

· A Grant Issuer can issue authorization grants for multiple Grant Approvers, and there are expected to be significantly fewer Grant Issuer than Grant Approvers.

· An architecture where the Grant Issuer provides the digital signature or MIC (for the authorization grant) will have significantly simplify credential management for the Authorization Server or Host CSE; when compared to an architecture where the Grant Approver provides the digital signature or MIC for the authorization grant.
The DAA reference model assumes the following sequence of events take place:

0. The Originator learns that it requires an access token in order access resources on the Host CSE.

Editor’s note: It is not yet clear if details of the above step would be described in the present document.

1. Obtaining an authorization grant:
a. The Originator sends a request to the Grant Issuer, asking to be issued an authorization grant which can be used by the Originator to access resources on the Host CSE.

b. The Grant Issuer forwards the request to a Grant Approver that has sufficient permissions to approve issuing the requested authorization grant. The Grant Approver obtains a decision on issuing the authorization grant. For example, this process could include obtaining explicit approval from a person, or using an authorization architecture such as described in TR-0016 [TR0016]. The Grant Approver, then returns its decision (permitted or denied) to the Grant Issuer.

c. On obtaining approval, the Grant Issuer forms an authorization grant, and returns this authorization grant to the Originator.

2. Obtaining an access token (if applicable): If the authorization grant cannot be presented to the Host CSE as an access token, then the Originator obtains an access token from the Authorization Server. The authorization grant is presented to the Authorization Server to prove that the Originator has obtained authorization from the appropriate source(s). Typically, an access token’s lifetime is shorter than that of an authorization grant, and each authorization grant is re-used to obtain a series of access tokens (until the authorization grant expires).

3. Accessing a resource using an Access Token. The Originator sends the access token with the request sent to the Host CSE. The Host CSE verifies the access token and (for the purposes of processing the request) uses the permissions represented by the access token. Each access token is typically reused with multiple requests (until the access token expires).
	Dynamic Authorization Architecture Functional Role
	Corresponding OAuth 2.0 Role [OAuth]
	Description
	Details in clause

	Originator
	Client
	See [TS0001]. Interacts with Grant Issuer and (Optionally) authorization servers to obtain authorization to access resources on the Host CSE.
	6.2.2.1

	Host CSE
	Resource Server
	See [TS0001]. Accepts authorizations issued by Authorization Server.
	6.2.2.2

	Grant Issuer
	Resource Owner
	An intermediary between the Originator and Grant Approver. This entity is recognized by the authorization server and Host CSE as having permission to issue authorization grants on behalf of Grant Approvers.
	6.2.2.3

	Grant Approver
	
	This entity has permission to approve or deny issuing an authorization grant. For a given resource, there may be multiple entities permitted to be the Grant Approver for that resource.
	6.2.2.4

	Authorization Server
	Authorization Server
	This entity issues access tokens to Originators presenting valid authorization grants.
	6.2.2.5

Table 6.2.1-1 List of dynamic authorization architecture functional roles
Table 6.2.1-2 lists the DAA reference points. Where an oneM2M entity assumes multiple functional roles, the reference points may be internal to that entity. Clause 6.2.3 describes the reference points in the DAA reference model.
	Reference Point Identifier
	Reference Point Descriptive Name
	End Points
	Description
	Details in clause

	Dagi
	DAA Authorization Grant Issuance
	Originator, Grant Issuer
	Used for requesting and issuing authorization grants
	6.2.3.1

	Daga
	DAA Authorization Grant Approval
	Grant Issuer, Grant Approver
	Used for obtaining approval to issue authorization grants
	6.2.3.2

	Dati
	DAA Access Token Issuance
	Originator, Authorization Server
	Used for requesting and issuing access tokens
	6.2.3.3

	Datu
	DAA Access Token Usage
	Originator, Host CSE
	Providing an access token as authorization to act on one or more resources
	6.2.3.4

	Dagd
	DAA Authorization Grant Data
	Grant Issuer,
Authorization Server
	Defines how authorization grants are formed at the Grant Issuer and processed at the Authorization Server. This data can traverse the Dagi and Dati reference points.
	6.2.3.5

	Datd
	DAA Access Token Data
	Authorization Server, Host CSE
	Defines how access tokens are formed at the Authorization Server and processed at the Host CSE. This data can traverse the Dati and Datu reference points.
	6.2.3.6

Table 6.2.1-2 List of dynamic authorization architecture reference points
6.2.2
Functional Roles
6.2.2.1
Originator
An Originator performs the following functions within the scope of DAA:

· Interact with a Grant Issuer to request and receive an authorization grant.

· Interact with an Authorization Server to present an authorization grant and receive an access token in return.

· Interact with a Host CSE to present an access token and receive access to one or more resources at the Host CSE.

6.2.2.2
Grant Issuer
A Grant Issuer performs the following functions within the scope of DAA:

· Receive, from an Originator, a request to issue an authorization grant.

