SEC-2016-0187-Solution_of_Decentralized_Authentication_for_Peer-to-Peer_Communication

	Input Contribution

	Meeting ID*
	SEC #26

	Title:*
	Solution of Decentralized Authentication for Peer-to-Peer Communication

	Source:*
	Jie Shi, Huawei, shi.jie1@huawei.com
Guilin Wang, Huawei, wang.guilin@huawei.com
Yanjiang Yang, Huawei, yang.yanjiang@huawei.com

	Uploaded Date:*
	2016/11/27

	Document(s)

Impacted*
	TR-xxxx Decentralized Authentication

	Intended purpose of

document:*
	 FORMCHECKBOX
 Decision

 Discussion

 Information

 Other <specify>

	Decision requested or recommendation:*
	It is proposed to agree the content in this contribution.

	Template Version:23 February 2015 (Dot not modify)

oneM2M Notice

The document to which this cover statement is attached is submitted to oneM2M. Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.

-----------------------start of change 1---
X
Avaliable Options
X.1 Decentralized Authentication for Peer-to-Peer Communication
X.1.1 The sequence of evens in decentralized authentication

This clause describes an decentralized authentication framework for peer-to-peer communication. The framework enables mutual authentication of two entities (AE or CSE). This framework employs an identity based cryptograph (IBC) credential that has been provisioned into the entities. The provisioning of an IBC credential could be a pre-provisioing or a remote provisioning. The entities authenticate each other by using (D)TLS handshake with PKS ciphersuite.
Figure X.1-1 shows the sequence of evens in this decentralized authentication framework using IBC credential. In the description, “Entity A” and “Entity B” could be a CSE or AE.

[image: image1.emf]A (AE/CSE) B (AE/CSE)

Credential Configuration

(IdA, SkA, MPK) & (IdB, SkB, MPK) are provisioned to A and B respectively

Association Security Handshake: (D)TLS Handshake

1. TLS message: ClientHello with PSK ciphersuite

2. TLS message: ServerHello, Certificate*, ServerKeyExchange,

CertificateRequest*, ServerHelloDone where the psk_identity_hint

in ServerKeyExchange is set to IdB

3. computes K =

KeyGen(IdB, SkA, MPK)

and sets TLS psk

parameter to be K

4. TLS message: Certificate*,ClientKeyExchange,

CertificateVerify*, [ChangeCipherSpec] Finished where the

psk_identityin ClientKeyExchange is set to IdA

5. computes K =

KeyGen(IdA, SkB, MPK)

and sets TLS psk

parameter to be K

6. TLS message: [ChangeCipherSpec], Finished

* Inclusion of these TLS message depends on the selected ciphersuite

Figure X.1-1: The sequence of events in decentralized authentication using IBC credential
Credential Configuration: IBC based credentials (IdA, SkA, MPK) and (IdB, SkB, MPK) are provisioned in entities A and B respectively, where IdA and IdB are the identities of entities A and B, SkA and SkB are the corresponding private keys for IdA and IdB, and the MPK is the master public key. Particular instantiations are introduced in the Section X.1.2.
Association Security Handshake: The entities shall perform an IBC based (D)TLS-PSK handshake to establish a secure session. The details are described as follows, where TLS messages without special description remain.
1. Entity A initiates TLS with B using a TLS_PSK ciphersuite, i.e., Entity A sends a TLS ClientHello message with PSK ciphersuite to entity B.
2. Entity B returns TLS message ServerKeyExchange, in which the psk_identity_hint in ServerKeyExchange is set to IdB.
3. After receiving ServerKeyExchange message, entity A retrieves IdB, computes a key K = KeyGen(IdB, SkA, MPK) and sets TLS psk parameter to be K, which will be used to authenticate entity B. Here, the function KeyGen can be implemented using different techniques, and two particular implementations are described in the following Section X.1.2.
4. Entity A sends TLS message ClientKeyExchange and Finished, where the psk_identity in ClientKeyExchange is set to IdA;

5. After receiving ClientKeyExchange, entity B retrieves IdA, computes a Key K = KeyGen(IdA, SkA, MPK), and sets TLS psk parameter to be K, which will be used to authenticate entity A. Here, the function KeyGen can be implemented using different techniques, and two particular implementations are described in the following Section X.1.2.
6. Entity B sends TLS message Finished to A and completes the TLS-PSK handshake.

