	Doc# SEC-2015-0636-CR_TR-0012_ESF-Sm
Change Request
	[image: image4.png]

	

	CHANGE REQUEST

	Meeting:*
	SEC#20

	Initiator:*
	Phil Hawkes, Qualcomm, phawkes@qti.qualcomm.com
Wolfgang Granzow, Qualcomm, wgranzow@qti.qualcomm.com

Josef Blanz, Qualcomm, jblanz@qti.qualcomm.com

	Date:*
	2015-11-02

	Contact:*
	As above

	Reason for Change/s:*
	Provides an architecture reference model for end-to-end security for ESF using the multi-envelope security session type, in which a handshake is performed to establish session keys before payloads are secured.

	CR against: Release*
	2

	CR against: WI*
	 FORMCHECKBOX
 Active WI-0016
 FORMCHECKBOX
 MNT Maintenance / < Work Portion number(optional)>
 FORMCHECKBOX
 STE Small Technical Enhancements / < Work Portion number (optional)>

Only ONE of the above shall be ticked

	CR against: TS/TR*
	TR-0012 and v0.6.0

	Clauses/Sub Clauses*
	Clause 6.2.4 “ESF Security Layer for the Multi-Envelope Security Session Type (ESF-Sm)”
Clause 7.x.4 “Requirements for the ESF-Sm Reference Points”

	Type of change: *
	 FORMCHECKBOX
 Editorial change
 FORMCHECKBOX
 Bug Fix or Correction
 Change to existing feature or functionality
 FORMCHECKBOX
 New feature or functionality
Only ONE of the above shall be ticked

	Post Freeze checking:*
	This CR contains only essential changes and corrections? YES
 NO
This CR is a mirror CR? YES FORMCHECKBOX
 NO FORMCHECKBOX
 if YES, please indicate the document number of the original CR:
<Document Number)<CR Number of the original CR to the current Release>

	Template Version:23 February 2015 (Dot not modify)

oneM2M Notice

The document to which this cover statement is attached is submitted to oneM2M. Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.

Introduction
This contribution is one of a series on the End-to-End Security Framework (ESF). For details on this series, see introduction to SEC-2015-06xx-CR_TR-0012_ESF_Intro.

The present contribution proposes high level details for End-to-End Security Framework for ESF-Sm (Two-way Multiple envelope) security sessions: ESF-Sm is based on the ESF reference model – the ESF reference model is described in proposed text for clause 6.2.2 in contribution “SEC-2015-06xx-CR_TR-0012_ESF_Ref_Model”.

An ESF-Sm security session comprises performing a handshake exchange to establish symmetric (secret) security session keys, and then protecting multiple exchanges of input data (primitives or resource portions) using the established security session keys. The requirements discussion in clause 7.x.4 recommends using DTLS v1.2 (IETF RFC 6347) to achieve the security objectives, with DTLS records encoded in base64 before being represented in JSON or XML envelopes for inclusion in resource portions or as the content of an encapsulating primitive.
This contribution proposes text for

· Clause 6.2.4
“ESF Security Layer for Multi-Envelope Security Session-Type (ESF-Sm)”

· The ESF-Sm Reference model, including a figure and list of ESF-Sm Security Layer reference points

· The ESF-Sm call flow including a figure and descriptive text

· Clause 7.x.4 “ESF-Sm Requirements”, including discussion leading to the recommendation to use DTLSv1.2
This contribution provides high level details only. Further architecture-level details are left for consideration in clause 8 “Description and Analysis of Available Options”.

NOTE TO RAPPORTEUR: The references in the text currently use short labels (e.g. [RFC6749]), and the assignment of proper reference labels (e.g. [i.7]) is currently left to the rapporteur. The references are currently highlighted in yellow, to assist in finding the references within the proposed text.
-----------------------Start of change 1---
6.2.4
ESF Security Layer for the Multi-Envelope Security Session Type (ESF-Sm)

6.2.4.1
 ESF-Sm Reference Model

Figure 6.2.4.1-1 shows the ESF-Sm reference model the functional components and reference points within the security layer of the ESF End-Points. The ESF-Sm reference model allows establishing multi-envelope sessions between a single Initiator EEP (analogous to a TLS/DTLS Client) and a single Responder EEP (analogous to a TLS/DTLS Server).

