Doc# TR-0019_Dynamic_Authorization_Solution_Proposal

	Input Contribution

	Meeting ID*
	SEC 20

	Title:*
	TR-0019_Dynamic_Authorization_Solution_Proposal

	Source:*
	vinod.choyi@interdigital.com
dale.seed@interdigital.com

	Uploaded Date:*
	2015-10-30

	Document(s)

Impacted*
	TR-0019 – Dynamic Authorization

	Intended purpose of

document:*
	 FORMCHECKBOX
 Decision

 FORMCHECKBOX
 Discussion

 Information

 Other <specify>

	Decision requested or recommendation:*
	For discussion and decision to be included into TR-0019

	Template Version:23 February 2015 (Dot not modify)

oneM2M Notice

The document to which this cover statement is attached is submitted to oneM2M. Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.

-----------------------Start of change 1--
3.3
Abbreviations
For the purposes of the present document, the abbreviations given in oneM2M TS-0011 [i.4] and oneM2M TS-0003 [i.3] and the following apply:

AS

Authorization Server

DAA
(oneM2M) Dynamic Authorization Architecture

Daga
DAA Authorization Grant Approval reference point

Dagd
DAA Authorization Grant Data reference point

Dagi
DAA Authorization Grant Issuance reference point

Datd
DAA Access Token Data reference point

Dati
DAA Access Token Issuance reference point

Datu
DAA Access Token Usage reference point

OAuth
Web Authorization Protocol (denotes an IETF Working Group and specifications produced by that working group)

RO

Resource Owner

RPT

Requesting Party Token

RS

Resource Server
SLDA
Service Layer Dynamic Authorization
SLDA-PA
Service Layer Dynamic Authorization Policy Administration

SLDA-PD
Service Layer Dynamic Authorization Policy Determination

SLDA-PE
Service Layer Dynamic Authorization Policy Enforcement

SLDA-PI
Service Layer Dynamic Authorization Policy Information
UMA

User Managed Access

-----------------------End of change 1--
-----------------------Start of change 2--
8.3
Proposal 2: oneM2M-based SLDA
The following sub-sections propose an architecture, procedures, and resource definitions for enabling the oneM2M system to support Service Layer Dynamic Authorization (SLDA) functionality.

A summary of the proposed oneM2M enhancements include:

1) Enhancements to the oneM2M architecture to support SLDA functionality and to show which types of oneM2M entities SLDA functionality can be included within (e.g. MEF, MAF and CSEs).

2) The definition of several oneM2M procedures providing message sequence level descriptions of how different types of dynamic authorization functionality can be supported within a oneM2M system.

3) The definition of a oneM2M <dynAuthPolicy> resource and attributes to support configuration of service layer dynamic authorization policies.

4) The definition of a oneM2M <consult> resource and corresponding request and response message formats to support the ability to perform consultation-based dynamic authorization.

5) Some proposed enhancements to the existing oneM2M defined <accessControlPolicy> resource to include an identifier for an individual privilege within the privilege list that enables partial addressing of individual privileges within privileges list, an expiration time for each individual privilege, and the definition of new types of authorization context that support use cases involving payment-based, reputation-based, and security assessment-based dynamic authorization.

8.3.1
Architecture
SLDA functionality can optionally be hosted on various oneM2M defined entities including a CSE, a MEF or a MAF. SLDA functionality can be centralized and hosted in its entirety on one of these oneM2M defined entities, or alternatively, the SLDA functionality can be partitioned such that its sub-functions (SLDA-PA, SLDA-PD, SLDA-PE and SLDA-PI) can be hosted in a distributed manner across multiple oneM2M entities. For example, the SLDA-PI sub-function can be hosted on a MEF, the SLDA-PD and SLDA-PA sub-functions on a MAF and the SLDA-PE sub-function on a CSE. When hosted in a distributed manner, the SLDA sub-functions can coordinate with one another to perform dynamic authorization functions.

