	
	

	[image: image6.png]Uncontrolled Function

loT Devices
[~

/

Secure identity validation of
registered loT application

AppID Meta Data
e loT verification

— Device application identity
— Data definition model

— Data privacy policy

| | | | | | . .
N Controlled __ Contracted * loT Authentication
38k g
% poer loT % Q 15 loT — Trusted Root CA (Certificate host)
i .) =) -
Devices Devices + IoT Authorization

— Access control Policies

— Data Privacy controls

	oneM2M

Technical Report

	Document Number
	TR-0048-V0.0.2

	Document Name:
	oneM2M App-ID Registry Function

	Date:
	2017-Oct-11

	Abstract:
	Technical Report of oneM2M End to App-ID Registry Function to support the oneM2M security and enrolment procedures.

This Specification is provided for future development work within oneM2M only. The Partners accept no liability for any use of this Specification.

The present document has not been subject to any approval process by the oneM2M Partners Type 1. Published oneM2M specifications and reports for implementation should be obtained via the oneM2M Partners' Publications Offices.
About oneM2M

The purpose and goal of oneM2M is to develop technical specifications which address the need for a common M2M Service Layer that can be readily embedded within various hardware and software, and relied upon to connect the myriad of devices in the field with M2M application servers worldwide.

More information about oneM2M may be found at: http//www.oneM2M.org

Copyright Notification

No part of this document may be reproduced, in an electronic retrieval system or otherwise, except as authorized by written permission.

The copyright and the foregoing restriction extend to reproduction in all media.

© 2016, oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC).

All rights reserved.

Notice of Disclaimer & Limitation of Liability

The information provided in this document is directed solely to professionals who have the appropriate degree of experience to understand and interpret its contents in accordance with generally accepted engineering or other professional standards and applicable regulations. No recommendation as to products or vendors is made or should be implied.

NO REPRESENTATION OR WARRANTY IS MADE THAT THE INFORMATION IS TECHNICALLY ACCURATE OR SUFFICIENT OR CONFORMS TO ANY STATUTE, GOVERNMENTAL RULE OR REGULATION, AND FURTHER, NO REPRESENTATION OR WARRANTY IS MADE OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR AGAINST INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS. NO oneM2M PARTNER TYPE 1 SHALL BE LIABLE, BEYOND THE AMOUNT OF ANY SUM RECEIVED IN PAYMENT BY THAT PARTNER FOR THIS DOCUMENT, WITH RESPECT TO ANY CLAIM, AND IN NO EVENT SHALL oneM2M BE LIABLE FOR LOST PROFITS OR OTHER INCIDENTAL OR CONSEQUENTIAL DAMAGES. oneM2M EXPRESSLY ADVISES ANY AND ALL USE OF OR RELIANCE UPON THIS INFORMATION PROVIDED IN THIS DOCUMENT IS AT THE RISK OF THE USER.

Contents

3Contents

1
Scope
6
2
References
6
2.1
Normative references
6
2.2
Informative references
6
3
Definitions, symbols, abbreviations and acronyms
8
3.1
Definitions
8
3.2
Symbols
8
3.3
Abbreviations
8
3.4
Acronyms
8
4
Conventions
8
5
Use Cases
9
5.1
Use Case of 1
9
5.1.1
Description
9
5.1.2
Actors
9
5.1.3
Pre-conditions
9
5.1.4
Normal Flow
9
5.1.5
Potential requirements
9
5.2
Use Case 2
9
5.1.1
Description
9
5.1.2
Actors
9
5.1.3
Pre-conditions
9
5.1.4
Normal Flow
9
5.1.5
Potential requirements
9
6
Candidate Architecture
10
6.1
Architecture Proposal For functionality A
10
6.1.1
Functionality A Requirements
10
6.1.2
Architecture
10
6.1.1.1
Nodes
10
6.1.1.2
Reference Points
10
6.1
Architecture Proposal For functionality B
10
6.1.1
Functionality B Requirements
10
6.1.2
Architecture
10
6.1.1.1
Nodes
10
6.1.1.2
Reference Points
10
7
Available Options
11
7.1
Review of Existing Technologies for use in the functionality
11
7.1.1
Review of Existing Technology N
11
7.2
A Solution for providing Functionality A
11
8
Release X Function Rationale
11
8.1
Overview of Release X Features
11
8.2
Release X Function
11
8.2.1
X Function Overview
11
8.2.2
X Functional Architecture
11
9
Conclusions and recommendations
11
Annex A: Problem Statement for needing App-ID Registry Function
12
A.1
Introduction
12
History
12

