	Doc# MAS-2015-0673R04-TR-0007_distributed_descriptors_alt2
Change Request
	[image: image16.png]

	

	CHANGE REQUEST

	Meeting:*
	MAS#20

	Source:*
	InterDigital

	Date:*
	2015-11-09

	Contact:*
	Catalina Mladin, InterDigital, Catalina.Mladin@InterDigital.com
Qing Li, InterDigital, Qing.Li@InterDigital.com

	Reason for Change/s:*
	

	CR against: Release*
	Rel-2

	CR against: WI*
	 FORMCHECKBOX
 Active WI-5

 FORMCHECKBOX
 MNT Maintenance / < Work Item number(optional)>
 FORMCHECKBOX
 STE Small Technical Enhancements / < Work Item number (optional)>
Only ONE of the above shall be ticked

	CR against: TS/TR*
	TR-0007 V.2.5.0

	Clauses/Sub Clauses*
	

	Type of change: *
	 FORMCHECKBOX
 Editorial change

 FORMCHECKBOX
 Bug Fix or Correction

 FORMCHECKBOX
 Change to existing feature or functionality

 FORMCHECKBOX
 New feature or functionality
Only ONE of the above shall be ticked

	Post Freeze checking:*
	This CR contains only essential changes and corrections? YES FORMCHECKBOX
 NO FORMCHECKBOX

This CR may break backwards compatibility with the last approved version of the TS? YES
 NO
This CR is a mirror CR? YES FORMCHECKBOX
 if YES, please indicate the document number of the original CR: <Document Number) : NO FORMCHECKBOX

	Template Version:27 May 2015 (Dot not modify)

oneM2M Notice

The document to which this cover statement is attached is submitted to oneM2M. Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.

GUIDELINES for Change Requests:

Provide an informative introduction containing the problem(s) being solved, and a summary list of proposals.

Each CR should contain changes related to only one particular issue/problem.
In case of a correction, and the change apply to previous releases, a separated “mirror CR” should be posted at the same time of this CR
Follow the principle of completeness, where all changes related to the issue or problem within a deliverable are simultaneously proposed to be made E.g. A change impacting 5 tables should not only include a proposal to change only 3 tables. Includes any changes to references, definitions, and acronyms in the same deliverable.
Follow the drafting rules.
All pictures must be editable.
Check spelling and grammar to the extent practicable.
Use Change bars for modifications.
The change should include the current and surrounding clauses to clearly show where a change is located and to provide technical context of the proposed change. Additions of complete sections need not show surrounding clauses as long as the proposed section number clearly shows where the new section is proposed to be located.
Multiple changes in a single CR shall be clearly separated by horizontal lines with embedded text such as, start of change 1, end of change 1, start of new clause, end of new clause.
When subsequent changes are made to content of a CR, then the accepted version should not show changes over changes. The accepted version of the CR should only show changes relative to the baseline approved text.
Introduction
Introducing an alternate solution to the filtering issues for distributed semantic description resources for section 8.5.5.4. Editorials for figure numbering earlier in section 8.5.5.
R02-R04 include changes based on comments received at REQ#20.
-----------------------Start of change 1---
8.5.5
Semantic Filtering on Distributed Semantic Descriptors

8.5.5.1 Problem Description
In the previous section, semantic filtering criteria have been introduced and it has been described how they are applied to the content of the <semanticDescriptor> child resource. However, in some cases the relevant semantic information is not contained in the <semanticDescriptor> child resource directly, but in a different <semanticDescriptor> resource. For example, this could be the case if we are looking for devices that can provide temperature output. This semantic information may not be directly attached to the resource representing the device, but there is another resource that represents a specific operation of the device and the semantic description can be found there. In order to correctly include the device in the result set, the semantic information attached to the operation has to be considered.

Figure 8.5.5.1-1 shows the general situation. In the lower part of the figure, a semantic graph representing subject-predicate-object relations is shown. In a oneM2M system, different parts of this graph may be stored in different <semanticDescriptor> resources. If semantic operations like the semantic filtering are to be applied to (parts of) the complete semantic graph, the different parts of the graph have to be linked and these links have to be followed when executing the semantic operation.

[image: image1]
Figure 8.5.5.1-1: Mapping of logical semantic graph to oneM2M resource structure
Figure 8.5.5.1-2 shows the case of a semantic filter whose scope takes into account semantic information stored in different <semanticDescriptor> resources.

