	Doc# SEC-2017-0078-CR_TS-0003_R3_Correction_to_Access_Control_mechanism.doc
Change Request
	[image: image8.png]

	

	CHANGE REQUEST

	Meeting ID:*
	SEC 29

	Source:*
	Wolfgang Granzow, Qualcomm, wgranzow@qti.qualcomm.com
Phil Hawkes, Qualcomm, phawkes@qti.qualcomm.com

	Date:*
	2017-05-25

	Reason for Change/s:*
	Corrections to the access control mechanism

	CR against: Release*
	2

	CR against: WI*
	 FORMCHECKBOX
 Active <Work Item number>

 FORMCHECKBOX
 MNT maintenance / < Work Item number(optional)>
Is this a mirror CR? Yes FORMCHECKBOX
 No FORMCHECKBOX

mirror CR number: SEC-2017-0061R03
 FORMCHECKBOX
 STE Small Technical Enhancements / < Work Item number (optional)>
Only ONE of the above shall be ticked

	CR against: TS/TR*
	TS-0003 v3.2.0

	Clauses *
	7.1

	Type of change: *
	 FORMCHECKBOX
 Editorial change
 FORMCHECKBOX
 Bug Fix or Correction
 Change to existing feature or functionality
 New feature or functionality
Only ONE of the above shall be ticked

	Impacted other TS/TR(s)
	

	Post Freeze checking:*
	This CR contains only essential changes and corrections? YES FORMCHECKBOX
 NO FORMCHECKBOX

This CR may break backwards compatibility with the last approved version of the TS? YES
 NO

	Template Version: January 2017 (Do not modify)

oneM2M Notice

The document to which this cover statement is attached is submitted to oneM2M. Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.

GUIDELINES for Change Requests:

Provide an informative introduction containing the problem(s) being solved, and a summary list of proposals.

Each CR should contain changes related to only one particular issue/problem.
In case of a correction, and the change apply to previous releases, a separate “mirror CR” should be posted at the same time of this CR
Mirror CR: applies only when the text, including clause numbering are exactly the same.

Companion CR: applies when the change means the same but the baselines differ in some way (e.g. clause number).
Follow the principle of completeness, where all changes related to the issue or problem within a deliverable are simultaneously proposed to be made E.g. A change impacting 5 tables should not only include a proposal to change only 3 tables. Includes any changes to references, definitions, and acronyms in the same deliverable.
Follow the drafting rules.
All pictures must be editable.
Check spelling and grammar to the extent practicable.
Use Change bars for modifications.
The change should include the current and surrounding clauses to clearly show where a change is located and to provide technical context of the proposed change. Additions of complete clauses need not show surrounding clauses as long as the proposed clause number clearly shows where the new clause is proposed to be located.
Multiple changes in a single CR shall be clearly separated by horizontal lines with embedded text such as, start of change 1, end of change 1, start of new clause, end of new clause.
When subsequent changes are made to content of a CR, then the accepted version should not show changes over changes. The accepted version of the CR should only show changes relative to the baseline approved text.
Introduction
See SEC-2017-0061R03
-----------------------Start of change 1---
7.1
Access Control Mechanism

7.1.1
General Description

The M2M authorization procedure controls access to resources and services hosted by CSEs and AEs. The authorization procedure requires that the originator of the resource access request message has been identified to the Authentication Function, and originator and receiver are mutually authenticated with each other.

The resource addressed in a request message has an associated accessControlPolicyIDs attribute (either included explicitly as an attribute of the resource addressed in the request message, implied from the parent of the resource, or set fixed by the system, see clause 9.6.1 of oneM2M TS-0001 [1]). The accessControlPolicyIDs attribute contains a list of identifiers of <accessControlPolicy> resources applicable to the resource addressed in the request message.

The overall structure of <accessControlPolicy> resources is described in clause 9.6.2 "Resource Type accessControlPolicy" of oneM2M TS-0001 [1]).

Each of these <accessControlPolicy> resources include privileges and selfPrivileges attributes, which comprise the information, denoted as access control rules in the present document, that is evaluated against the parameters associated with the request message to obtain the access decision.

Figure 7.1.1-1 illustrates the relation between <accessControlPolicy> resource instances (ACP) and the instances of the protected resources, denoted Resource_1 to Resource_N.

