PRO-2014-0510R02 Representation of Primitives

[image: image1.png]

	CHANGE REQUEST

	Group Name:*

	WG3

	Source:*

	IBM

	Format:*

	TP13

	Date:*

	2014-09-25

	Contact:*

	 Peter Niblett (peter_niblett@uk.ibm.com);

	Reason for Change/s:*

	This request proposes new material to be added to TS-0004 that defines canonical approaches for primitive serialization to be used by protocol-specific bindings.

	Clause/Sub Clause

Affected*

	8

	Agenda Item:*

	Contribution

	Work item(s):

	
	Document(s)

Impacted*

	oneM2M-TR 0004 Core Protocol v 0 6 2

	Intended purpose of

document:*

	 FORMCHECKBOX
 Decision

 FORMCHECKBOX
 Discussion

 Information

 Other <specify>

	Decision requested or recommendation:*

	Agree to make these changes to the TS (oneM2M-TS-0004)

	

oneM2M Notice
The document to which this cover statement is attached is submitted to oneM2M. Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.
Changes in R01

· Added some further normative references
· Moved first Introduction paragraph into a new clause 5.3.4
· Added statement that we are using JSON terminology from RFC 7159
· Tightened up the wording and added rules for Boolean, null and maxOccurs > 1
· Added rule for an XML simple type with attributes (e.g. childResourceRef),
======================== START 1ST CHANGE ===========================
6.4. Normative references

The following referenced documents are necessary for the application of the present document.
[1]
IETF RFC 5139: "Revised Civic Location Format for Presence Information Data Format Location Object (PIDF-LO)".

[2]
IETF RFC 3986: "Uniform Resource Identifier (URI): Generic Syntax".

[3]
W3C XMLSchemaP2: "W3C Recommendation (2004), XML Schema Part 2:Datatypes Second Edition.".

[4]
oneM2M TS-0005 Management Enablement (OMA)[5]
oneM2M TS-0006 Management Enablement (BBF)
[6]
oneM2M TS-0001 "Functional Architecture". TBD.

[7]

oneM2M TS-0003 Security Solutions
 [8]
IEEE 754-2008: IEEE. IEEE Standard for Floating-Point Arithmetic. 29 August 2008. http://ieeexplore.ieee.org/servlet/opac?punumber=4610933

[9]
IETF RFC 3548: "The Base16, Base32, and Base64 Data Encodings". 2003.

[10]
IETF RFC 2045: "Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies". 1996.

[11]
IETF RFC 3987:" Internationalized Resource Identifiers (IRIs)" . January 2005.

[12]
IETF BCP 47: "Best Current Practices 47". Concatenation of RFC 4646:" Tags for Identifying Languages"(2006) and RFC 4647: "Matching of Language Tags"(2006).

[13]
IETF RFC 3588: "Diameter Base Protocol". September 2003.

[14]
IETF RFC 6733: "Diameter Base Protocol". October 2012.

[15]
3GPP TS 23.682: "Architecture enhancements to facilitate communications with packet data networks and applications" Release 11.

[16]
3GPP TS 29.368: "Tsp interface protocol between the MTC Interworking Function (MTC-IWF) and Service Capability Server (SCS)" Release 11.

[17]
3GPP TS 23.003: "Numbering, addressing and identification".

 [18]
IETF RFC 4282: "The Network Access Identifier".
[19]

IETF RFC 7159: "The JavaScript Object Notation (JSON) Data Interchange Format".
[20]

Unicode: "The Unicode Consortium. The Unicode Standard.”
[21]

IETF RFC 3629: " UTF-8, a transformation format of ISO 10646".
 [i.5]
OMA-TS-MLP-V3_4-20130226-C: "Mobile Location Protocol", Version 3.4.

======================== END 1ST CHANGE ===========================

======================== START 2ND CHANGE ===========================
5.3.4. Serialization of Primitives

The way that oneM2M request and reply primitives are represented when transferred over a oneM2M reference point shall be defined by the particular oneM2M Protocol Binding that is being used for the transfer. The originator and receiver of each primitive use the same binding, and thus they will be using compatible serialization and deserialization techniques. Clause 8 of this specification defines canonical approaches for serializing primitives as JSON objects or XML documents, that are to be used by oneM2M Protocol Bindings.
======================== END 2ND CHANGE ===========================

======================== START 3RD CHANGE ===========================
8 Representation of Primitives in Data Transfer
8.1. Introduction
This clause defines canonical approaches for serializing primitives as JSON objects or XML documents. A Protocol binding is not required to use either JSON or XML, but where it does it should use the general approach defined here. A Protocol Binding is permitted to adapt the approach in order to make use of protocol-specific features. It might, for example, choose to map one or more of the primitive parameters to protocol-specific header fields and not include them in the serialized JSON or XML.
======================== END 3RD CHANGE ===========================