1
Scope

The present document provides options and analyses for an App-ID registry Function to support oneM2M enrolment and security features, supporting mechanisms to provide end-to-end security for oneM2M.

The scope of this technical report includes use cases, threat analyses, high level architecture, generic requirements, available options, evaluation of options, and detailed procedures for an App-ID Registry Function within the oneM2M security authentication and enrolment procedures.
This technical report will provide use case scenarios for how the App-ID registry can be used as an integral component of the oneM2M system architecture providing App-ID registry based functions / services.
1.1 Introduction

In today’s rapidly growing IoT environment, authenticity and data security problems are rampant and pose great challenges. These include unsecured supply chains for IoT devices, no mechanism to manage unknown IoT devices, as well as BYOD (Bring Your Own Device) consumer IoT services that enable connections of devices outside of direct control of the IoT platform or service providers.

Though IoT devices can support a wide range of security mechanisms, including X.509 Certs, pre-shared keys, raw public keys, many solutions use no security at all. From toasters to baby monitors, IoT devices have shown vulnerability to cyberattacks.

Furthermore, in the current environment, IoT security is highly fragmented and characterized by vertical standards, proprietary technical implementations and weak security that creates silos and restricts interoperability. As such, a reliable mechanism to validate identity integrity for a connecting IoT application is critical to securing IoT services and the resulting trust that interoperability depends upon.

For many IoT applications that support critical infrastructures such as healthcare, the smart city and emergency services, device compromise can be a significant concern, with potentially catastrophic consequences.

App-ID Registry

The App-ID Registry enables applications to identify themselves in a consistent, standards-based way to the oneM2M service layer. It provides a guaranteed means for uniquely identifying each oneM2M application and device. This enables any IoT application from any developer to communicate and share data with any IoT device. In addition, it offers trusted identity and authentication of IoT application data.

It is particularly valuable for organizations that do not operate within the same networks or platforms and which could not easily communicate with one another. The App-ID Registry helps to bridge these silos enabling a much broader addressable market opportunity for application developers, device maker, and service providers.

For example, a smart city will likely use multiple suppliers for its IoT devices and applications as well as support multiple users of this data. It could also support “visiting devices” from tourists and business travellers, making it very difficult for these devices to securely communicate. Data interoperability is critical for successful implementation of many smart city solutions – such as transportation, public safety, event management and government services, as a few examples.

Another example where interoperability is critical to success is the smart home. Many companies engaging in this space only develop products and applications for one or two device categories – such as smart locks or lighting controls. For service providers to offer a complete smart-home solution, it will be necessary for multiple solutions to work together seamlessly. Partnering becomes much easier once developers open up their interfaces and use the App-ID Registry to gain visibility in the smart-home ecosystem.

The App-ID Registry offers numerous benefits across the entire IoT ecosystem.

For device and application vendors, the Registry provides the ability for IoT devices to be uniquely identified and authenticated so as to be broadly adopted by any IoT service provider, increasing the addressable market opportunity. The App-ID registry provides metadata regarding the characterization of the IoT device and the format of the data it produces, thus interoperable for integration with any appropriate application. All this enable applications to be compatible with a greater range of devices, thereby improving cost effectiveness, while enhancing the rate of innovation. Finally, certification increases buyer confidence and brand value

· For IoT platform and system integrators, the App-ID Registry helps to streamline the onboarding process and allows integration with broader range of IoT devices, while reducing the cost of ongoing management.

· For IoT network operators and service providers, the App-ID Registry encourages open yet trusted access which results in broader adoption for a larger range of IoT devices and their data to enable more innovation and the resulting revenue possibilities.