[image: image1.emf]CSE

SLDA

MAF

AEs / CSEs

SLDA

SLDA

MEF

SLDA - PA

SLDA - PD

SLDA - PE

SLDA - PI

SLDA Policy

Administration and

Determination

Functionality

deployed on a

MAF

 SLDA Policy

Information

Functionality

deployed on a

MEF

SLDA Policy

Enforcement

Functionality

deployed on a

CSE

Other Functions SLDA Can Consult With

(E.g. Security, Payment, Platform Validation, Reputation,

Location, etc)

Figure 8.3.1-1: SLDA deployment distributed across oneM2M MEF, MAF and CSE Entities
8.3.2
General Procedure for Dynamic Authorization Policy Provisioning and Configuration, Policy Evaluation and Enforcement

8.3.2.1

Configuration of Dynamic Authorization Policies
Dynamic authorization policies can be configured via creating/updating/deleting the dynAuthRules attribute of a targeted <dynAuthPolicy> resource. Once configured, an SLDA function can make use of these policies to perform dynamic authorization request handling.

[image: image2.emf]oneM2M Entity

(E.g. AE)

oneM2M Entity

Hosting a SLDA Function

(E.g. CSE, MEF, MAF)

2: CREATE/UPDATE/DELETE Request

To: URI or <dynAuthPolicy> Resource

Payload: <dynAuthPolicy> Resource

4: <dynAuthPolicy> rules are

Created/Updated/Deleted

5: CREATE/UPDATE/DELETE Response

Payload: Status

3: SLDA function verifies

requester has proper privileges

to create/update/delete

<dynAuthPolicy>

1: Determine desired dynamic

authorization rules

Step 1 – A oneM2M entity (e.g. AE) determines the type of dynamic authorization rule it would like to configure and the corresponding values for this rule (such as consultation-based rules, payment-based rules, security-assessment-based rules and reputation-based rules).
Step 2 – A oneM2M entity (e.g. AE) sends request targeting a second oneM2M entity (e.g. CSE, MEF or MAF) that hosts a SLDA function. The request contains a <dynAuthPolicy> resource representation, where the dynAuthRules attribute of the <dynAuthPolicy> resource can be configured with dynamic authorization policy rules from Step 1.
Step 3 – The SLDA function hosted on the oneM2M entity receives the request and checks whether the requester has the proper privileges to perform the specified operation on the targeted <dynAuthPolicy> resource. This check is performed by confirming whether the requester has configured privileges within the corresponding <accessControlPolicy> resource associated with the targeted <dynAuthPolicy>. If yes, the SLDA function continues with processing the request, otherwise the SLDA function returns an error to the requester indicating lack of privileges to perform this operation to the requester.

Step 4 – The SLDA function processes the request and based on the operation either creates, updates or deletes the specified rules to / from the dynAuthRules attribute of the targeted <dynAuthPolicy> resource

Step 5 – The receiving oneM2M entity returns a response to the requester indicating whether or not the request to create, update, or delete the specified rules in the dynAuthRules attribute of the targeted <dynAuthPolicy> resource was successful or not.

8.3.2.2

Service Layer Dynamic Authorization
Service Layer Dynamic Authorization may be triggered and performed autonomously by a oneM2M entity that hosts a SLDA function. Via this procedure an SLDA function may support autonomously granting or denying privileges on-the-fly during the processing of requests made to access resources which a requester does not have existing privileges to access. By supporting this procedure, burden is removed from requesters since they do not have to explicitly request access privileges for resources they do not have privileges established for. Via this procedure, service layer dynamic authorization may be performed without requesters being aware that it is being performed. This reduces the overhead on requesters especially for use cases involving resource constrained devices (e.g. sensor applications hosted on IoT devices).

This procedure is also beneficial for the service layer itself since it offers a mechanism for access control policies to be dynamically created or updated on-the-fly leveraging SLDA results rather than having to have an external management entity in the network statically pre-configure access control policies with a set of privileges in advance. Pre-configuring access control policies in advance can be burdensome, inflexible and not very scalable.

[image: image3.emf]oneM2M Entity

(E.g. AE or CSE)

oneM2M Entity

Hosting Resource &

SLDA Functionality

(E.g. CSE)

1: CREATE/RETRIEVE/UPDATE/DELETE/SUBSCRIBE/DISCOVER Request

To: URI of targeted resource

Payload: Representation of Resource (if applicable)

5: (Optional) SLDA functionality consults with other entities in system to determine whether to

grant or deny access privileges

6: CREATE/UPDATE/DELETE Response

Payload: Status: Success

2: Entity checks

<accessControlPolicy> resources

of targeted resource or parent

resource(s) and detects lack of

privileges

3: SLDA function is triggered to

perform dynamic authorization

4: SLDA functionality finds applicable <dynAuthPolicy> resource and performs dynamic

authorization

7: (Optional) SLDA function

updates <accessControlPolicy>

privileges based on SLDA results

8: CREATE/RETRIEVE/UPDATE/DELETE/SUBSCRIBE/DISCOVER Request

To: URI of targeted resource

Payload: Representation of Resource (if applicable)