======================== START 4TH CHANGE ===========================
8.3. Canonical JSON serialization
8.3.1 Terminology
The following conventions are used in the clause that follows.
· The italicized terms object, member, name, array, number, string, boolean and null are to be interpreted as in RFC 7159 [19]
· The italicized term element is to be interpreted to encompass oneM2M Primitive Parameters, Resource Attributes and other elements or attributes used inside oneM2M complex type definitions
8.3.2 Method
The primitive shall be encoded as a JSON object, conforming to the requirements of RFC 7159 [19]. This JSON object shall be restricted to Unicode characters defined in [20] and encoded using UTF-8 as described in RFC 3629 [21]. The names in each object in the JSON shall be unique.
The structure of the top-level primitive object shall be determined by the datatype definitions in clause 6 and clause 7 of this specification, as follows:
1. Each primitive parameter appears as a member of the top-level primitive object.
2. The top-level member’s name shall be the short name of the parameter, as defined in clause 8.2.
3. The top-level primitive object shall contain only members that correspond to oneM2M primitive parameters.
4. If an element is defined in this specification as having a complex type, then it is serialized in the JSON member as an object and its children are recursively serialized as members of that object, using short names as defined in clause 8.1.
5. The membership of each nested object shall respect the cardinality constraints from the corresponding XSD complex type definition,
6. If an element is defined in this specification as having an atomic datatype that is numeric in nature (e.g. xs:integer or a type derived from it) then its value is serialized into the JSON member as a number.

7. If an element is defined as having an atomic datatype that is non-numeric then its value is serialized into the JSON member as a string.
8. If an element is defined as xs:boolean (or a type derived from xs:boolean) then it is serialized in the JSON member as a boolean.
9. If an element is defined as having an xs:list type in the corresponding XSD then it is serialized in the JSON member as an array.
10. If an element instance has a null value then it is serialized into the JSON member as a null, regardless of the datatype that it has in the corresponding XSD.
11. If an element is defined as having maxOccurs > 1 in the corresponding XSD then its parent JSON member is serialized as an array.
12. If an element has an XSD datatype that is a simple type with XML attributes, then it is serialized in the JSON member as an object. The XML attributes appear as members of that object (using their short names) and the value of the element is serialized as a member of that object with the special name “val”.
13. The members (at each level) may be serialized in any order. The order in which they appear in the corresponding XSD file is immaterial.

The Content parameter is treated just like any other parameter of complex type. It is serialized as an object and its members are the attributes and/or child resource references of the Resource that is being transferred. The Content parameter is not required to contain all the attributes of the Resource.
Editor’s note: The method and rules described in this clause are subject to further review.

8.3.3 Example
Here is an example that shows the payload of a request message serialized using JSON:
{“op”: “C”, “fr”: “//xxxxx/2345”, “to”: “//xxxxx/99”, “ri”: “A1234”, “cn”: {“se”: “0-5 2,6 * 10/1 * 2014/1”}, “ty”: 20}

· op: operation (in this case it’s Create)

· fr: ID of the Originator (either the AE or CSE)

· to: URI of the target resource
· ri: request identifier (this is a string)
· cn: attributes of the resource to be provided by Originator. This is serialized as a nested JSON object

· ty: type of resource to be created (in this case a Schedule resource). This is a number
======================== END 4TH CHANGE ===========================

======================== START 5TH CHANGE ===========================
5.3.5. Response message parameter data types

The data types of response message parameters are specified in this clause.

Detailed response message parameter descriptions and usage can be found in clause 8.1 of the Architecture TS [6].

Table 6.4.2‑1: Data Types for Response primitive parameters

	Response primitive parameter
	Short
Name
	Data Type
	
	Comment

	Content
	cn
	m2m:content
	
	

	From
	fr
	m2m:id
	
	

	Originating Timestamp
	ort
	m2m:timestamp
	
	

	Request Identifier
	ri
	xs:string
	
	

	Result Expiration Timestamp
	rset
	m2m:timestamp
	
	

	To
	to
	xs:anyURI
	
	See ARC TS 9.3.1

	Response Code
	
	xs:integer
	
	

======================== END 5TH CHANGE ===========================

�Empty reference. Mentioned in the document in table 6.3.2.1�1. Please update.

�These references are not mentioned in the document. Move to the Bibliography or delete them.

© oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TTA, TTC)
Page 2 of 5