· For consumers and other end users, the App-ID Registry makes it easier to participate in services in an IoT BYOD environment, and ensures privacy controls over data use.

[image: image2]
As the number of devices, applications and developers in the IoT market continues to grow, the App-ID Registry ensures that IoT devices and their applications are both unique and discoverable with levels of trust that enable all this to be managed at scale.

For the IoT industry, the App-ID Registry lowers the cost of implementation, integration and ongoing management of IoT applications and devices; and enables a broader inclusion for IoT device manufacturers and consumers Perhaps most importantly, the Registry ensures that IoT applications and the data they produce can be trusted, limiting IoT security vulnerabilities and maximizing service innovation through increased interoperability that is also secure.

2
References

References are either specific (identified by date of publication and/or edition number or version number) or non‑specific. For specific references, only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.

2.1
Normative references

The following referenced documents are necessary for the application of the present document.

Not applicable.
2.2
Informative references

The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.

[i.1]
oneM2M TR-0004 Definitions and Acronyms

[i.2]
W3C Recommendation “Canonical XML Version 1.0”, 2001, http://www.w3.org/TR/xml-c14n

[i.3]
IETF RFC 7165: “Use Cases and Requirements for JSON Object Signing and Encryption (JOSE)”

[i.4]
IETF RFC 5166: “An Interface and Algorithms for Authenticated Encryption”, 2008

[i.5]
oneM2M drafting rules (draft)
[i.6]
oneM2M TS-0001 Functional Architecture

[i.7]
oneM2M TS-0002 Requirements
[i.8]
oneM2M TS-0003 Security Solutions

[i.9]
oneM2M TS-0004 Service Layer Core Protocol Specification

3
Definitions, symbols, abbreviations and acronyms

3.1
Definitions

For the purposes of the present document, the terms and definitions given in [i.1] and the following apply:
NOTE:
This may contain additional information.

3.2
Symbols

For the purposes of the present document, the [following] symbols [given in ... and the following] apply:

||
Concatenation
3.3
Abbreviations

For the purposes of the present document, the [following] abbreviations [given in ... and the following] apply:

TBD
3.4
Acronyms

For the purposes of the present document, the abbreviations [i.1] apply:
TBD
4
Conventions
The key words “Shall”, ”Shall not”, “May”, ”Need not”, “Should”, ”Should not” in this document are to be interpreted as described in the oneM2M Drafting Rules [i.5]

5
Use Cases

5.1
Use Case of 1: Verify IoT Application identity and integrity
IoT applications can enter into the supply chain via many routes. With the best intentions it is not possible to 100% secure the control of the supply chain though manufacturers, distributors, resellers, 3rd party contractors and consumers.

Many IoT service are required to provide open access for unknown IoT applications to connect, for example smart homes, cities, healthcare. The economies of these services are built upon consumers and businesses being able to acquire their own IoT applications and connect them with these smart communities.

Even when IoT systems are vertically integrated, such as industrial controls, factories, utilities etc, the IoT service provider will find it difficult to control the supply chain and cannot guarantee 100% that all the IoT applications are authentic.

Where this happens at scale for example 1000’s IoT sensors with an industrial deployment or a smart city needing to authenticate various brands makes and models of connected vehicles. Scale exacerbates the problem for supply chain controls.

Using App-ID Registry Function to provide IoT identity and integrity checking.

A Service provider Infrastructure can verify the identity of a connecting IoT application by connecting with the App-ID Registry Function. A SP is able to query the App-ID Registry Function if the App-ID is registered and if so collect the metadata for a presented IoT application’s (AE-ID/App-ID). The App-ID metadata can contain information to enable the SP to verify if the connecting IoT application. The App-ID metadata can contain the following attributes to allow the SP be informed to make decisions how to allow the IoT application connect, if at all :-

· IoT application Type: Information regarding the type of application, for example thermostat, vehicle telemetry, or fan control.

· IoT application Class: Details for the class of use: consumer, industrial, or critical infrastructure. These class type will have a bearing on how the data and security of the IoT application is enrolled onto the SP.