10: CREATE/UPDATE/DELETE Response

Payload: Status: Success

9: Entity checks

<accessControlPolicy> resources

of targeted resource or parent

resource(s) and detects proper

privileges exist and access is

granted

Other oneM2M Entities

Hosting SLDA

Functionality

(E.g. CSE, MEF, MAF)

Other Entities

Consulted by SLDA Functionality

(E.g. Payment Function, Security

Function, Platform Validation

Function, etc)

Step #1- A requesting oneM2M entity (e.g. AE or CSE) issues a request (i.e. Create / Retrieve / Update / Delete / Subscribe / Discover) to another oneM2M entity.

Step #2 – The receiving oneM2M entity (e.g. CSE) detects access to targeted resource. The receiving entity checks the corresponding <accessControlPolicy> resource(s) applicable to the targeted resource (if any) to determine whether the requester has sufficient privileges configured to allow it to perform the desired type of access. In this example, the requester lacks sufficient access privileges.

Step #3 – Rather than immediately returning an ‘access denied’ error to the requester, the receiving entity triggers dynamic authorization processing to be performed by the SLDA functionality that may either be hosted on the receiving entity or on another entity in the system. SLDA functionality may also be split across multiple entities with some functionality hosted on the receiving entity.

Step #4 – The receiving entity, if enabled with SLDA functionality, begins to perform dynamic authorization processing. Depending on whether the receiving entity hosts SLDA functionality itself will determine whether the SLDA processing is performed completely local or whether the receiving entity will communicate with other oneM2M entities in the system to assist it with performing SLDA. If no SLDA functionality is found the SLDA processing is stopped and an ‘access denied’ error is returned to the requester. If SLDA functionality is found to be hosted on either the receiving entity and / or other entities in the system, then this functionality is triggered to attempt to locate <dynAuthPolicy> resources applicable to the targeted resource. If a <dynAuthPolicy> is not found, the SLDA discontinues dynamic authorization processing and returns an ‘access denied’ error to the requester. If one or more <dynAuthPolicy> resources are found, the SLDA functionality uses the dynAuthRules attribute for each resource found to evaluate against the requester’s request and determines whether privileges can be dynamically granted.

Step #5 (Optional) – While evaluating the dynAuthRules of the applicable <dynAuthPolicy> resources, the SLDA function may need to consult with other entities in the system depending on the type of dynAuthRules specified. Consultation may be needed to gather the proper information the SLDA function requires to determine whether or not to grant or deny access privileges to the requester. This consultation is performed using the <consult> resource and its corresponding request and response primitives.
Step #6 – Based on the results of evaluating the request against the dynAuthRules and possibly consulting with other entities in the system to obtain additional information that it factors into its decision making, the SLDA functionality decides to grant access to the requester. As a result, the receiving entity performs the request on the targeted resource and returns a successful response to the requester. The requester, is unaware that autonomous SLDA was performed. All it is aware of is its request completed successfully.

Step #7 (Optional) – Using the dynamic authorization results, the SLDA function may optionally update the privileges attribute within the <accessControlPolicy> resource(s) associated with the targeted resource to add access control privileges for the requester. This decision may be controlled via a dynAuthRule defined within a <dynAuthPolicy> resource. For example, the dynAuthRule may support a rule (e.g. privilege lifetime rule) to control whether or not the SLDA function adds or updates the static privileges of the <accessControlPolicy> resources and if so what the expiration time of this privilege is. As a result, the SLDA function may use this rule to control whether it updates or adds a privilege and if so the expiration time (e.g. this can be done using the accessControlExpirationTime component of the privilege). Based on these rules, the SLDA function determines whether or not to add / update privileges and their respective lifetimes. By choosing to update the privileges, the requester may be granted access to the resource and perform the same operation without dynamic authorization having to be repeated.

Step #8- A requesting oneM2M entity (e.g. AE or CSE) issues a request (i.e. Create / Retrieve / Update / Delete / Subscribe / Discover) to the same resource on the same oneM2M entity.

Step #9 – The receiving oneM2M entity (e.g. CSE) detects access to a targeted resource. The receiving entity checks the corresponding <accessControlPolicy> resource(s) applicable to the targeted resource and detects that the requester now has sufficient access privileges as a result of the SLDA function having added these privileges as part of Step 7.