[image: image1.emf]Responding ESF End-Point

Initiating ESF End-Point

Envelope Function (EF) Envelope Function (EF)

Envelope,

(additional data)

ESF Integration Layer

ESF Preparation Layer

Key Establishment

Function (KEF)

PSF AlgSet, Key(s)

ESF Security Layer

ESF-Treated

Target Data

KEF + PSF AlgSet,

Key Estab. Param.,

esfTargetDataClass

PSF AlgSet, Key(s)

(optional)

Facilitator(s)

Payload Security Fn. (PSF)

Key Establishment

Function (KEF)

esfTargetDataClass

ESF-f ESF-f

esfTargetDataClass esfTargetDataClass

esfTargetDataClass

ESF-Treated

Target Data,

additional data

KEF + PSF AlgSet,

Key Estab. Param.,

esfTargetDataClass

(verified) target data,

additional data

ESF-Sm.ke

ESF-Sm.ps

Payload Security Fn. (PSF)

ESF-Sm.e

(verified) target data,

additional data

Envelope,

(additional data)

Figure 6.2.4.1-1 Reference model for ESF-Sm
Table 6.2.4.1-1 “List of ESF-Sm reference points” lists the ESF-Sm reference points. Requirements for ESF-Sm can be found in Clause 7.x.4 “ESF-Sm Requirements”.
	Abbr
	Reference Point
	End-Point Components
	Brief Description
	Described in clause:

	ESF-Sm.ke
	Sm Key establishment
	KEF
	Negotiating cryptographic algorithms for use in ESF-Sm Payload Security and ESF-Sm Key Establishment – options are discussed in clauses 7.x.4.2 and 7.x.4.3 respective.
ESF-Sm Key Establishment functionality can include

· Interacting with Facilitator to obtain parameters associated with other EEPs

· Perform Handshake

· Authenticating Responder EEP and optionally Initiating EEP
· Establish of key(s) for ESF-Sm Payload Security payload security
· Provide Payload security Functions with key(s)

· Communicate handshake messages via ESF-Sm.e reference point.
	7.x.4.4

	ESF-Sm.f
	Sm Facilitation
	KEF, Facilitators
	Distributing re-usable parameters, typically for efficiency reasons.
	6.2.2.5

	ESF-Sm.ps
	Sm Payload Security
	PSF
	· Protecting input payload according to cryptographic algorithms selected at ESF-Sm.ke and using keys provided by KEF. PSF AlgSet options are discussed in clause 6.2.2.3.

· Communicate secured payload via ESF-Sm.e reference point.
	6.2.2.3

	ESF-Sm.e
	Sm Envelope Serialization
	
	· Serializing the handshake messages and secured payload in an envelope (e.g. using JSON or XML).

· Communicate envelope via Integration Layer
	6.2.2.6

Table 6.2.4.1-1 List of ESF-Sm reference points.
6.2.4.2
 ESF-Sm call flow

An ESF-SM security has two phases:

· ESF-Sm handshake phase: in which the Initiator KEF and Responder KEF – optionally assisted by Facilitator(s) – accomplish the following:
· The KEF cryptographic algorithms and PSF cryptographic algorithms are negotiated,
· The Initiator EEP and Responder EEP apply the negotiated KEF cryptographic algorithms to
· Authenticate the Responder EEP,
· (Optionally) Authenticate the Initiator EEP,
· Establish session keys.
Figure 6.2.4.2-1 “ESF-Sm handshake phase message flow” shows the call flow for the ESF-Sm handshake phase.
· ESF-Sm payload security phase, in which the Initiator PSF and Responder PSF apply the negotiated PSF cryptographic algorithms to input payloads exchanged between them. Figure 6.2.4.2-2 “ESF-Sm payload security phase message flow” shows the call flow for ESF-Sm payload protection. The figure shows the call flow for sending one input payload from a Source EEP (which could be the Initiator EEP or Responder EEP) to the Target EEP (which would be the Responder EEP or Initiator EEP respectively).