· Security capability: The security capabilities of the IoT application. This will indicate the security capabilities of the IoT application, authentication, as well as the ability for the IoT application to secure a private key in a trust enclave.

· Authentication type: The mechanism is used to authenticate the IoT Application. For example, if using a PKI certificate, who is the root of trust.

· Communications class: The profile for the data generated by the application. For example, streamed data, periodic burst of data, or intermittent bursts of data.

· Data Model: The data definition for the application, what is projected, and the actions that can be performed. The application data model and mapping to oneM2M ontology.

· Data privacy: The data privacy asserted for this App-ID. The generic data privacy model for the application identity. For example, the IoT application is a blood pressure monitor and the data can only be provided to the client’s electronic health record. The data cannot be shared, data mined, or resold by the IoT service provider

Using the App-ID metadata provided by the App-ID Registry Function, the SP can verify the identity and authenticity of the connecting IoT application. Also it can assign the right resources for the connecting IoT application

This functionality will allow any registered App-ID to provide an application profile in form of metadata that can be used by a SP to identify and verify that the connecting IoT application is representing itself consistently with the characterization presented by the metadata.

The role of the App-ID Registry Function is not to enforce the policy of the SP, but for the SP to be informed through the App-ID metadata profile to automate the authentication and enrolment process.
5.2
Use Case 2: Allow Certified IoT applications

5.2.1
Description
Some specific IoT services rely strictly on industry certification for the use of any IoT application. The IoT application not only needs to be fit for purpose, but must comply with specific industry regulation, technical specification, consumer rights and industry specific security policies. For example a power station may require strict environmental and security compliance for its use

To this end, test and certification bodies provide services to ensure that an IoT application are conformant with the appropriate specifications for compliance.

Today a Service Provider has no context of an unknown IoT application being compliant with any specific certifications or not. I.e. is a heart rate monitor or blood pressure monitor certified and should the data be allowed to be passed into the client’s health record. The consequence of such could be damaging not only to the patient, the credibility of the health care provider and IoT service provider

Using App-ID Registry Function to verify the IoT application is certified for use.

The service provider infrastructure can verify the identity of a connecting IoT application is certified for use and fit for purpose, with the App-ID Registry Function. The SP is able to query the App-ID Registry Function if the App-ID is registered and if so collect the metadata for a presented IoT application’s (AE-ID/App-ID). The App-ID metadata can contain information to enable the SP to verify if the connecting IoT application is certified for the specific use. The App-ID metadata can contain the following attributes to allow the SP be informed regarding the certification status and to make decisions how to allow the IoT application connect, if at all :-

· Certification body: the test and certification body that has verified the App-ID capability and the metadata profile.

· Certification compliance: List of the compliance functionality that is certified by the certification body. Not all features of the certification process may be compatible with the IoT application. It is possible only a sub set of features are compliant with the certification process.

Using the App-ID metadata provided by the App-ID Registry Function, the SP infrastructure can verify the App-ID certification compliance of the connecting IoT application and if it should be allowed to connect and provide data for the IoT service.

The role of the App-ID Registry Function is not to enforce the policy of the SP infrastructure, but for the SP infrastructure to be informed through the App-ID metadata profile to automate the authentication and enrolment process.
5.3
Use Case 3: Registration Enrolment using the App-ID Metadata
5.3.1
Description
Where the connecting IoT application (AE-ID/App-ID) is unknown to the oneM2M system, the administrator of the system, must configure the IoT application identity service subscription rule <serviceSubscribedAppRule> to allow the IoT application to connect with the Service Provider infrastructure and provide its data.

The <serviceSubscribedAppRule> resource represents a rule that defines allowed Role-ID, App-ID and AE-ID combinations that are acceptable for registering an AE on a service provider’s infrastructure.