· Verify that the identified Grant Approver has permission to approve authorization grants with the requested scope.

· Interact with a Grant Approver to receive a decision (allow/deny) regarding issuing an authorization grant.

· Issue an approved authorization grant.

· Send the authorization grant to the Originator.

6.2.2.3
Grant Approver
A Grant Approver performs the following functions within the scope of DAA:

· Receive, from the Grant Issuer, a request for approval to issue an authorization grant.

· Obtain a decision (allow or deny) regarding issuing an authorization grant. The details of this function is not specified in this document.

· Send the decision (allow or deny) to the Grant Issuer.

Examples of entities assume the functional role of Grant Approver can include:

· An oneM2M AE on a user device (such as a smartphone, tablet or laptop), where the user device provides a user interface for approving authorization grants.

· A web server through which the user can approve authorization grants – with the user interface (for approving authorization grants) provided by a web-page or other application on a user device.

· A web server configured with policies for making automated decisions – much like a Policy Decision Point (PDP) in the authorization architecture proposed in TR-0016 [TR0016].

6.2.2.4
Authorization Server
An Authorization Server performs the following functions within the scope of DAA:

· Receive, from an Originator, a request to issue an access token which includes an authorization grant.

· Verify that the authorization grant is valid.

· Issue the requested access token, if permitted by the authorization grant.

· Send the access token to the Originator

The Authorization Server is expected to be configured with policies allowing it to determine the validity of the authorization grant – in particular:

· The Authorization Server may need credentials for verifying the authenticity of the authorization grant (that is, verify that the Grant Issuer genuinely issued this authorization grant).

· The Authorization Server needs to know the range of permissions on the Host CSE for which the Grant Issuer is allowed to issue authorization grants.

· (If this feature is desirable) The Authorization Server needs to know the range of permissions on the Host CSE for which the Grant Approver is allowed to approve issue authorization grants.

6.2.2.5
Host CSE
A Host CSE performs the following functions within the scope of DAA:

· Receive, from an Originator, a request to perform actions one or more resources, accompanied by an access token.

· Verify that the access token is valid.

· Perform the requested actions, if permitted by the access token.

· Send the access token to the Originator.

The Host CSE is expected to be configured with policies allowing it to determine the validity of the access token – in particular:

· The Host CSE may need credentials for verifying the authenticity of the access token (that is, the Host CSE may need to verify that the Grant Issuer or Authorization Server genuinely issued this access token).

· The Host CSE needs to know the range of permissions on the Host CSE for which the access token issuer (Grant Issuer or Authorization Server) is allowed to issue authorization grants.

· (If this feature is desirable) The Host CSE may need to know the range of permissions on the Host CSE for which the Grant Approver is allowed to approve issue authorization grants.

6.2.3
Reference Points
6.2.3.1
DAA Authorization Grant Issuance (Dagi) Reference Point

This reference point is between the Originator and the Grant Issuer.

This reference point could enable some or all of the following features (depending on design choices discussed in clauses 7 and 8):

· Enabling the Originator to request an authorization grant from the Grant Issuer. This could include:

· Enabling the Grant Issuer to verify which Originator sent the request (for example, using a digital signature or MIC).

· Enabling the Originator to identify a Grant Approver to approve the request.

· Enabling the Originator to identify the applicable Host CSE(s).

· Enabling the Originator to indicate the scope of permissions to be granted by the authorization grant. Clause 7 and 8 will discuss how this scope is indicated. For example, the scope may be a set of resources or a “role” used in an accessControlPolicy resource.

· Enabling the Originator to identify the Authorization Server which will issue access tokens.

· A desired time window for the authorization grant.
· Enabling the Grant Issuer to send a respond to the Originator ,which could comprise

· Providing an error message or

· Providing an authorization grant or a unique identifier for the authorization grant (which can be subsequently used by the Authorization Server to retrieve the authorization grant). The Grant Issuer may also provide additional information that the Originator might need regarding the authorization grant.

· Enabling the Originator and Grant Issuer to establish a credential that the Originator will use to prove to the Authentication Server that the authorization grant was issued to the Originator. This may impact the request and/or response across this reference point.
6.2.3.2
DAA Authorization Grant Approval (Daga) Reference Point

This reference point is between the Grant Issuer and the Grant Approver.
This reference point could enable some or all of the following features (depending on design choices discussed in clauses 7 and 8)

· Enabling the Grant Issuer to request approval, from the Grant Approver, to issue an authorization grant on behalf of the Grant Approver. This could include:

· Providing details of the Originator’s request for an authorization grant (see clause 6.2.3.1 “DAA Authorization Grant Issuance (Dagi) Reference Point”)

· Suggesting a different time window for the authorization grant.

· Suggesting an authorization grant type.

· Enabling the Grant Approver to send a respond to the Grant Issuer which could comprise

· Decision (approved/denied).

· Selected time window.

· Selected authorization type.