[image: image2.emf]ESF Security Layer Functions ESF Security Layer Functions

KEF

Facilitator(s)

Store parameters

Initiator ESF End-Point

PSF ESF

3.b.ii

Responder ID verif’n,

Estab sec. session keys,

(o) Initiator ID proof,

3.c

sec. session keys,

PSF crypto algs

KEF PSF ESF IntF PrepF IntF PrepF

Note: Colors used to highlight which entity/component performs which operations

Responder ESF End-Point

3.b.iii (o) Retrieve Initiator EEP Parameters

3.b.i

Responder ID Proof,

Estab Sec. session keys,

(o) Initiator ID verif’n,

3.a Initiator KEF sends first handshake message to Responder KEF

3.b. Finish handshake

3.a.i Generate first

handshake message

including supported

KEF+PSF crypto algs

3.a.ii Serialize

handshake in

envelope

3.a.iv Extract

handshake

from envelope

3.b.iv Transform

handshake «

envelope

3.b.iv Transform

handshake «

envelope

3.a.v Process first

handshake message

including selected

KEF+PSF crypto algs

2. Trigger to start ESF-

Sm security session

3.a.iii Security Layer does not

address transport of envelope

3.b.v Security Layer does not

address transport of envelope

1.a (o) Long-term Source EEP Params.

(E.g. KEF AlgSets, PSF AlgSets, certs

1.a (o) Long term Target EEP Params.

(E.g KEF AlgSets, PSF AlgSets, certs)

handshake

msg 1

handshake

msg 1

handshake

msg 2,...

handshake

msg 2,...

3.c

sec. session keys,

PSF crypto algs

3.b.iii (o) Retrieve Responder EEP Parameters

Figure 6.2.4.2-1 ESF-Sm handshake phase message flow
ESF-Sm handshake message flow:
1. Preparatory Interaction with Facilitators. EEPs can interacting with Facilitators to provide the Facilitators with long-term parameters (that is, parameters with long lifetime, such as certificates) to minimize communication burden on the EEPs. This interaction is expected to happen relatively infrequently – possibly only once in the lifetime of the EEP. The Facilitator(s) store the parameters and make them available for retrieval.

Editor’s note: access to the parameters may be controlled
This step is not expected to be mandatory.
2. Trigger. The Initiator KEF is triggered to start an ESF-Sm handshake. This could occur when the Initiator EEP receives a first input data for sending to the Responder EEP. Other options are also possible – these may be discussed in clause 8 “Description and Analysis of Available Options”.

3. Handshake
a. First Handshake Message. The Initiator KEF sends handshake message 1 to the Responder KEF. The following steps occur
i. The Initiator KEF generates the first handshake message. Among other parameters, this message includes a list of the supported combinations of KEF cryptographic algorithms and PSF cryptographic algorithms. The Initiator KEF passes handshake message 1to the Initiator EF.

ii. The Initiator EF transforms the handshake message 1 into an envelope.

iii. The envelope is obtained by the Responder EEP. The Security Layer does not address how the Target EEP obtains the envelope.

iv. The Responder EF transforms the envelope back into the handshake message 1. The Responder EF passes handshake message 1to the Responder KEF.
v. The Responder KEF processes handshake message 1, which includes selecting a combination of KEF cryptographic algorithms and PSF cryptographic algorithms for use in this security session.

b. Finish Handshake: The Responder KEF responds to the Initiate KEF with handshake message 2 and the two KEFs continue the handshake exchange to its conclusion. Each handshake message includes the following details. This list is not ordered according to the sequence of events. This list is ordered only for the purpose of correlating text to the figure.
i. Responder KEF: authenticates itself (proves its identity) to the Initiator KEF; establishes session keys with the Initiator KEF; and optionally verifies the identity of the Initiator EEP.