[image: image3.png]<serviceSubscribedAppRule>

~ N
7applicableCredlD

allowedAppIDs

allowedAEs

allowedRolelDs

0.n <subscription> /

Figure 5.x.1-1: Service Subscription App Rule
The rule contained in a <serviceSubscribedAppRule> resource defines a mapping between:

a) one or more Credential-ID(s); and

b) combinations of one or more Role-ID(s), one or more App-ID(s) and one or more AE-ID(s) which are allowed to be used for registering AE(s) that issued a registration request via a Security Association established with the credentials associated with the Credential-ID(s)

Today if the Service Provider has no prior knowledge of the IoT application (AE-ID/App-ID) then the IoT application will not authenticate and the administrator would need to manually configure the <serviceSubscribedAppRule>. This presents issues for both scale through mass enrolment and/or enrolment of unknown IoT applications.

Using App-ID Registry Function to auto enroll <serviceSubscribedAppRule>

By connecting with the App-ID Registry Function, the service provider infrastructure can query the metadata for a presented IoT application’s (AE-ID/App-ID) to auto-populate the service subscription.

Where the AE-ID/App-ID are unknown to the SP infrastructure. Using the App-ID Registry Function will enable the <serviceSubscribedAppRule> to be auto-populated from the metadata provided from the App-ID Registry Function.

5.4
Use Case 4: IoT Data model mapping to oneM2M ontology
5.4.1
Description
IoT applications of the same type and functionality may all have different data models to represent their information with the Service Providers infrastructure. For example a light switch from different manufacturers may present one/off as 1/0 (One/Zero) or true/false, or some other representation. oneM2M has implemented an . Although oneM2M has defined data models/ontologies for specific IoT application class types, this may not be followed be the IoT application developer and or could contain proprietary extensions to differentiate itself in the market.

More so when the IoT is not natively oneM2M and is connected via an interworking function. The data representation may not have any representations which matching the defined oneM2M ontology definitions.

Although it is possible to do this in a manual process, it would require prior knowledge of the connecting IoT application type/model and possibly the software version.

Using App-ID Registry Function to automate data model mapping to oneM2M ontologies

By providing App-ID metadata that provides a description of the specific IoT application data model definition which describes the mapping to a compatible oneM2M ontology. Will enable a Service Provider to automate the process for enrolling the IoT application and being able to manage the data it produces or any interactions to control its functionality. The App-ID metadata can provide the following specific information:

· Data Model: The data definition for the application, what is projected, and the actions that can be performed. The application data model and mapping to oneM2M ontology.

· Data privacy: The data privacy asserted for this App-ID. The generic data privacy model for the application identity. For example, the IoT application is a blood pressure monitor and the data can only be provided to the client’s electronic health record. The data cannot be shared, data mined, or resold by the IoT service provider

By connecting with the App-ID Registry Function, a Service Providers infrastructure can query the metadata for a presented IoT application’s (AE-ID/App-ID) and retrieve a data model definition to both verify the data being used and to manage the permissible use.

The benefits to the eco-system are:

– Providing SEMANTIC interoperability

• Annotate M2M data with information, describing e.g.

– Name of the data (this could contain namespace / ontology).

– Relation to other M2M data.

• Abstraction from specific technologies

– Support of Data Brokering / Analytics / Big Data

• Semantic Discovery

– Can be supplemented with additional context information

• Data brokering (advertising available data / finding relevant data)

– Support of Big Data Analytics

5.5
Use Case 5: IoT application Certificate – Trusted Root
5.5.1
Description
A Certification Authority (CA) may either issue CA certificates or end entity certificates. A Root CA has a self-signed CA certificate and issues CA certificates to subordinate CAs. Trust in an end entity certificate requires trusting the Root CA.

[image: image4.png]O s s -

Figure 5.x.1-1: Certificate Hiarachy
Digital certificates are stored in a certificate store. Major operating system (OS) vendors, Microsoft and Apple, include Root CA certificates in their Trusted Root Certification Authority certificate store that have met their security requirements. Some applications use the OS certificate stores, while others (e.g. Firefox and Oracle) have separate certificate stores.