Editor's note: The interface between the Policy Enforcement Point (PEP) and Policy Decision Point (PDP) in the Authorization Architecture in TR-0016 [TR-0016] might provide the features of Daga. It is worth considering re-use of this TR-0016 [TR-0016] interface for Daga.
The Grant Approver can be an oneM2M entity (CSE or AE), but the architecture reference model also allows the Grant Approver to be a non-oneM2M entity – provided it can communicate with the Grant Issuer. Consequently, while this reference point can involve communication between two oneM2M entities over Mcc or Mca, it is also possible that this reference point can involve communication over non-oneM2M reference points.
6.2.3.3
DAA Access Token Issuance (Dati) Reference Point

This reference point is between the Originator and the Authorization Server.
This reference point could enable some or all of the following features (depending on design choices discussed in clauses 7 and 8):

· Enabling the Originator to request an access token from the Authorization Server. This could include:

· Providing an authorization grant or a unique identifier for the authorization grant (which can be subsequently used by the Authorization Server to retrieve the authorization grant).

· Enabling the Authorization Server to verify that the Originator which sent the request is also the Originator to whom the authorization grant was issued (for example, using a digital signature or MIC).
· Enabling the Originator to indicate the scope of permissions to be granted by the access token (if smaller than the scope of permissions represented by the authorization token). Clause 7 and 8 will discuss how this scope is indicated. For example, the scope may be a set of resources or a “role” used in an accessControlPolicy resource.
· Enabling the Authorization Server to send a respond to the Originator ,which could comprise

· Providing an error message or

· Providing an access token or a unique identifier for the access token (which can be subsequently used by the Host CSE to retrieve the access token). The Authorization Server may also provide additional information that the Originator might need regarding the access token.

· Enabling the Originator and Authorization Server to establish a credential that the Originator will use to prove to the Host CSE that the authorization grant was issued to the Originator. This may impact the request and/or response across this reference point.

6.2.3.4
DAA Access Token Usage (Datu) Reference Point

This reference point is between the Originator and the Host CSE.

This reference point could enable some or all of the following features (depending on design choices discussed in clauses 7 and 8):

· Enabling the Originator to provide an access token with a request to act on a resource(s) to the Host CSE. This could include:

· Providing an access token or a unique identifier for the access token (which can be subsequently used by the Host CSE to retrieve the access token).

· Enabling the Host CSE to verify that the Originator which sent the request to act on resource(s) is also the Originator to whom the access token was issued (for example, using a digital signature or MIC).
· Enabling the Host CSE to provide an error message to the Originator, which could comprise

· Identifying that the access token is no longer valid

· Identifying an authorization server that the Host CSE allows to issue access tokens. This is used in the case that either no access token was provided, or an access token was provided but not recognized by the Host CSE.

6.2.3.5
DAA Authorization Grant Data (Dagd) Reference Point

This reference point is between the Grant Issuer and the Authorization Server.

This reference point defines how authorization grants are formed at the Grant Issuer and processed at the Authorization Server.
The authorization grant data can traverse the Daga and Dati reference points via the Originator.
Alternatively, the authorization grant data could be communicated directly from the Grant Issuer to the Authorization Server, with the Daga and Dati reference points communicating an unique identifier for the authorization grant (rather than communicating the authorization grant data itself). This alternative may suite scenarios where the roles of Grant Issuer and Authorization Server are assumed by a single entity.

This reference point could enable some or all of the following features (depending on design choices discussed in clauses 7 and 8):

· Identify the Originator authorized by the authorization grant
· Identify the Grant Issuer that issued the authorization grant.

· Verify that the identified Grant Issuer issued the authorization grant.

· Identify the Grant Approver that approved issuing the authorization grant.

· Identify the Authorization Server for which the authorization grant is intended.

· Identify the Host CSE(s) for which resulting access token(s) are intended.

· Identify the permissions represented by the authorization grant.

· Identify the time window within which the authorization grant is valid.
6.2.3.6
DAA Access Token Data (Datd) Reference Point

This reference point is between the Authorization Server and the Host CSE.

This reference point defines how access tokens are formed at the Authorization Server and processed at the Host CSE.

The access token data can traverse the Dati and Datu reference points via the Originator.
Alternatively, the access token data could be communicated directly from the Authorization Server to the Host CSE, with the Dati and Datu reference points communicating an unique identifier for the access token (rather than communicating the access token data itself). This alternative may suite scenarios where the roles of Authorization Server and Host CSE are assumed by a single CSE.

This reference point could enable some or all of the following features (depending on design choices discussed in clauses 7 and 8):

· Identify the Originator authorized by the access token.

· Identify the Authorization Server that issued the access token.

· Verify that the identified Authorization Server issued the access token.

· Identify the authorization grant used as the basis for issuing this access token.

· Identify the Grant Issuer that issued the authorization grant.

· Identify the Grant Approver that approved issuing the authorization grant.