Step #10 – The receiving entity performs the request on the targeted resource and returns a successful response to the requester.

8.3.2.2.1

Dynamic Authorization Process – Based on Subscription
The SLDA may consult with an entity in the system (e.g. CSE, MAF, MEF) to determine whether or not a requesting entity has a proper service subscription that allows it privileges to gain access to a targeted resource.

[image: image4.emf]oneM2M Entity

Hosting SLDA

Functionality

(E.g. CSE, MAF, MEF)

SLDA Function Consults with Service Layer Subscription Verification Function

 2: SLDA functionality performs dynamic authorization using a <dynAuthPolicy> having

dynAuthRule that specifies ‘Requires Service Subscription Verification’. This triggers

SLDA functionality to either perform service subscription verification processing locally or

consult with a designated Service Layer Subscription Verification Function

Service Layer Subscription

Verification

Function

(E.g. CSE, MAF, MEF, CSE)

3: Consult Service Layer Subscription Verification Function

To: URI of <consult> resource on Subscription Verification Function

Payload: Consult Request Parameters

 consultType:’

Request to verify service subscription’

 consultSubject: AE-ID or CSE-ID of originator

 consultationContext: available service subscription context info

 (E.g. service layer IDs, required service provider and plan)

Payload: Consult Response Parameters

 consultStatus: Success or Failure (whether verification completed)

 consultResults: Service Layer Subscription Verification Results

4: Subscription Verificaiton Function Consultation Response

1. SLDA triggered either

explicitly or autonomously

 5: SLDA functionality checks service layer subscription

verification check met or exceeded the subscription

requirements specified by the <dynAuthPolicy>. It factors

this outcome into its dynamic authorization decision

making to determine whether or not to grant or deny

requester access privileges.

Step 1 – The SLDA function is triggered either by an explicit request (i.e. access to <dynAuthRequest resource) or autonomously via the SLDA function itself (e.g. via detection of a request that failed checks on existing <accessControlPolicy> static privileges).

Step 2 – The SLDA locates applicable <dynAuthPolicy> resources (if any) and evaluates the dynAuthPolicy attribute to determine what rules have been configured. In this example, the dynAuthPolicy attribute has been configured with a rule specifying ‘Requires Service Subscription Verification’. This rule triggers the SLDA function to either perform local service subscription verification processing (i.e. check m2mServiceSubscriptionProfile resources) or consult with a Subscription Verification Function in the system to have it perform this verification on behalf of the SLDA.
Step 3 – The SLDA function forms a consultation request message. The message is targeted to the <consult> resource hosted by the Subscription Verification Function. The consultSubject is configured with the AE-ID or CSE-ID of the requester for which the verification is being performed. The payload of the request is configured with any service subscription information of the requester that is available (e.g. service layer IDs) as well as the service subscription policy rule defining requirements such as the required service provider and/or service plan that a requester must have to be granted access privileges.

Step 4 – The Subscription Verification Function assesses the subscription requirements defined by the policy against the requester’s service subscription to determine whether the requester meets the requirements defined by the policy. The Subscription Verification Function then returns the result back to the SLDA via a consult response containing a verification status and a list of requirements that have been met as well as any that have not.

Step 5 – SLDA functionality checks the subscription verification results and factors this outcome into its dynamic authorization decision making to determine whether or not to grant or deny requester access privileges.
8.3.3

Resource Definitions
8.3.3.1

Resource Type <dynAuthPolicy>
The <dynAuthPolicy> resource serves as the interface to configure the SLDA function with dynamic authorization rules. This resource is used to create, retrieve, update and delete SLDA policies. Once configured with one or more <dynAuthPolicy> resources, the SLDA function uses the rules defined within the policies to perform dynamic authorization decision making.
Various types of dynamic authorization rules can be supported such as (but not limited to) multi-factor authentication-based, payment-based, security assessment-based, consultation-based and reputation-based policies. The representation of the resources are described further below.

In addition to dynamic authorization rules, the <dynAuthPolicy> resource also supports a selfAccessControlPolicyIDs attribute. This attribute is used to reference access control policies that define the access privileges for the <dynAuthPolicy> resource itself. These privileges are used to control which entities are allowed to access (e.g. retrieve, update or delete) the <dynAuthPolicy> resource and its attributes.