Although OS and application vendors have a list of Trust Root CA certificates, additional Root CA certificates may be added to the Trusted Root Certification Authority certificate store by Administrators and end users with required security permissions. If a Root CA is compromised or no longer trusted, security patches must be applied that removes them from the Trusted Root Certification Authority certificate store or they must be removed manually.
Real world Examples for the dangers of accepting a root certificates

A recent Google warning over fake SSL certificates demonstrates, how one ‘rogue’ CA issuing unreliable certificates can cause havoc. Unfortunately, Certification Authorities can (and have been known to) issue fake certificates.
Trusting a malicious root is one of those nuclear-level “game over” scenarios. In fact, Chromium (the open-source project Google’s Chrome is based on) acknowledges that if an attacker can install a Root CA certificate onto your device, there is nothing the browser can do to protect you.

Current versions of Windows and OSX browsers provide notifications when a Root CA is not trusted. Trusting the Root CA requires manual installation of the Root CA certificate. For Windows, this takes quite a few steps, including viewing the Root CA certificate in the certificate chain and using the certificate import wizard.

On iOS, it is a different story. In Safari, just clicking a button on a webpage can prompt a system dialog to install a custom “profile” which can include Root CA certificates. An example of a profile that contains Root CA certificates is Comcast’s Xfinity Wifi. While iOS 10.3 and later does not automatically trust the certificate for SSL, earlier versions do trust the certificate.
User added Root CA certificates could be used maliciously. The new certificates could be used in a man-in-the-middle attack. This has always been a known vulnerability, but has not been of major concern because while feasible, it’s impractical in most attack scenarios.

Managing trust and root certificates.

Because of the growing variety of certificates in use today and the growing number of certificate issues, some organizations may want to manage certificate trust and prevent users in the domain from configuring their own set of trusted root certificates. In addition, some organizations may want to identify and distribute specific trusted root CA certificates to enable business scenarios where additional trust relationships are needed.

Adding a Root CA certificate to the Trusted Root Certification Authority certificate store can be quite labor intensive. The scale for IoT applications that could connect from a variety of issuing CA’s could be overwhelming for an organization. As indicated previously with the possibility of many IoT application developers using certificates from the same vendors, one root CA certificate for all could be dangerous, where as managing intermediate certificates for individual application vendors would be overwhelming.

Using App-ID Registry Function as a trusted root for the Service provider infrastructure
When an App-ID is registered, the metadata registered with the App-ID can contain information regarding the PKI structure, including:

· Issuing CA

· Intermediate CA certificate, if used

· Root certificate and its validity

· Location of the CRL (certificate revocation list)

The SP infrastructure can query a connecting App-ID /AE-ID identity from the App-ID register function to collect the PKI metadata, to verify the authentication procedures of oneM2M (MAF) .

· The SP infrastructure can verify that the Root CA certificate is valid and can be trusted (to what level) .

· That the issuing CA is valid and is still supported by the root CA.

· If an intermediate certificate is required to authenticate the IoT application certificate.

· Verify with the CRL that the certificate is not revoked.

The App-ID Registry Function can act as the root of trust for the oneM2M infrastructure, enabling it to authenticate any registered IoT application through an automated process.

5.6
Actors

The entities involved in this use case are shown in the Figure 5.x.2-1 and described as follows:
M2M Service Infrastructure: It represents a Service Provider infrastructure, including the physical equipment (e.g. a set of physical servers) that provides management of data and coordination capabilities for the M2M Service Provider and communicates with M2M Devices
NOTE:
An M2M Service Infrastructure may communicate with other M2M Service Infrastructures. An M2M Service Infrastructure contains a CSE. It can also contain M2M applications.
M2M Service Provider: entity (e.g. a company) that provides M2M Common Services to a M2M Application Service Provider or to the User

M2M Application: It represents a IoT application that is responsible for accumulating data, transferring it to the SP and performing actions instructed by the SP .

M2M App-ID Registration Authority (ARA): legal entity that manages/administers the App-ID database used to issue unique global identifiers consistent with oneM2M specifications.
5.7
Pre-conditions

The following is a list of pre-conditions:

· The M2M application is registered in the App-ID Registery Function and has the metadata profile for its characteristics.

· The M2M Service Infrastructure is able to connect with the App-ID Registry Function to query the metadata for the M2M application identity.