· Identify the Host CSE(s) for which the access token is intended.

· Identify the permissions represented by the access token.

· Identify the time window within which the access token is valid.

7
Working Assumptions, Requirements and Principles

Editor’s note: this clause is for documenting working assumption, requirements and principles. These “guidelines” are intended to help identify and analyse options.
<Text>

8
Description and Analysis of Available Options
Editor’s note: this clause provides a high level description and detailed procedures of available options. The options are also analysed to arrive at a recommended option.
8.1
<VOID>

Editor’s note: clause 8.1 has been reserved for including overviews of existing technology..
8.2
Proposal 1: A Solution of Access Token Issuance and Use
8.2.1
Access Token Issuance Architecture

The token issuance architecture is shown in Figure 8.2.1-1, the
Figure 8.2.1-1 provides a high level overview of a generic token issuance architecture. This architecture may contain the following entities:

[image: image11.emf]Originator

Token

Authority

Hosting CSE

Token

Token

Token

Authorization

Function

Security

Function

T

o

k

e

n

I

s

s

u

a

n

c

e

K

e

y

a

n

d

T

o

k

e

n

I

s

s

u

i

n

g

P

r

i

v

i

l

e

g

e

s

P

r

o

v

i

s

i

o

n

Resource Access

Figure 8.2.1-1: Token issuance architecture

· Access Token:

Access Token is a kind of security credential issued by an Token Authority to an Originator for describing what privileges are assigned to the token holder. Access token may be digitally signed and/or encrypted.

· Originator:

Originator (AE/CSE) is the holder of an Access Token. It uses Access Tokens for getting the permission of accessing resources.

· Token Authority:

Token Authority is responsible for issuing Access Tokens. It may contact to a Token Authorization Function for determining what privileges shall be included in an Access Token, and contact to a Security Function for generating signed and/or encrypted Access Token.

· Hosting CSE:

Hosting CSE provides the services of accessing resources according to privileges described in Access Tokens.

· Token Authorization Function:

Token Authorization Function provides policies that describe what privileges shall be assigned to an Originator, or confirms an privilege assignment.

· Security Function:

Security Function provides security services, e.g. related to digital signing or encryption

· Access Token Issuing Privileges:

Access Token Issuing Privileges are those privileges that the Token Authority is allowed to delegate to other entities by issuing Access Tokens.

8.2.2
General Procedure of Token Issuance and Use
The generic procedure of token issuance and use is shown in figure 8.2.2-1 and described as follows:

[image: image12.emf]Originator Token Authority Hosting CSE

2:Security association establishment

3:Access token request

4.1:Check access control policies

4.2:Check access token issuing privileges

4.3:Check access token authorization policies

4.4:Generate access token plaintext

4.5:Sign and/or encrypt the token

7:Security association establishment

5:Access token response

8:Access request with access token

10:Access response

9.1:Decrypt and/or verifyThe token

9.2:Check access token issuing privileges

9.3:Check access token revocation list

9.4:Evaluate the privileges in access token

9.5:Perform the requested resource access

6:Issue access token revocation list

1:Key and token issuing privilegs provision

Figure 8.2.2-1: Generic process of Access Token issuance and use
1. The Token Authority and the Hosting CSE are pre-configured with the keys used for generating or verifying access tokens and Access Token Issuing Privileges of the Token Authority.
2. The Originator and the Token Authority establish security association through mutual authentication to ensure the integrity and confidentiality of communications between the two entities.
3. The Originator sends Access Token Request to the Token Authority.

4. The Token Authority CSE does the following operations:

1) Check if the Originator has the privileges of accessing the target resource according to the ACP.

2) Check if the requested privileges are within the Access Token Issuing Privileges of the Token Authority. This operation may be performed by a Token Authorization Function on behalf of the Token Authority.
3) Check if the Originator can obtain the privileges described in the Access Token Request according to the Access Token Authorization Policies. This operation may be performed by a Token Authorization Function on behalf of the Token Authority.
4) Generate access token plaintext.

5) Sign and/or encrypt the access token plaintext.

5. The Token Authority returns the issued Access Token back to the Originator.

It is also possible for the Token Authority to store the Access Token and inform the Originator where to retrieve the Access Token.

6. The Token Authority may also issue an Access Token Revocation List in which the revoked Access Tokens that are still not expired are placed.

7. The Originator and the Hosting CSE establish security association through mutual authentication to ensure the integrity and confidentiality of communications between the two entities.
8. The Originator sends resource access request in which one or multiple Access Token is included to the Hosting CSE.

9. The Hosting CSE extracts the Access Tokens from the resource access request, and dos the following operations:

1) Decrypt and/or verify the Access Token.

2) Check if the privileges in the Access Token are within the Access Token Issuing Privileges of the Token Authority.
3) Check if this Access Token has been revoked against an Access Token Revocation List.

4) Evaluate the Originator’s resource access request based on the privileges in the Access Token.