[image: image1]
Figure 7.1.1-1: Relation between Resource Instances and Access Control Policies

Access requests to ACP's itself are evaluated against the selfPrivileges attribute of that ACP. Access requests to instances of all other resource types, are evaluated against the privileges attributes of the ACP set associated with the targeted resource.

For requests to <accessControlPolicy> resource type, authorization is granted if the request is evaluated to "Permit" for at least one selfPrivileges attribute. For other resource types, authorization is granted if the request is evaluated to "Permit" for at least one privileges attribute.

The privileges and selfPrivileges defined in the accessControlPolicy resource determine which request originator is allowed to access the resource containing this attribute, for which specific operation (i.e. Create, Retrieve, Update, Delete, etc.) and for which specific context constraints (i.e. constraints regarding access time, originator's IP address and originator's location).

The access control approach specified here conforms to the concept of Attribute Based Access Control (ABAC) as defined in [i.12].

The policies defined in the <accessControlPolicy> resources are enforced by an access control mechanism which employs the authorization logical architecture outlined in clause 6.2.2.

The access control mechanism assembles the information needed to render the access decision which consists of:

· Information included in the resource access request message as defined in clause 7.1.2 (table 7.1.2‑1).
· Contextual information as defined in clause 7.1.2 (table 7.1.2-2).
· Tokens (if any) associated with the resource access request.
· The policies governing the access as defined in clause 7.1.3.

7.1.2
Parameters of the Request message

This clause specifies the parameters of a request message which are evaluated by the access control mechanism.

The data types applicable to these parameters are defined in clause 6.4 of oneM2M TS-0004 [4].

The parameters are listed in table 7.1.2-1.

Table 7.1.2-1: Parameters indicated in the request message

	Parameter
	Description
	Mandatory/ Optional
	Usage in access control mechanism

	To
	URI of target resource
	M
	Selection of accessControlPolicy associated with the target resource

	From
	Identifier representing the originator of the request
	M (Note 1)
	Evaluated against accessControlOriginators in privileges and selfPrivileges attributes

	Role IDs
	Role IDs of the originator
	O
	Evaluated against accessControlOriginators in privileges and selfPrivileges attributes

	Operation
	Requested operation
	M
	Evaluated against accessControlOperations in privileges and selfPrivileges attributes

	Resource Type
	Type of the target resource
	O (Note 2)
	Evaluated against accessControlObjectDetails in privileges attributes. Applicable to Create operations only.

	Filter Criteria
	filterUsage condition tag in Filter criteria
	O
	Differentiation between Retrieve and Discovery operations

	Tokens
	ESData-protected Tokens
	O
	Contains authorization information (e.g. Role-IDs) to be used in the decision for the request

	Token IDs
	tokenIDs or Local-Token-ID
	O
	Identifies Tokens containing authorization information (e.g. Role-IDs) to be used in the decision for the request

	NOTE 1:
From field is Mandatory in all requests except for AE registration procedure where it is optional, as specified in oneM2M TS-0001 [1].
NOTE 2: The resource Type primitive parameter is present in Create request primitives only.

Table 7.1.2-2 lists the context parameters associated with a request message which are evaluated by the access control mechanism. These parameters are not explicitly included in a request message but can be obtained at the receiver and validated against the context policy parameters as given in table 7.1.2-2.

Table 7.1.2-2: Context parameters associated with a request message

	Parameter
	Description
	Usage in access control mechanism

	rq_time
	Time stamp when the request message was received at the hosting CSE. Obtained by the hosting CSE's system time clock.
	Validated against accessControlTimeWindow parameter in an access control rule, see clause 7.1.3

	rq_loc
	Location information about the originator of the request. Obtained over the Mcn reference point.
	Validated against accessControlLocationRegion parameter in an access control rule, see clause 7.1.3

	rq_ip
	IP source address associated with the IP packets that carry the request message. Obtained over the Mcn reference point.
	Validated against accessControlIpAddress parameter in an access control rule, see clause 7.1.3

Tokens, as defined in clause 7.3.3.1 "Token Structure", may be associated with a request message. A Token may be associated with a request as a result of being included in the Tokens primitive parameter of the request message or identified in the Token IDs primitive parameter of the request message. If the Hosting CSE obtained a token from the Dynamic Authorization System (DAS) Server using Direct Dynamic Authorization, then this Token shall be associated with a request if the holder parameter in the Token matches the Absolute AE-ID or CSE-ID of the Originator of the request. Dynamic Authorization is specified in clause 7.3.