Optionally, the <dynAuthPolicy> resource can also support an accessControlPolicyIDs attribute that can be configured with a list of links to one or more <accessControlPolicy> resources whose static privileges a SLDA function may dynamically create, update or delete using this <dynAuthPolicy> resource.

[image: image5.emf]<dynAuthPolicy>

accessControlPolicyIDs

selfAccessControlPolicyIDs

dynAuthRules

Figure 8.3.3.1-1: Structure of <dynAuthPolicy> resource
The <dynAuthPolicy> resource shall contain the attributes specified in table 8.3.3.1-1.
Table 8.3.3.1-1: Attributes of <dynAuthPolicy> resource
	Attribute Name
	Multiplicity
	RW / RO/ WO
	Description

	selfAccessControlPolicyIDs
	1(L)
	RO
	Links to authorization policy(s) defining which entities have the privilege to perform CRUD operations to this <dynAuthPolicy> resource.

	accessControlPolicyIDs
	0..1(L)
	RW
	Links to one or more access control policies whose privileges can be dynamically created, updated or deleted by an SLDA function based on the rules defined by this <dynAuthPolicy> resource.

	dynAuthRules
	1(L)
	RW
	List of one or more rules used by a SLDA function to perform dynamic authorization. These rules are used to determine whether or not the SLDA function is to dynamically grant access privileges to an entity attempting to access a resource or service that the entity does not currently have proper privileges to access.

Each rule can be specified as a list of criteria that must be met by an originator of a request before access privileges are dynamically granted.

The following is a list of types of criteria:
Note – Additional types can be defined.
· Allowed Originators (ar) – A list of IDs of originators that are candidates for dynamic authorization. Wildcard characters such as a ‘*’ can be used to

· Blocked Originators (br) - A list of IDs of originators that are NOT candidates for dynamic authorization. Wildcard characters such as a ‘*’ can be used to

· Allowed Operations (aop) – A list of allowed operations that are candidates for dynamic authorization

· Blocked Operations (bop) – A list of operations that are NOT candidates for dynamic authorization

· Allowed Locations (al) – A list of locations originator is allowed to be in to be considered a candidate for dynamic authorization

· Blocked Locations (bl) - A list of locations originator is forbidden to be in to be considered a candidate for dynamic authorization

· Allowed Time Schedule (ats) – A list of times that requests are allowed to be considered a candidate for dynamic authorization

· Blocked Time Schedule (bts) – A list of times that requests are NOT allowed to be considered a candidate for dynamic authorization

· Allowed IP addresses (aia) - A list of originator IP addresses that are allowed to be considered candidates for dynamic authorization

· Blocked IP addresses (aia) - A list of originator IP addresses that are NOT allowed to be considered candidates for dynamic authorization

· Allowed Requester Roles (arr) – A list of requester roles that are allowed to be considered candidates for dynamic authorization
· Blocked Requester Roles (brr) – A list of requester roles that are NOT candidates for dynamic authorization
· Allowed Apps (aa) – A list of classes of apps or App-IDs that are allowed to be considered candidates for dynamic authorization
· Blocked Apps (ba) – A list of classes of apps or App-IDs that are NOT candidates for dynamic authorization
· Requires Payment Verification (rpv) – Originator’s payment information must first be verified before it can be considered a candidate for dynamic authorization. If a payment consultation contact is specified in the consultationContact list, then the SLDA function can consult with it.

· Requires Service Subscription Verification (rsv) - If present, then originator’s service subscription must first be verified to be valid before it can be considered a candidate for dynamic authorization. If a service subscription consultation contact is specified in the consultationContact list, then the SLDA function can consult with it.

· Requires Security Assessment (rsa) - If present, SLDA must perform security assessment-based authorization to verify that originator meets a certain level of security. If an authorization consultation contact is specified in the consultationContact list, then the SLDA function can consult with it.
· Required Platform Validation Level (rpv) – A required level of validation an originator’s platform must have to be considered a candidate for dynamic authorization. E.g. High (H), Average (A), Low (L). If a contact is specified in the consultationContact list for a platform validation function, the SLDA function can consult with it.
· Required Pre-Requisites (rpr) - A list of required credentials, subscriptions, actions or other arrangements an originator must have established / completed to be considered a candidate for dynamic authorization.

· Requires Consultation-based Authorization (rca) - If present, SLDA must perform consultation-based authorization. If an authorization consultation contact is specified in the consultationContact list, then the SLDA function can consult with it.