5) Perform the requested resource access.
10. The Hosting CSE returns the execution result back to the Originator.
8.2.3
Resource Definitions for Token Issuance
8.2.3.1
Resource Type accessTokenAuthority
The <accessTokenAuthority> resource represents the method for providing the services related to access token issuance. The <accessTokenAuthority> resource shall be located directly under <CSEBase>.

[image: image13.emf]<accessTokenAuthority>

1

0..n

<accessTokenIssuing>

<accessToken>

Figure 8.2.3.1-1: Structure of <accessTokenAuthority> resource
The <accessTokenAuthority> resource shall contain the child resources specified in table 8.2.3.1-1.
Table 8.2.3.1-1: Child resources of <accessTokenAuthority> resource
	Child Resources of <authorization>
	Child Resource Type
	Multiplicity
	Description

	[variable]
	<accessTokenIssuing>
	1
	See clause 8.2.3.2

	[variable]
	<accessToken>
	0..n
	See clause 8.2.3.3

The <accessTokenAuthority> resource shall contain the attributes specified in table 8.2.3.1-2

Table 8.2.3.1-2: Attributes of <accessTokenAuthority> resource
	Attributes of <statsConfig>
	Multiplicity
	RW/

RO/

WO
	Description

	resourceType
	1
	RO
	See clause 9.6.1.3 of oneM2M TS-0001 [i.2] where this common attribute is described

	resourceID
	1
	RO
	See clause 9.6.1.3 of oneM2M TS-0001 [i.2] where this common attribute is described.

	resourceName
	1
	WO
	See clause 9.6.1.3 of oneM2M TS-0001 [i.2] where this common attribute is described.

	parentID
	1
	RO
	See clause 9.6.1.3 of oneM2M TS-0001 [i.2] where this common attribute is described.

	authorizationPolicyIDs
	1 (L)
	RW
	See clause 9.6.1.3 of oneM2M TS-0001 [i.2] where this common attribute is described

	creationTime
	1
	RO
	See clause 9.6.1.3 of oneM2M TS-0001 [i.2] where this common attribute is described

	expirationTime
	1
	RW
	See clause 9.6.1.3 of oneM2M TS-0001 [i.2] where this common attribute is described

	lastModifiedTime
	1
	RO
	See clause 9.6.1.3 of oneM2M TS-0001 [i.2] where this common attribute is described

	labels
	0..1 (L)
	RW
	See clause 9.6.1.3 of oneM2M TS-0001 [i.2] where this common attribute is described

8.2.3.2
Resource Type accessTokenIssuing
The <accessTokenIssuing> resource is a virtual resource because it does not have a representation. It is the child resource of the <accessTokenAuthority> resource. When a CREATE Request addresses the <accessTokenAuthority> resource, an access token issuance process is triggered. The access token request shall be included in the Content parameter of the CREATE Request, and the access token response shall be included in the Content parameter of the CREATE Response.
The <accessTokenIssuing> resource inherits access control policies that apply to the parent <accessTokenAuthority> resource.
8.2.3.3
Resource Type accessToken
The <accessToken> resource represents M2M Access Token information that is created by an access token insurance process. The <accessToken> resource is the child resource of the <accessTokenAuthority> resource.

[image: image14.emf]<accessToken>

1

1

1

issuer

holder

token

Figure 8.2.3.3-1: Structure of <accessTokenAuthority> resource
The <accessToken> resource shall contain the attributes specified in table 8.2.3.3-1.

Table 8.2.3.3-1: Attributes of <accessToken> resource
	Attributes of <statsConfig>
	Multiplicity
	RW/

RO/

WO
	Description

	resourceType
	1
	RO
	See clause 9.6.1.3 of oneM2M TS-0001 [i.2] where this common attribute is described

	resourceID
	1
	RO
	See clause 9.6.1.3 of oneM2M TS-0001 [i.2] where this common attribute is described.

	resourceName
	1
	WO
	See clause 9.6.1.3 of oneM2M TS-0001 [i.2] where this common attribute is described.

	parentID
	1
	RO
	See clause 9.6.1.3 of oneM2M TS-0001 [i.2] where this common attribute is described.

	creationTime
	1
	RO
	See clause 9.6.1.3 of oneM2M TS-0001 [i.2] where this common attribute is described

	expirationTime
	1
	RW
	See clause 9.6.1.3 of oneM2M TS-0001 [i.2] where this common attribute is described

	lastModifiedTime
	1
	RO
	See clause 9.6.1.3 of oneM2M TS-0001 [i.2] where this common attribute is described

	labels
	0..1 (L)
	RW
	See clause 9.6.1.3 of oneM2M TS-0001 [i.2] where this common attribute is described

	issuer
	1
	RO
	This attribute contains the identifier of the token issuer.

	holder
	1
	RO
	This attribute contains the identifier of the token holder.

	token
	1
	RO
	This attribute contains the access token itself.