Table 7.1.2-3 lists the security context parameters associated with a request message.
Table 7.1.2-3: Security Context parameters associated with a request message

	Parameter
	Description
	Mandatory/Optional
	Usage in access control mechanism

	rq_authn
	Boolean value (TRUE/FALSE) indicating if the Originator is considered to have been authenticated by the Hosting CSE, and the From parameter matched the authenticated identity of the Originator.
	M
	Validated against accessControlAuthenticationFlag parameter in an access control rule, see clause 7.1.3

The following criteria shall be applied to determine if an Originator is considered to have been authenticated by the Hosting CSE.

· If the Originator is an AE registered to the Hosting CSE, then the criteria for deciding whether the Originator is considered authenticated is deployment and/or implementation specific and depends on the trust guaranteed by the field device’s physical and logical embodyment bearing the AE(s) and Hosting CSE (e.g. secure boot and tamper resistance). In many cases it is appropriate to expect a secure channel implying authentication (e.g. a TLS or DTLS session) to be used to protect primitives on the Mca interface, in which case the authentication shall be considered valid for the duration of the TLS session,. When this is not the case, e.g. because the physical and logical design is trusted, authentication may be considered to be permanently valid unless it is detected that the device is compromised.
· If the Originator is a CSE registered with the Hosting CSE, then the Originator shall be considered authenticated for the duration of a (D)TLS session because the Mcc is always required to be protected by TLS or DTLS according to a Security Association Establishment Framework (SAEF) as described in clause 8.2. The other CSE may be the Registrar or Registree with respect to the Hosting CSE.
· If the Originator is an AE or CSE registered with a CSE other than the Hosting CSE, then the Originator is considered authenticated by the Hosting CSE if and only if the request primitive is protected using End-to-End Security of Primitives (ESPrim) as described in clause 8.4.
7.1.3
Format of privileges and selfPrivileges Attributes

The privileges and selfPrivileges attributes exhibit the same data type format which is specified as follows.

Each privileges or selfPrivileges attribute comprises a set of access control rules. In the following, the set of access control rules is denoted as acrs and an individual access control rule in this set as acr. The access control rules in acrs are indexed with the letter k. The number of access control rules in the set is denoted with the letter K:

acrs = { acr(1), acr(2), ..., acr(k), ..., acr(K) }

Each access control rule acr(k) is comprised of three type of components, denoted accessControlOriginators, accessControlOperations and accessControlContexts. The accessControlContext component is an optional parameter.

Hence, an access control rule acr(k) is either represented as a pair:

acr(k) = {acr(k)_accessControlOriginators, acr(k)_accessControlOperations}

or as a 3-tuple:

acr(k) = {acr(k)_accessControlOriginators, acr(k)_accessControlOperations, acr(k)_accessControlContexts}

The generic term "access-control-rule-tuple" is used when referring to a rule acr(k).

A set acrs of access control rules may consist of a mix of pairs and 3-tuples. For pairs, any context parameters associated with a request message are admissible.

The three component parameters of an access-control-rule-tuple supported in the present document are shown in table 7.1.3-1.

Table 7.1.3-1: Parameters of an access-control-rule-tuple

	Parameter
	Usage Description
	Mandatory/Optional
	Format

	accessControlOriginators
	Set of Originators that can be authorized
	M
	List of CSE-IDs and/or AE‑IDs, or keyword "all" to grant access to all originators

	accessControlOperations
	Set of Operations that can be authorized
	M
	Enumerated list of operations Create Retrieve, Update, Delete, Discover, Notify

	accessControlContexts
	See table 7.1.3-2
	O
	See table 7.1.3-2

	accessControlObjectDetails
	See table 7.1.3-3
	O
	See table 7.1.3-3

	accessControlAuthenticationFlag
	Indicates whether the rule applies only to Originators which are considered to be authenticated by the Hosting CSE
	O
	Boolean

The accessControlOriginators parameter comprises a list of SP domain names, CSE-IDs, AE-IDs, resource-IDs of <group> resources and/or Role IDs of any format defined in oneM2M TS‑0001 [1]. If access for all originators is to be allowed, the reserved keyword “all” may be included into the value space of accessControlOriginators.
Using a SP domain name in accessControlOriginators means all AE-IDs and CSE-IDs matching the given domain name can be authorized.
It is furthermore allowed to use wildcard character "*", in representations of CSE-ID and AE‑ID. The scope of a “*” is terminated by a following “/” character. Table 7.1.3-2 shows examples of using wildcard characters in CSE-IDs and AE-IDs.