· Requires Payment Verification (rpv) – Originator’s payment information must first be verified before it can be considered a candidate for dynamic authorization. If a payment consultation contact is specified in the consultationContact list, then the SLDA function can consult with it.
For example a list of dynAuthRules can be expressed as follows:

 ar:AE1,AE2,AE3; aop:U,R,S; boo:C,D; rsv;

8.3.3.2

<consult> Resource
The <consult> resource is a virtual resource having no attributes. The URI of this resource functions as a consultation point of contact which an SLDA function uses when performing dynamic authorization to consult with another entity in the network. For example, when a <dynAuthPolicy> is configured with a consultation-based rule that defines a consultationContact, the URI of a <consult> resource is used. A <consult> resource may be hosted by various oneM2M defined entities such as CSEs, AEs, MEFs and MAFs. In addition, this resource may also be hosted by other types of entities not yet defined by oneM2M such as a location function, reputation verification function (e.g. social media servers), platform validation and assessment function, payment function, security function and service subscription verification function.

[image: image6.emf]<consult>

Figure 8.3.3.2-1: <consult> Virtual Resource
To perform consultation, an SLDA function constructs a consult request message and targets this message towards a <consult> resource hosted by an entity within the system. Upon receiving this request, the entity processes it according to the type of consult, constructs a corresponding response message with the consult results, and returns the response to the SLDA function.

Table 8.3.3.2-1: Parameters of Consult Request Message

	Parameter Name
	Description

	consultantAddr
	This is the address which this request is targeted at. For example, the URI of the <consult> resource.

	consulterID
	A oneM2M service layer ID of the originator issuing this consult request
(E.g. AE-ID, CSE-ID, App-ID, etc). For example, the CSE-ID hosting an SLDA function.

	consultType
	The type of consult request. Several different types of consultation can be supported including one or more of the following types.

· Request for Consultation-based Dynamic Authorization

· Request for a Dynamic Authorization Credential

· Request for the location of an specified entity

· Request to verify payment info/token of a specified entity

· Request to verify reputation of a specified entity
· Request to verify service layer subscription of a specified entity
· Request to validate platform entity is hosted on

· Request to assess security of a specified entity

	consultationInfo
	Each type of consult request has corresponding information associated with it. This information may be sourced from an explicit dynamic authorization request or from an SLDA that is performing autonomous dynamic authorization.
Some types of information include the following:

· consultSubject – Identifier of an entity which is the subject being consulted on behalf of. For example, a oneM2M AE-ID for which an SLDA function is consulting on behalf of and issuing a location consult request to a location server to determine the AE’s location. In this example, the AE-ID would be the consultSubject.

· Security context / assessment information of the consultSubject which the SLDA can collect and track

· Type of request

· Requested privileges
· Payment Info
· Service Subscription Info

· Security context information

· Security assessment requirements

Table 8.3.3.2-2: Parameters of Consult Response Message

	Parameter Name
	Description

	consultStatus
	The status of the consult request:

· Consultation Rejected

· Consultation Successful

· Consultation Error

	consultResults
	Each type of consult response can have corresponding results associated with it. Some of the results are generic and applicable to all the different types of consult requests, while some results are specific to a particular type as described below.

· List of privileges granted to requested resource or service and corresponding lifetime of privileges

· List of denied privileges to requested resource or service that were not granted and reasons why

· List of privileges that were pro-actively granted to resources or services that were not requested but the requester may be interested in.

· A dynamic authorization credential
· A location of the requester
· A payment verification status

· Reputation reviews/ranking
· Platform validation assessment results

· Security assessment level (e.g. trusted, un-trusted, etc)

8.3.3.3

Enhancements to <accessControlPolicy>

Current oneM2M specifications only support an <accessControlPolicy> resource having a set of defined privileges based on an ACL. This ACL is a set of access-control-rule tuples that can be stored within the privileges attribute, where each tuple is comprised of three components consisting of 1) accessControlOriginators, 2) accessControlOperations and 3) accessControlContext.

Three enhancements to the existing privileges attribute of the <accessControlPolicy> resource are described below.

1) An additional component has been added to privileges access-control-rule tuple called an accessControlPrivilegeID. This component may be used to identify and address an individual privileges access-control-rule tuple. This identifier is useful when supporting updating or deleting of an individual tuple. Otherwise, an update or delete of an individual tuple requires updating the entire privileges access-control-rule tuple list which is less efficient.