ii. Initiator KEF: verifies the identity of the Responder EEP; establishes session keys with the Responder KEF; and optionally authenticates itself (proves its identity) to the Responder KEF.

iii. (Optional) Facilitator(s): Initiator KEF and/or Responder KEF could retrieve parameters about the other EEP from Facilitator(s). This could include certificates or symmetric (secret) keys.

iv. Envelope Functions: transform handshake messages into envelopes and back again

v. The envelopes are transported between the EFs. The Security Layer does not address how the envelope is communicated.
c. If the handshake is successfully completed then the Initiator KEY and Responder KEF provides the corresponding PSFs with the security session keys and the selected PSF crypto algorithms.

[image: image3.emf]ESF Security Layer Functions ESF Security Layer Functions

KEF

Facilitator(s)

Source EEP (Initiator or Responder)

PSF ESF KEF PSF ESF IntF PrepF IntF PrepF

Note: Colors used to highlight which entity/

component performs which operations

Target EEP (Responder or Initiator)

4. input payload

5.a Apply ciphersuite to input

payload using security session

keys, producing secured payload

5.b secured

payload

6.a Serialize secured

payload in envelope

8. envelope 6.b envelope

7. Security Layer does not address

transport of envelope

9.a Extract secured

payload from envelope

9.b secured

payload

10.a Apply ciphersuite to input

payload using security session

keys, producing secured payload

10.b input payload

security session keys, PSF crypto

algorithms are obtained from KEF

security session keys, PSF crypto

algorithms are obtained from KEF

Figure 6.2.4.2-2 ESF-Sm payload security phase message flow for a single piece of target data
ESF-Sm payload protection phase message flow. Figure 6.2.4.2-2 “ESF-Sm payload security phase message flow for a single piece of target data” shows the call flow for a single input payload from a Source EEP (which could be the Initiator EEP or Responder EEP) to the Target EEP (which would be the Responder EEP or Initiator EEP respectively). The Source KEF and Target KEF are assumed to have obtained, from the corresponding KEFs, the security session keys and PSF crypto algorithm identifiers. The step numbering continues from the end of the ESF-Sm handshake call flow.
4. The Preparation Function at the Source EEP provides the Security Layer Functions with an input payload (in the figure, the input payload is shown as being passed to the PSF) to be secured as part of the security session. This triggers the resulting call flow.

5. Source PSF Operations
a. Source PSF applies the selected PSF crypto algorithms (obtained from the Source KEF) to the input payload using the security session keys (obtained from the Source KEF), resulting in the secured payload.
b. The Source KEF provides the Source EF with the secured payload.
6. Source EF Operations:
a. The Source EF serializes the secured payload into an envelope.
b. The Source EF provides the envelope to the Source EEP’s Integration Function.
7. The envelope is obtained by the Target EEP. The Security Layer does not address how the Target EEP obtains the envelope.

8. The Target EEP’s Integration Function provides the envelope to the Target EF.
9. Target EF Operations:
a. The Target EF extracts the secured payload from the received envelope.
b. The Target EF provides the Target PSF with the secured payload.
10. Target PSF Operations
a. The Target PSF applies the selected PSF cryptographic algorithms (obtained from the Target KEF) to the secured payload using the security session keys (obtained from the Target KEF), resulting in the input payload.

b. The Target PSF provides the Target EEP’s Preparation Layer with the input payload as part of the security session.
-----------------------End of change 1---

-----------------------Start of change 2---

7.x.4
ESF-Sm Requirements
7.x.4.1
ESF-Sm Macro-Considerations
In addition to the generic considerations in clause 7.x.1.1 “ESF Security Layer Macro-Considerations”, the following ESF-S1-specific macro-considerations: are proposed
· The ESF-Sm security layer shall support a signaling messages including the ability to end an existing ESF-Sm session. An example of such a signaling messages are the alert messages of TLS v1.2 (see RFC 5246 [RFC5246]) and DTLS v1.2 (see RFC 6347 [RFC6347]).
Editor’s note: Members are invited to provide further ESF-S1-specific macro-considerations.
7.x.4.2
ESF-Sm Payload Security Requirements
Proposed ESF-Sm Payload Security Requirements. In addition to the generic requirements in clause 7.x.1.2 “Generic Payload Security Requirements”, the following ESF-Sm-specific Payload Security requirements are proposed:

· Replay detection is shall be supported by ESF-Sm.
Possible ESF-Sm Payload Security Solutions.