Wildcard characters are not applicable to SP domain names, resource-IDs of <group> resources and Role IDs.
Table 7.1.3-3: Examples of using wildcard characters in CSE-IDs and AE-IDs of accessControlOriginators
	
	Form of ID
	Examples
	Meaning

	CSE-ID
	Absolute
	//m2msp.org/myCSEID
//*/myCSEID
//*/myCSE*
	Any CSE whose ID matches the wild cards

	
	SP-relative
	/myCSEID
/myCSE*
	Any matching CSE from the SP that is hosting the target resource

	AE-ID
	Absolute
	//m2msp.org/S988
//*/myCSEID/C9886
//*/myCSE*/C9886
	Any AE whose ID matches the wild cards

	
	SP-relative
	/myCSEID/C9886
/myCSEID/C98*
/myCSE*/C98*
/SmyAE*
	Any matching AE from the SP that is hosting the target resource

The data type applicable to accessControlOriginators is defined in oneM2M TS-0004 [4].

The accessControlOperations parameter comprises a list of admissible operations which can be any subset of the following elements: Create, Retrieve, Update, Delete, Discover, and Notify. While Create, Retrieve, Update, Delete, and Notify operation are explicitly indicated in the op parameter of a request message, the Discovery operation is indicated by op = Retrieve in combination with the provisioning of fc and Disrestype parameters in the request message.

The data type applicable to accessControlOperations is defined in oneM2M TS-0004 [4].

The accessControlContexts parameters are listed in table 7.1.3-2.

Table 7.1.3-2: Parameters of accessControlContexts

	Parameter
	Usage Description
	Mandatory/Optional
	Formats

	accessControlTimeWindow
	Set of Time Windows that can be authorized
	O
	List of time intervals where access can be granted in extended crontab format

	accessControlLocationRegion
	Set of Location Regions that can be authorized
	O
	1)
Latitude/longitude coordinates, and a radius defining a circular region around the coordinates

2)
Country code

	accessControlIpAddress
	Set of IPv4 and IPv6 addresses that can be authorized
	O
	IPv4: dotted-decimal notation with CIDR suffix

IPv6: colon separated groups of hexadecimal digits with CIDR suffix

The accessControlTimeWindow parameter represents a list of elements that comply with the extended crontab syntax as defined in clause 7.3.8 of oneM2M TS-0004 [4]. It allows definition of periodically recurring time intervals at which access can be granted, when the rq_time parameter associated with the access request message falls into such interval.
For the elements of accessControlLocationRegion there are two representation choices. These can be represented by a 2‑character country code or a circle with radius R centred at a point defined in terms of longitude and latitude parameters. Refer to Annex F for detailed information. Each element of accessControlLocationRegion defines an admissible location region, which is compared with the rq_loc parameter associated with the access request message.

The data types applicable to accessControlLocationRegion and rq_loc are defined in oneM2M TS-0004 [4].

The accessControlIpAddress parameter represents a list of IPv4 and IPv6 addresses in dotted-decimal notation with CIDR suffix or colon separated groups of hexadecimal digits with CIDR suffix, respectively. If the rq_loc parameter associated with the access request message matches one of these addresses, access max be granted with regard to this criterion.

The data types applicable to accessControlIpAddress and rq_ip are defined in oneM2M TS-0004 [4].
The accessControlAuthenticationFlag parameter is a Boolean value. If the accessControlAuthenticationFlag parameter is not present, then the value is assumed to be FALSE. If the accessControlAuthenticationFlag parameter is TRUE, then this indicates that the access control rule applies only to Originators considered to have been authenticated by the Hosting CSE. Clause 7.1.2 specifies the criteria used to decide whether or not the Originator is considered to have been authenticated by the Hosting CSE.

The accessControlObjectDetails parameters are listed in table 7.1.3-3.

Table 7.1.3-3: Parameters of accessControlObjectDetails
	Parameter
	Usage Description
	Mandatory/Optional
	Formats

	resourceType
	Resource type on which access control rule applies
	O
	Resource type identifier

	specializationID
	Identifier of mgmtDefinition or containerDefinition
	O
	mgmtDefinition or containerDefinition represented as a string.

	childResourceType
	Set of resource type identifiers that can be created under the parent resource.
	O
	Resource type list.