X.1.2 Instantiation of IBC based credentials
Two instantiations of IBC based crediatials are introduced below.
Instantiation 1: This instantiation of IBC based credential is adopted from IBC implementation using pairing [IBE] [RFC5091].
Let G1 and G2 be respectively an additive and multiplicative groups of the same order q, which is a large prime. A bilinear map ê: G1 × G1 → G2 is defined as follows.
· Bilinear: ê(aP, bQ) = ê(P, Q)ab for all P, Q in G1 and all a, b in Z (the set of all integers);
· Non-degenerate: ê(P, P) ≠ 1 for a generator P of G1;
· Computability: there exists an efficient algorithm to compute ê;

The bilinear map can be implemented using Weil or Tate pairings.
The master public key is MPK = <q, G1, G2, ê, n, P, Ppub, H1, H2> and master key sk = s in Zq*, where H1:{0,1}*→G1* and H2:G2→{0,1}n are two hash functions, n is the binary length of output of hash function H2, P is a random generator of G1 and Ppub = sP, and s is a random value selected from Zq* (the set of all non-zero residuals of modular q). Given an identity ID, the corresponding secret key is computed as SkID = sH1(ID).
Thus, for entity A and entity B with identities IdA and IdB respectively, their IBC based credentials are (IdA, SkA, MPK) and (IdB, SkB, MPK), respectively, where MPK = <q, G1, G2, ê, n, P, Ppub, H1, H2>, SkA = sH1(IdA), and SkB = sH(IdB)
The key generation function KeyGen is defined as follows.
K = KeyGen(IdB, SkA, MPK) = e(H1(IdB), SkA) = e(H1(IdB), sH1(IdA)) = e(H1(IdA), H1(IdB))s;
K = KeyGen(IdA, SkB, MPK) = e(H1(IdA), SkB) = e(H1(IdA), sH1(IdB)) = e(H1(IdA), H1(IdB))s;
Instantiation 2: This instantiation of IBC based credential is adopted from IBC derived from Schnorr Signature [RFC6507].
Let Fp denote the finite field with p elements, where p is a large prime. The scheme works on an elliptic curve defined over Fp, having a subgroup of prime order q. Let G be a point on the elliptic curve that generates the subgroup of order q. The master private key s is a random secret selected from Zq*, and P is computed by P = sG.
The master public key is MPK = <Fp, q, P, H>, where H is a hash function. Given an identity ID, the corresponding secret key is computed as SkID = (sk, V), in which V = vG for a random v selected from Zq*, and sk = s+vH(G||P||ID||V) mod q;
Thus, for entity A and entity B with identities are IdA and IdB respectively, their IBC based credentials are (IdA, SkA, MPK) and (IdB, SkB, MPK). Here, MPK = < Fp, q, P, H >, SkA = kA, SkB = kB, IdA =(A, VA), and IdB =(B, VB), in which VA = vAG, VB = vBG, kA = s+vAH(G||P||IdA||VA) mod q, kB = s+vBH(G||P||IdB||VB) mod q, vA and vB are two random numbers selected from Zq*
The key generation function KeyGen is defined as follows.
K = KeyGen(IdB, SkA, MPK) = kA(P + HBVB) = (s + vAHA)(sG+HB(vBG)) = (s + vAHA)(s+vBHB)G
K = KeyGen(IdA, SkB, MPK) = kB(P + HAVA) = (s + vBHB)(sG+HA(vAG)) = (s + vAHA)(s+vBHB)G
where HA = H(G||P||IdA||VA) and HB = H(G||P||IdB||VB);
-----------------------End of change 1---
© 2015 oneM2M Partners

Page 1 (of 2)

_1541591464.vsd
A (AE/CSE)

B (AE/CSE)

Credential Configuration

(IdA, SkA, MPK) & (IdB, SkB, MPK) are provisioned to A and B respectively

Association Security Handshake: (D)TLS Handshake

1. TLS message: ClientHello with PSK ciphersuite

2. TLS message: ServerHello, Certificate*, ServerKeyExchange, CertificateRequest*, ServerHelloDone where the psk_identity_hint in ServerKeyExchange is set to IdB

3. computes K = KeyGen(IdB, SkA, MPK) and sets TLS psk parameter to be K

4. TLS message: Certificate*,ClientKeyExchange, CertificateVerify*, [ChangeCipherSpec] Finished where the psk_identity in ClientKeyExchange is set to IdA

5. computes K = KeyGen(IdA, SkB, MPK) and sets TLS psk parameter to be K

6. TLS message: [ChangeCipherSpec], Finished

* Inclusion of these TLS message depends on the selected ciphersuite