8.2.4
Resource Procedures for Token Issuance
8.2.4.1
<accessTokenAuthority> Resource Procedures
8.2.4.1.1
Introduction
This clause describes the management procedures for the <accessTokenAuthority> resource and its child resources.
8.2.4.1.2
Create <accessTokenAuthority>
This procedure shall be used for creating a <accessTokenAuthority> resource.

Table 8.2.4.1.2-1: <accessTokenAuthority> CREATE
	<accessTokenAuthority> CREATE

	Associated Reference Point
	Mcc and Mcc'

	Information in Request message
	All parameters defined in table 8.2.2-2 of oneM2M TS-0001 [i.2] apply with the specific details for:

To: the address of the <CSEBase> where the <accessTokenAuthority> resource is intended to be Created.

Content: attributes of the <accessTokenAuthority> resource as defined in clause 8.2.3.1-2

	Processing at Originator before sending Request
	According to clause 10.1.1.1 of oneM2M TS-0001 [i.2]

	Processing at Receiver
	According to clause 10.1.1.1 of oneM2M TS-0001 [i.2]with the following additions:
· Upon successful validation of the provided attributes, the Hosting CSE creates the <accessTokenAuthority> resource including its virtual child resource specified in table 8.2.3.1-1
· If there is a access token issuance process shall be bound to the <accessTokenIssuing> virtual resource, then bind it to the <accessTokenIssuing> virtual resource, otherwise leave the binding void. The access token issuance process and the binding method are out of scope

	Information in Response message
	 According to clause 10.1.1.1 of oneM2M TS-0001 [i.2]

	Processing at Originator after receiving Response
	According to clause 10.1.1.1 of oneM2M TS-0001 [i.2]

	Exceptions
	According to clause 10.1.1.1 of oneM2M TS-0001 [i.2]

8.2.4.1.3
Retrieve <accessTokenAuthority>
This procedure shall be used for retrieving the attributes of a <accessTokenAuthority> resource.

Table 8.2.4.1.3-1: <accessTokenAuthority> RETRIEVE
	<accessTokenAuthority> RETRIEVE

	Associated Reference Points
	Mcc and Mcc'

	Information in Request message
	According to clause 10.1.2 of oneM2M TS-0001 [i.2]

	Processing at Originator before sending Request
	According to clause 10.1.2 of oneM2M TS-0001 [i.2]

	Processing at Receiver
	According to clause 10.1.2 of oneM2M TS-0001 [i.2]

	Information in Response message
	According to clause 10.1.2 of oneM2M TS-0001 [i.2]

	Processing at Originator after receiving Response
	According to clause 10.1.2 of oneM2M TS-0001 [i.2]

	Exceptions
	According to clause 10.1.2 of oneM2M TS-0001 [i.2]

8.2.4.1.4
Update <accessTokenAuthority>
This procedure shall be used for updating the attributes of a <accessTokenAuthority> resource.
Table 8.2.4.1.4-1: <accessTokenAuthority> UPDATE
	<accessTokenAuthority> UPDATE

	Associated Reference Points
	Mcc and Mcc'

	Information in Request message
	According to clause 10.1.3 of oneM2M TS-0001 [i.2]

	Processing at Originator before sending Request
	According to clause 10.1.3 of oneM2M TS-0001 [i.2]

	Processing at Receiver
	According to clause 10.1.3 of oneM2M TS-0001 [i.2]

	Information in Response message
	According to clause 10.1.3 of oneM2M TS-0001 [i.2]

	Processing at Originator after receiving Response
	According to clause 10.1.3 of oneM2M TS-0001 [i.2]

	Exceptions
	According to clause 10.1.3 of oneM2M TS-0001 [i.2]

8.2.4.1.5
Delete <accessTokenAuthority>
This procedure shall be used for deleting a <accessTokenAuthority> resource.
Table 8.2.4.1.5-1: <accessTokenAuthority> DELETE
	<accessTokenAuthority> DELETE

	Associated Reference Points
	Mcc and Mcc'

	Information in Request message
	According to clause 10.1.4 of oneM2M TS-0001 [i.2]

	Processing at Originator before sending Request
	According to clause 10.1.4 of oneM2M TS-0001 [i.2]

	Processing at Receiver
	According to clause 10.1.4 of oneM2M TS-0001 [i.2]

	Information in Response message
	According to clause 10.1.4 of oneM2M TS-0001 [i.2]

	Processing at Originator after receiving Response
	According to clause 10.1.4 of oneM2M TS-0001 [i.2]

	Exceptions
	According to clause 10.1.4 of oneM2M TS-0001 [i.2]

8.2.4.2
<accessTokenIssuing> Resource Procedures
8.2.4.2.1
Introduction
This clause describes the management procedures for the <accessTokenIssuing> resource. This virtual resource is used to trigger an access token issuance process. Only Create operation shall be allowed on this virtual resource.
8.2.4.2.2
Create <accessTokenIssuing>
This procedure is used to trigger an access token issuance process that is bound to a <accessTokenIssuing> virtual resource.