The accessControlObjectDetails attribute specifies a subset of child resource types of the targeted resource to which the access control rule applies. If an access control rule includes accessControlObjectDetails, then childResourceType is specified. An access control rule which does not include any accessControlObjectDetails parameters applies to all child resource types of the target resource. The accessControlObjectDetails parameter is described in table 9.6.2.4-1 of oneM2M TS‑0001 [1]. Child resource types listed in the childResourceType component are subject of access control for the Create operation only. Once a child resource is created, the Access Control Policies assigned directly to it apply. The resourceType and specializationID elements are optional. If either the resourceType or specializationID element is present in accessControlObjectDetails, the CSE matches the type of resource or specialization of the targeted resource with the value specified in the resourceType or specializationID element. Further checking of childResourceType is done only if the resourceType or specializationID match occurs. However, if the resourceType and specializationID elements are not provided, then only childResourceType match is performed.
7.1.4
Access Control Decision

The access decision is derived by comparing the parameters associated with a resource access request message as described in clause 7.1.2 with the access control rules included in the privileges or selfPrivileges attributes of all ACP sets assigned to the protected resource by means of the accessControlPolicyIDs, see figure 7.1.1-1.

The result of the access decision algorithm, i.e. the access decision, is the overall result of evaluating the applicable set of access control rules, acrs, against the parameters associated with the access request message. This access decision can be represented by a value of binary data type. The overall result of the access decision algorithm is denoted here with the variable name res_acrs:

[image: image2.wmf]î

í

ì

=

else

0

or

FALSE

rules

control

access

 the

matches

request

 the

if

1

or

TRUE

res_acrs

The reference access decision algorithm is specified in clause 7.1.5. For any given sets of inputs, an implementation of the access decision processing shall return the same result as the reference access decision algorithm would return for those inputs.
If the access decision algorithm yields the result res_acrs = TRUE, then the access decision for the requested resource shall be "Permit".

If the access decision algorithm yields the result res_acrs = FALSE, or the access decision algorithm is not capable of deriving a final result (e.g. due to indeterminate parameters), then the access decision for the requested resource shall be "Deny".

7.1.5
Description of the Access Decision Algorithm

The reference access decision algorithm specified in this clause combines partial access control results obtained for each of the individual access control rules contained in a privileges or selfPrivileges attribute. Further, if multiple ACP instances are assigned to the protected resource, the reference access decision algorithm combines the partial access control results obtained for the individual ACPs of an ACP set.

The algorithm specified in this clause adopts a "Permit-overrides" combining algorithm with respect to access control rules and ACPs as defined in XACML [i.5]. This algorithm has the following behaviour:

1) If a decision is "Permit" for only a single access control rule included in the privileges (or selfPrivileges) attribute of a single ACP, the result is "Permit".
2) Otherwise, the result is "Deny".

The logic for evaluating a request against a privilege can be described mathematically as follows. A privileges or selfPrivileges attribute included in an <accessControlPolicy> resource represents a set of access control rules, acrs, which is built as in figure 7.1.5-1.

[image: image4.emf]acrs = { acr(1),arc(2), …, arc(k), …, arc(K) }

acr(k) = {acr(k)_accessControlAuthenticationFlag,

acr(k)_accessControlOriginators, acr(k)_accessControlOperations, acr(k)_accessControlContexts, acr(k)_accessControlObjectDetails}

Set of originator parameters. Examples:

{CSE-ID1, AE-ID1, AE-ID2, Role-ID1}

{all}

Set of allowed operations. Examples:

{Create, Retrieve, Update, Delete, Discover, Notify}

{Retrieve, Discover, Notify}

Set (list) of M_k context constraints (number of elements M_k can be different

for each acr(k)):

{acr(k)_accessControlContext(k, 1), …

…, acr(k)_accessControlContext(k, m), …

…, acr(k)_accessControlContext(k, M_k)}

Set of context constraints consisting of the 3 elements:

{accessControlTimeWindow(k, m), accessControlLocationRegion(k,m), accessControlIpAddress(k, m)}

Set of time windows defined by start and end time

Example:

{daily 04:30 –06:00, 11:30 –12:30, 22:15 –00:30}

Set of location regions defined by list of objects

representing geographical regions

Example:

{geoRegion1, geoRegion2, geoRegion3}

Set of IP addresses or address blocks

Example (IPv4):

{212.75.201.105, 88.77.0.0/16, 116.27.123.0/24}

Set of child resource type Ids allowed to be created

under the target resource . Examples:

(a) Target resource type = 3 (container)

Child resource type = {4} (contentInstance)

(b) Target resource type = 2 (AE)

Child resource type = {3 23} (container

and subscription)

Set of child resource type Ids allowed to be created

under the target resource . Examples:

(a) Target resource type = 3 (container)

Child resource type = {4} (contentInstance)

(b) Target resource type = 2 (AE)

Child resource type = {3 23} (container

and subscription)

Figure 7.1.5-1: Logic to evaluate privileges in the reference access decision algorithm
The parameters associated with a request, which are evaluated against the parameters contained in the access control rules are specified in clause 7.1.3.

The access decision res_acrs defined in clause 7.1.4 is derived by evaluating whether or not the parameters associated with the request message listed in tables 7.1.2-1 and 7.1.2-2 match any of the access control rules contained in the access control rule set defined in clause 7.1.3 as follows:

res_acrs = res_acr(1) OR res_acr(2) ... OR res_acr(k) … OR res_acr(K),

where res_acr(k) represents the logical evaluation result (i.e. TRUE/FALSE or 1/0) of the request parameters against the kth access control rule in the set acrs, which can be expressed as follows:

res_acr(k) = res_authn(k) AND res_origs(k) AND res_ops(k) AND res_ctxts(k) AND res_objd(k), k = 1…K.

The first partial logical result variable res_authn(k) on the right side of above equation shall be evaluated according to Table 7.1.5-1:
Table 7.1.5-1: Evaluating res_authn(k)
	acr(k)_accessControlAuthenticationFlag
	rq_authn
	res_authn

	TRUE
	TRUE
	TRUE

	TRUE
	FALSE
	FALSE

	FALSE
	TRUE
	TRUE

	FALSE
	FALSE
	TRUE

The remaining 4 partial logical result variables on the right side of above equation can be defined by using the following set function:

[image: image5.wmf]î

í

ì

Î

=

else

0

or

FALSE

setX

if

1

or

TRUE

setX)

,

ismember(

x

x

With this definition:

res_origs(k) = ismember(Originator, acr(k)_accessControlOriginators)

res_ops(k) = ismember(Operation, acr(k)_ accessControlOperations)

In the above equation, the Originator variable refers to the authenticated identity of the originator of the request primitive which matches the From parameter.
The third partial logical result res_ctxts(k) is derived as follows:

res_ctxts(k) = res_context(k, 1) ... OR res_context(k, m) ... OR res_context(k, M_k),

where:

res_context(k, m) = res_time(k, m) AND res_ip(k, m) AND res_loc (k, m), k = 1…K, m = 1…M_k
and

res_time(k, m) = ismember(rq_time, acr(k)_accessControlTimeWindow(m))

res_ip(k, m) = ismember(rq_ip, acr(k)_accessControlIpAddress(m))

res_loc (k, m) = ismember(rq_loc, acr(k)_accessControlLocationRegion(m))
The fourth partial logical result res_objd(k) applies to Create request primitives only and is derived as

res_ objd(k) = res_ objdetails(k, 1) ... OR res_ objdetails(k, m) ... OR res_ objdetails(k, M_k),

where:
res_ objdetails(k, m) = res_resourceType(k, m) AND res_specializationID(k, m) AND res_childResource(k,m),
for m = 1…M_k. The three logical arguments are defined below.
For each given element acr(k)_accessControlObjectDetails(m) in an access control rule determine if the optional resourceType parameter is present
 resourceType = acr(k)_accessControlObjectDetails(m)/resourceType
Depending on the presence of resourceType, res_resourceType(k, m) is derived as

[image: image6.wmf]ï

î

ï

í

ì

¹

=

=

urceTypeID

targetReso

pe

resourceTy

urceTypeID

targetReso

pe

resourceTy

m

k

acr

m

k

ceType

res_resour

and

present

if

0,

or

FALSE

and

present

if

1,

or

TRUE

)

tDetails(

ntrolObjec

)_accessCo

(

in

present

not

if

1,

or

TRUE

)

,

(

where targetResourceTypeID is the resource type identifier associated with the resource addressed in the To parameter of the Create request primitive.
If the value of the resourceType element is 13 (<mgmtObject> specialization) or 28 (<flexContainer> specialization>), the optional specializationID element shall also be included in accessControlObjectDetails:
 specializationID = acr(k)_accessControlObjectDetails(m)/specializationID
If specializationID is present, it shall be matched against the mgmtDefinition or containerDefinition attributes given in the Content parameter of the Create request primitive.