Encryption and Integrity protection can be provided by either

· A combination of an encryption algorithm and an independent MIC algorithm.

· An Authenticated Encryption with Associated Data (AEAD) algorithm.

Replay detection can be provided by including a sequence number which is protected by the integrity protection calculation.

All of the above mechanisms are supported by appropriate choices of ciphersuites for TLS v1.2 in RFC 5246 [RFC5246] and DTLS v1.2 in RFC 6347 [RFC6347]. The selection of appropriate ciphersuites is discussed in clause 8 “Description and Analysis of Available Options”.
TLS assumes a reliable transport (such as TCP); consequently, TLS cannot be used in all oneM2M scenarios. DTLS does not assume a reliable transport; consequently, DTLS can be used in all oneM2M scenarios. For this reason, DTLS is preferable to TLS.

There are other security protocols which could provide the functionality required for ESF-Sm Payload Security, however these are not as widely used as TLS and DTLS.

Recommendation: DTLS v1.2 record payload protection is the recommended solution for ESF-Sm Payload Security.
7.x.4.3
ESF-Sm Key Establishment Requirements
Proposed ESF-Sm Key Establishment Requirements. In addition to the generic requirements in clause 7.x.1.3 “Generic ESF Key Establishment Requirements”, the following ESF-Sm-specific Key Establishment requirements are proposed:
· Perfect Forward Secrecy countermeasures (e.g. the ephemeral Diffie-Hellman protocol or ephemeral Elliptic Curve Diffie-Hellman protocol) is required to be supported by ESF-Sm and optional to be used.

· Replay detection of ESF-Sm Key Establishment handshake messages is required to be supported by ESF-Sm Key Establishment and required to be used.
This list is not necessarily exhaustive, and other options could be available. This list is not intended to constrain the options considered for establishing symmetric (secret) keys for use in the EF-Sm Payload Security reference point.

Possible ESF-Sm Key Establishment Solutions. All of the above mechanisms are supported by appropriate choices of ciphersuites for TLS v1.2 (see RFC 5246 [RFC5246]) and DTLS v1.2 (see RFC 6347 [RFC6347]). The selection of appropriate ciphersuites is discussed in clause 8 “Description and Analysis of Available Options”.
TLS assumes a reliable transport (such as TCP); consequently, TLS cannot be used in all oneM2M scenarios. DTLS does not assume a reliable transport; consequently, DTLS can be used in all oneM2M scenarios. For this reason, DTLS is preferable to TLS.

There are other security protocols which could provide the functionality required for ESF-Sm Payload Security, however these are not as widely used as TLS and DTLS.

Recommendation: The DTLS v1.2 handshake is the recommended solution for ESF-Sm key establishment.

7.x.4.4
ESF-Sm-Specific ESF Facilitation Requirements
There are no ESF-Sm-specific requirements proposed in addition to the generic requirements in clause 7.x.1.3 “Generic ESF Facilitation Requirements”.
NOTE: In theory, ESF-Sm could support a Facilitator enabling an faster ESF-S1 key establishment by acting as a repository of the latest provided short-term, non-secret key establishment parameters associated with an ESF End-Point. Such short-term parameters could include
· A short-lifetime secret value – e.g. for use as adding secret entropy to key generation. This options requires trusting the Facilitator to maintain the confidentiality of the value.

· A short-lifetime public key value – e.g. EC-DH public key for adding perfect forward secrecy (PFS).