Originator: The Originator shall request to obtain an access token by using CREATE operation on a <accessTokenIssuing> virtual resource for a <accessToken>. The Originator is an AE or a CSE. The originator needs to provide the information about what privileges the Originator want to apply.

Receiver: The Receiver shall check if the Originator has CREATE permission on the <accessTokenIssuing> virtual resource. Upon successful validation, the Receiver shall check what privileges can be included in the access token according to the authorization policies, and then generate an access token for the Originator. If there is no process bound to the <accessTokenIssuing> virtual resource, the Receiver shall respond with an error.

Table 8.2.4.2.2-1: <accessTokenIssuing> CREATE
	<accessTokenIssuing> CREATE

	Associated Reference Points
	Mcc and Mcc'

	Information in Request message
	According to clause 10.1.2 of oneM2M TS-0001 [i.2] with the following additions:
From: Identifier of the AE or the CSE that initiates the Request

To: The address of the <accessTokenIssuing> virtual resource

Content: The representation of the access token request as defined in clause x.x.x

	Processing at Originator before sending Request
	The Originator shall request to Create a <accessToken> resource by using the CREATE operation. The request shall address <accessTokenIssuing> virtual resource under a <accessTokenAuthority> of a Hosting CSE. The Originator is an AE or a CSE. The originator needs to provide the information about what privileges the Originator want to apply.
The access token request shall be included in the Content parameter of the Request message. The Originator may be an AE or a CSE.

	Processing at Receiver
	The Receiver shall perform the following operations:
· Check if the Originator has CREATE permission under the target <accessTokenIssuing> virtual resource
· Check the validity of the provided parameters
· Check if the <accessTokenIssuing> virtual resource is bound to an access token process.
· Check if the requested privileges are within the Access Token Issuing Privileges.
· Upon successful validation, check what privileges can be agreed and included access token according to access token authorization policies.
· Sign and/or encrypt the access token plaintext.
· Create a <accessToken> resource for the generated access control token under the <accessTokenAuthority> resource.
· Create an access token response in which either the generated access token or the resource address of the created <accessToken> resource is included and send it to the Originator. The access token response shall be included in the Content parameter of the Response message.

	Information in Response message
	According to clause 10.1.2 of oneM2M TS-0001 [i.2] with the following additions:
Content: The representation of the access token response as defined in clause x.x.x

	Processing at Originator after receiving Response
	According to clause 10.1.1.1 of oneM2M TS-0001 [i.2]

	Exceptions
	According to clause 10.1.2 of oneM2M TS-0001 [i.2] with the following:
· There is no token issuance process bound to the <accessTokenIssuing> virtual resource
· The provided content of the access token request is not in line with the specified structure

8.2.4.3
<accessToken> Resource Procedures
8.2.4.3.1
Introduction
This clause describes the management procedures for the <accessToken> resource. This resource is used to store the access token generated by access token process. Only Retrieve operation shall be allowed on this resource.
8.2.4.3.2
Retrieve <accessToken>
This procedure shall be used to retrieve attributes information of a <accessToken> resource. The generic retrieve procedure is described in clause 10.1.2 of oneM2M TS-0001 [i.2].

Table 8.2.4.3.2-1: <accessToken> RETRIEVE
	<accessToken>RETRIEVE

	Associated Reference Point
	Mca, Mcc and Mcc'

	Information in Request message
	All parameters defined in table 8.2.2-2 apply with the specific details for:

Content: void

	Processing at Originator before sending Request
	According to clause 10.1.2 of oneM2M TS-0001 [i.2]

	Processing at Receiver
	According to clause 10.1.2 of oneM2M TS-0001 [i.2]

	Information in Response message
	All parameters defined in table 8.2.3-1 of oneM2M TS-0001 [i.2] apply with the specific details for:

· Content: attributes of the <subscription> resource as defined in clause 8.2.3.3

	Processing at Originator after receiving Response
	According to clause 10.1.2 of oneM2M TS-0001 [i.2]

	Exceptions
	According to clause 10.1.2 of oneM2M TS-0001 [i.2]

9
Conclusion and Recommendations

Editor’s Note: This clause will capture agreed conclusions and recommendations

<Text>

The following text is to be used when appropriate:

Proforma copyright release text block

This text box shall immediately follow after the heading of an element (i.e. clause or annex) containing a proforma or template which is intended to be copied by the user. Such an element shall always start on a new page.

Notwithstanding the provisions of the copyright clause related to the text of the present document, oneM2M grants that users of the present document may freely reproduce the <proformatype> proforma in this {clause|annex} so that it can be used for its intended purposes and may further publish the completed <proformatype>.

<PAGE BREAK>

Annexes

Each annex shall start on a new page (insert a page break between annexes A and B, annexes B and C, etc.).