[image: image7.wmf]ï

ï

ï

î

ï

ï

ï

í

ì

=

¹

=

¹

=

=

=

=

=

28)

(

0,

or

FALSE

13)

(

0,

or

FALSE

28)

(

1,

or

TRUE

13)

(

1,

or

TRUE

)

tDetails(

ntrolObjec

)_accessCo

(

in

present

not

if

1,

or

TRUE

)

.

(

pe

resourceTy

efinition

containerD

tionID

specializa

pe

resourceTy

tion

mgmtDefini

tionID

specializa

pe

resourceTy

efinition

containerD

tionID

specializa

pe

resourceTy

tion

mgmtDefini

tionID

specializa

m

k

acr

tionID

specializa

m

k

lizationID

res_specia

The childResourceType element is mandatory in any given accessControlObjectDetails element of an access control rule. It includes a list of j = 1…J child resource type identifiers to which the rule applies. The jth list element is denoted as follows
 childResourceType(k, m. j) = acr(k)_accessControlObjectDetails(m)/childResourceType(j), j = 1…J
The logical variable res_childResource(k, m) is derived as

res_ childResource (k, m) = ismember(Resource Type, childResourceType(k, m, j))
where Resource Type refers to the value of the parameter of the given Create request primitive.
NOTE: If resourceType and specializationID are not present in acr(k)_accessControlObjectDetails(m), res_ objdetails(k, m) = res_resourceType(k, m) AND res_specializationID(k, m) AND res_childResource(k,m) = res_childResource(k,m)
Thanks to the "Permit-overrides" combining approach, if the access control decision for one access control rule results in res_acr = TRUE, the reference access decision algorithm can stop without evaluating any other applicable access control rules of the current ACP or any other ACPs in the ACP set, and the final access decision is "Permit".
-----------------------End of change 1---

CHECK LIST

· Does this Change Request include an informative introduction containing the problem(s) being solved, and a summary list of proposals.?
· Does this CR contain changes related to only one particular issue/problem?
· Have any mirror CRs been posted?
· Does this Change Request make all the changes necessary to address the issue or problem? E.g. A change impacting 5 tables should not include a proposal to change only 3 tables?Does this Change Request follow the drafting rules?
· Are all pictures editable?
· Have you checked the spelling and grammar?
· Have you used change bars for all modifications?
· Does the change include the current and surrounding clauses to clearly show where a change is located and to provide technical context of the proposed change? (Additions of complete clauses need not show surrounding clauses as long as the proposed clause number clearly shows where the new clause is proposed to be located.)
· Are multiple changes in this CR clearly separated by horizontal lines with embedded text such as, start of change 1, end of change 1, start of new clause, end of new clause.?
Resource_2

...

ACP_1

ACP_2

ACP_3

ACP_4

Instances of

accessControlPolicy

resources (ACP)

Example:

ACP set = (ACP_1, ACP_2)

assigned to Resource_1

Each ACP includes one privileges and one selfPrivileges attribute.

privileges and selfPrivileges attributes include a set of access control rules (defined in Section 7.3)

List of IDs in accessControlPolicyIDs

attribute of Resource_1

Resource_1

Resource_3

Resource_N

© 2017 oneM2M Partners
 Page 11 (of 14)

[image: image8.png]_1555760984.vsd
Set of originator parameters. Examples:
{CSE-ID1, AE-ID1, AE-ID2, Role-ID1}
{all}

acrs = { acr(1), arc(2), …, arc(k), …, arc(K) }

_1555955649.unknown

_1555958277.vsd
Set of originator parameters. Examples:
{CSE-ID1, AE-ID1, AE-ID2, Role-ID1}
{all}

Set of child resource type Ids allowed to be created under the target resource . Examples:
(a) Target resource type = 3 (container)
 Child resource type = {4} (contentInstance)
(b) Target resource type = 2 (AE)
 Child resource type = {3 23} (container
 and subscription)

_1556936743.unknown

_1555760985.unknown

_1555760983.unknown