· The App-ID Registry Function has metadata corresponding to the M2M application identity.

· The M2M Service Infrastructure is able to act upon the metadata returned from the App-ID Registry Function to process the M2M application

5.8
Normal Flow

Procedure to verify M2M application identity with App-ID Registry Function is:

1. The M2M application presents identity information when communication with the M2M Service Infrastructure.

2. The M2M Service Infrastructure, if configured to verify the M2M application identity will query the App-ID Registry Function using the M2M applications App-ID and or AE-ID App-ID Registry Function.

3. If the M2M application identity is registered with the App-ID Registry Function, the registry will supply the metadata to the SP.

4. The M2M Service infrastructure reacts based on the metadata to process the associated M2M application according to the M2M service provider preferences, for example :

· Allow

· Disallow

· Allow with restrictions

· Trigger app registration

· Trigger app re-certification

· Trigger comparison of a user’s privacy preferences and an applications privacy policies and new consent

· …… etc.

[image: image5.png]M2M

Application

M2M Service

infrastructure

Presents identity
information

S

App-ID

Registry

SP can optionally check the
identity with the
App-ID Registry Function

Function

Query App-ID and or AE-ID

If the App-ID is Registered

App-ID/AE-ID
Metadata

M2M Application — Service
provider specific processing

Figure 5.x-1: Flow for query of App-ID and / or AE-ID metadata

5.1.9
Potential requirements
1. The M2M application shall be able to present the identity information with the M2M Service infrastructure to determine the App-ID and or AE-ID .
2. The M2M Service infrastructure shall be able to check the App-ID / AE-ID validity with the App-ID Registry Function.

3. The App-ID Registry Function shall allow registration of App-ID together with metadata.
4. The App-ID Registry Function shall support a metadata profile to characterize the M2M application .
5. The App-ID Registry Function shall provide a M2M Service infrastructure with the metadata for a registered App-ID.
6. The M2M service infrastructure shall be able to process the connected M2M application according to the provided metadata.

6
Candidate Architecture

6.1
Architecture Proposal For functionality A
6.1.2
Functionality B Requirements
The following is a list of basic requirements to be considered in design and analysis of functionality B solutions:

6.1.1
Architecture

The Candidate Architecture for functionality A follows:

6.1.1.1
Nodes

For the architecture of functionality A there are X architectural components:

6.1.1.2
Reference Points
There are Y reference points in the functionality A Architecture:

6.2
Architecture Proposal For functionality B
6.2.2
Functionality B Requirements
6.2.1
Architecture

The Candidate Architecture for functionality B follows:

6.2.1.1
Nodes

For the architecture of functionality B there are X architectural components:

6.2.1.2
Reference Points
There are Y reference points in the functionality B Architecture:

7
Available Options

7.1
Review of Existing Technology for use in the functionality
7.1.1
Review of Existing Technology N
7.1.1.1
Introduction to Technology N
7.2
A Solution for providing Functionality A
7.2.1
General procedure for providing functionality A
8
Release X Function Rationale
8.1
Overview of Release X Features
The analysis in the preceding clauses were used to guide the specification of Release 2 features for App-ID registry function, which include the following:

8.2
Release X Function
8.2.1
X Function Overview

Overview:
8.2.2
X Functional Architecture

Functional architecture details for X
9
Conclusions and recommendations
The present document offers an overview of the use cases, requirements, architecture proposals and available solutions for an App-ID Registry Function.
Some of the contents have been normalized as Release X Technical Specification, as described in clause 8. Others may be used to facilitate future normative work resulting in oneM2M Technical Specifications.

Annex A: Problem Statement for needing App-ID Registry Function
A.1
Introduction

1. introduction
Use-case 1

Use-case 2

History

	Publication history

	V.0.0.1
	21-Sep-2017
	Initial Baseline for TR

	V.0.0.2
	11-Oct-17
	New Baseline with agreed text for scope and use cases

	
	
	

	
	
	

	
	
	

© 2017 oneM2M Partners
 Page 19 (of 19)

[image: image1.png]