2) Another component has been added to the privileges access-control-rule tuple called an accessControlExpirationTime. This component may be used to define a lifetime associated with a particular access-control-rule tuple. In addition, it enables access-control-rule tuples to have different lifetimes with respect to one another, which can provide more flexibility from a privileges perspective.

3) Three additional types of accessControlContext have also been defined:

· accessControlPaymentTerms – List of payment terms that must be established before an entity is allowed to access resources associated with this authorization policy.

· accessControlReputationLevel – Required reputation level that an entity must have before it is allowed to access resources associated with this authorization policy

· accessControlSecurityAssessment - Required level of security that an entity must have before it is allowed to access resources associated with this authorization policy

-----------------------End of change 2--
© 2015 oneM2M Partners

Page 1 (of 2)

_1506957245.vsd
5: (Optional) SLDA functionality consults with other entities in system to determine whether to grant or deny access privileges

1: CREATE/RETRIEVE/UPDATE/DELETE/SUBSCRIBE/DISCOVER Request

To: URI of targeted resource
Payload: Representation of Resource (if applicable)

6: CREATE/UPDATE/DELETE Response

Payload: Status: Success

oneM2M Entity
(E.g. AE or CSE)

oneM2M Entity
Hosting Resource & SLDA Functionality
(E.g. CSE)

2: Entity checks <accessControlPolicy> resources of targeted resource or parent resource(s) and detects lack of privileges

3: SLDA function is triggered to perform dynamic authorization

4: SLDA functionality finds applicable <dynAuthPolicy> resource and performs dynamic authorization

7: (Optional) SLDA function updates <accessControlPolicy> privileges based on SLDA results

8: CREATE/RETRIEVE/UPDATE/DELETE/SUBSCRIBE/DISCOVER Request

To: URI of targeted resource
Payload: Representation of Resource (if applicable)

10: CREATE/UPDATE/DELETE Response

Payload: Status: Success

9: Entity checks <accessControlPolicy> resources of targeted resource or parent resource(s) and detects proper privileges exist and access is granted

Other oneM2M Entities
Hosting SLDA Functionality
(E.g. CSE, MEF, MAF)

Other Entities
Consulted by SLDA Functionality
(E.g. Payment Function, Security Function, Platform Validation Function, etc)

_1507900453.vsd
￼

CT

CSE

SLDA

MAF

AEs / CSEs

SLDA

SLDA

MEF

_1507904062.vsd
<dynAuthPolicy>

_1507900462.vsd
<consult>

_1506957251.vsd
SLDA Function Consults with Service Layer Subscription Verification Function

oneM2M Entity
Hosting SLDA Functionality
(E.g. CSE, MAF, MEF)

 2: SLDA functionality performs dynamic authorization using a <dynAuthPolicy> having dynAuthRule that specifies ‘Requires Service Subscription Verification’. This triggers SLDA functionality to either perform service subscription verification processing locally or consult with a designated Service Layer Subscription Verification Function

Service Layer Subscription Verification
Function
(E.g. CSE, MAF, MEF, CSE)

3: Consult Service Layer Subscription Verification Function

To: URI of <consult> resource on Subscription Verification Function
Payload: Consult Request Parameters
 consultType:’Request to verify service subscription’
 consultSubject: AE-ID or CSE-ID of originator
 consultationContext: available service subscription context info
 (E.g. service layer IDs, required service provider and plan)

Payload: Consult Response Parameters
 consultStatus: Success or Failure (whether verification completed)
 consultResults: Service Layer Subscription Verification Results

4: Subscription Verificaiton Function Consultation Response

1. SLDA triggered either explicitly or autonomously

 5: SLDA functionality checks service layer subscription verification check met or exceeded the subscription requirements specified by the <dynAuthPolicy>. It factors this outcome into its dynamic authorization decision making to determine whether or not to grant or deny requester access privileges.

_1506957244.vsd
4: <dynAuthPolicy> rules are Created/Updated/Deleted

2: CREATE/UPDATE/DELETE Request

To: URI or <dynAuthPolicy> Resource
Payload: <dynAuthPolicy> Resource

5: CREATE/UPDATE/DELETE Response

Payload: Status

oneM2M Entity
(E.g. AE)

oneM2M Entity
Hosting a SLDA Function
(E.g. CSE, MEF, MAF)

3: SLDA function verifies requester has proper privileges to create/update/delete <dynAuthPolicy>

1: Determine desired dynamic authorization rules