Use the Heading 9 style for the title and the Normal style for the text.
Annex <A>:
Title of annex (style H9)
<Text>

<PAGE BREAK>

Annex :
Title of annex (style H9)
<Text>

B.1
First clause of the annex (style H1)
<Text>

B.1.1
First subdivided clause of the annex (style H2)
<Text>

<PAGE BREAK>
Annex <y>:
Bibliography

The annex entitled "Bibliography" is optional.

It shall contain a list of standards, books, articles, or other sources on a particular subject which are not mentioned in the document itself.

It shall not include references mentioned in the document.

Use the Heading 9 style for the title and B1+ or Normal for the text.

· <Publication>: "<Title>".

OR

<Publication>: "<Title>".

<PAGE BREAK>

History

This clause shall be the last one in the document and list the main phases (all additional information will be removed at the publication stage).
	Publication history

	V.1.1.1
	<dd Mmm yyyy>
	<Milestone>

	
	
	

	
	
	

	
	
	

	
	
	

	Draft history (to be removed on publication)

	V.0.0.1
	25 March 2015
	Initial skeleton

	V0.0.2
	10 June 2015
	Scope added

	V.0.0.3
	14 August 2015
	Incorporated text agreed at SEC#18

SEC-2015-0564R03

SEC-2015-0565R04

SEC-2015-0570R02

SEC-2015-0571R01

SEC-2015-0572R01

SEC-2015-0573R01

	V.0.0.4
	15 September 2015
	Incorporated text agreed at SEC#18

SEC-2015-0585R02
SEC-2015-0586R01

SEC-2015-0587R02

SEC-2015-0588R02

SEC-2015-0591R01

SEC-2015-0605R01

	
	
	

�Note spelling correction performed here

�Spelling corrected “hosting” (“hosting” by rapporteur

�“be” added by rapporteur to correct grammar

�Superfluous period “.” Removed by rapporteur to correct punctuation.

�Superfluous period “.” Removed by rapporteur to correct punctuation.

�Superfluous comma “,” Removed by rapporteur to correct punctuation.

�Spelling corrected “trused”(”trusted” by rapporteur

�Superfluous “the” removed by rapporteur to correct grammar.

�Superfluous period “.” Removed by rapporteur to correct punctuation.

�Superfluous period “.” Removed by rapporteur to correct punctuation.

�Superfluous period “.” Removed by rapporteur to correct punctuation.

�Superfluous period “.” Removed by rapporteur to correct punctuation.

�“a”(“an” corrected by rapporteur

© oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TTA, TTC)
Page 7 of 37
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

_1500816174.vsd
Originator

Token Authority

Hosting CSE

Token

Token

Token Authorization
Function

Security Function

Token Issuance

Key and Token Issuing Privileges Provision

Resource Access

M2M Device
M2M Gateway

DA-PEP
DA-PDP
DA-PIP

M2M Platform

DA-PRP

M2M Device
M2M Gateway

DA-PRP
DA-PEP
DA-PDP
DA-PIP

_1503471314.vsd
Originator

Grant Issuer

Grant Issuer

Authorization Server

Host CSE

Grant Approver

Dagi

Daga

Dati

Datu

Dagd

Datd

M2M Device
M2M Gateway

DA-PEP

Trusted Third-Party (TTP)

DA-PDP
DA-PIP

_1498124748.vsd
Token

 Access Resource

Token

Get Token

M2M Platform

M2M Gateway 2

M2M Application

M2M Gateway 1

M2M Gateway 3

M2M Devices

M2M Devices

M2M Devices

_1499078979.vsd
<accessTokenAuthority>

1

0..n

<accessTokenIssuing>

<accessToken>

_1499081340.vsd
�

�

Originator

Token Authority

Hosting CSE

2:Security association establishment

3:Access token request

4.1:Check access control policies
4.2:Check access token issuing privileges
4.3:Check access token authorization policies
4.4:Generate access token plaintext
4.5:Sign and/or encrypt the token

7:Security association establishment

5:Access token response

8:Access request with access token

10:Access response

9.1:Decrypt and/or verify The token
9.2:Check access token issuing privileges
9.3:Check access token revocation list
9.4:Evaluate the privileges in access token
9.5:Perform the requested resource access

6:Issue access token revocation list

1:Key and token issuing privilegs provision

_1498161456.vsd
M2M Platform

M2M Gateway 1
(Token Issuer)

 Access Resource

Get Token

M2M Gateway 2

M2M Gateway n

M2M Device
(Mobile Phone)

Token

Token

M2M Devices

M2M Devices

_1498485378.vsd
<accessToken>

1

1

1

issuer

holder

token

_1498124674.vsd
Home Energy Management System

Security Service Company

Home Gateway 2

Home Gateway n

M2M Gateways

M2M Application Service Providers

M2M Platform

M2M Service Provider

Electricity Company

Home Gateway 1

M2M Devices

Smart Meter

Air Conditioner

Security Facility