There is a problem, because the DTLS v1.2 handshake (recommended for ESF-Sm Key Establishment handshake) does not support integrating such parameters into a faster key exchange. If DTLS v1.2 handshake is used, then storing short-term, non-secret key establishment parameters for ESF-Sm Key Establishment provides no value. For this reason, there is no proposal to store short-term, non-secret key establishment parameters for ESF-Sm key establishment.
7.x.4.5
ESF-Sm Envelope Requirements
Solutions providing ESF-Sm Key Establishment and Payload Security. The discussion in previous clauses indicates the following:
· The DTLS v1.2 handshake (see RFC 6347 [RFC6347]) is the preferred existing solution providing the functionality required for ESF-Sm Key Establishment key establishment (see clause 6.2.2.4).
· The DTLS v1.2 record payload protection is the preferred existing solution providing the functionality required for ESF-Sm Payload Security payload security (see clause 6.2.2.3).

Consequently, DTLS v1.2 is a preferable solution for ESF-Sm Key Establishment and ESF-Sm Payload Security.
However, DTLS records are binary data, while resources and primitives use a JSON or XML representation. This prevents using the binary DTLS records directly in a resource or primitive

Proposed ESF-Sm Envelope requirements. In addition to the generic requirements in clause 7.x.1.5 “Generic ESF Envelope Requirements”, the following ESF-Sm-specific Envelope requirements are proposed:

· ESF-Sm Envelope is required to support transporting DTLS records, where these records contain transport

· DTLS handshake messages, providing the ESF-Sm Key Establishment functionality

· DTLS protected payloads, providing the ESF-Sm Payload Security functionality. Since DTLS allows tunneling DTLS handshake messages inside an established DTLS session, the DTLS protected payloads can provide the ESF-Sm Key Establishment functionality.

· ESF-Sm Envelope is required to encode binary DTLS records in an ASCII character space allowed by the values in JSON and XML data elements.

JSON Representations. The generic envelope serialization requirements and the proposed ESF-Sm Envelope requirements could be satisfied by be an envelope which is a JSON element comprised of

· An identifier for the security session type (in this case indicating Sm), and

· A JSON data element containing a base64 encoding [RFC4648] of a DTLS record.
XML Representations. The generic envelope serialization requirements and the proposed ESF-Sm Envelope requirements could be satisfied by be an envelope which is a XML element comprised of

· An identifier for the security session type (in this case indicating Sm), and

· A XML data element containing a base64 encoding [RFC4648] of a DTLS record.
Detailed proposals for JSON serialization and XML serialization are provided in clause 8 “Description and Analysis of Available Options”.
-----------------------End of change 2---

Add the following references to clause 2.2. “Informative references”
-----------------------Start of Changes to References Section -------------

[RFC5246]
IETF RFC 5246: "The Transport Layer Security (TLS) Protocol Version 1.2".

[RFC6347]
IETF RFC 6347: "Datagram Transport Layer Security Version 1.2".
[RFC4648]
IETF RFC 4648: "The Base16, Base32, and Base64 Data Encodings”.
-----------------------End of Changes to References Section ------------
© 2015 oneM2M Partners
 Page 9 (of 9)

[image: image4.png]_1507529618.vsd
KEF

Facilitator(s)

Initiator ESF End-Point

PSF

1.a (o) Long term Target EEP Params. (E.g KEF AlgSets, PSF AlgSets, certs)

Store parameters

3.b.v Security Layer does not address transport of envelope

_1507959354.vsd
Initiating ESF End-Point

Key Establishment Function (KEF)

Responding ESF End-Point

Payload Security Fn. (PSF)

PSF AlgSet, Key(s)

ESF-Sm.e

ESF Security Layer

_1507529328.vsd
KEF

Facilitator(s)

Source EEP (Initiator or Responder)

security session keys, PSF crypto algorithms are obtained from KEF

9.a Extract secured payload from envelope

PSF

4. input payload

5.a Apply ciphersuite to input payload using security session keys, producing secured payload

5.b secured payload

ESF

KEF

6.a Serialize secured payload in envelope

Target EEP (Responder or Initiator)

PSF

ESF

ESF Security Layer Functions

8. envelope