[image: image2]
Figure 8.5.5.1-2: Scope of semantic filter across semantic information stored in different resources
8.5.5.2 Related Solutions
· Semantic Web
In the semantic web, the URI identifying the class instance can be directly de-referenced, possibly resulting in some re-direction. This means that for each instance the related information can be found based on its URI. In the oneM2M case, the semantic instances are not first-class citizens, it is only resources that can be accessed and the information about instances is stored as content of the resources. This means that based on only the URI of the semantic information the related information cannot be found, so the approach is not applicable in the oneM2M case.

· Federated SPARQL queries

SPARQL [i.23] supports federated queries using the SERVICE keyword, where the URL of a remote SPARQL endpoint can be specified. This approach would work only, if the requestor would a-priori know which semantic descriptors contain which information. This is not the case here as we do not a-priori know the resources, it is the purpose of the filter to select them, therefore the approach is also not applicable.

8.5.5.3 Proposed Solution 1
The underlying assumption is that the semantic description stored in the <semanticDescriptor> resources are represented as RDF triples [i.26] in some kind of serialization. The semantic descriptions can be part of an overall semantic description that is distributed across the <semanticDescriptor> resources. The RDF triples are based on classes and properties defined in OWL.

[image: image3]
Figure 8.5.5.3-1: Parts of semantic descriptions stored in different <semanticDescriptor> resources

Figure 8.5.5.3-1 shows an example of two semantic descriptions in the form of RDF triples, visualized as semantic graphs, each stored in a <semanticDescriptor> resource. Logically the two graphs form a combined semantic graph, as the "OperationA" instance is part of both trees, both in the subject and object role of a triple.

To enable semantic operations across the overall logical tree, the proposal is to add an annotation link in the form of a resourceDescriptorLink OWL annotation property. This annotation property can be specified for any class instance and its value is the URL of a <semanticDescriptor> resource, where additional RDF triples for the given class instance can be found.
For enabling semantic filtering on semantic descriptions stored across <semanticDescriptor> resources connected by resourceDescriptorLink properties, the SPARQL-based semantic filtering engine has to be modified in the following way:

· The semantic filter formulated as a SPARQL request is executed on the content of the semantic descriptor resource of the candidate resource

· If in the course of the execution a class instance with one or more resourceDescriptorLink annotations is encountered, the execution is halted

· The content of each of the <semanticDescriptor> resources the semanticDescriptorLink references is added to the content on which the SPARQL request is being executed (lazy evaluation, alternative: fetch everything before execution, but may result in fetching unnecessary information)

· The execution of the SPARQL request is continued on the enlarged content

Advantages of the proposed solution 1:

· The required semantic information can be found
· The application adding the resourceDescriptorLinks only has to be aware of directly related instances in other <semanticDescriptor> resources.
· Resource-based access control can be easily enforced as the information is being accessed at execution time of the operation and the access privileges of the requester can be applied
Disadvantages of the proposed solution 1:
· The execution of the SPARQL request has to be changed to allow retrieving semantic descriptor information whenever a resourceDescriptorLink has to be followed for which the information was not already previously retrieved.
8.5.5.3.1 Examples for Solution 1
Figure 8.5.5.3.1-1, 8.5.5.3.1-2 and 8.5.5.3.1-3 show three different examples, where semantic descriptions are stored across <semanticDescriptor> resources as they describe aspects more closely related to different oneM2M resources. Nevertheless, the filter request needs to be applied across the distributed semantic description.

[image: image4]
Figure 8.5.5.3.1-1: Semantic filter for devices that produce temperature output

[image: image5]
Figure 8.5.5.3.1-2: Semantic filter for rooms with indoor temperature in Celsius

[image: image6]
Figure 8.5.5.3.1-3: Semantic filter for groups of valves that include a valve manufactured by Grundfos

8.5.5.4 Proposed Solution 2
The same underlying assumptions as in the previous solution are made:

· The semantic descriptions stored in the <semanticDescriptor> resources are represented as RDF triples [i.26] in some kind of serialization;

· The semantic descriptions can be part of an overall semantic description that is distributed across the <semanticDescriptor> resources;

· The RDF triples are based on classes and properties defined in OWL.
·

[image: image8.emf]Device 12<semanticDescriptor>Operation Adescriptor<subscription>ontologyRef0..1<semanticDescriptor>descriptor<subscription>ontologyRef0..n0..10..1exposesCommand...Operation AhasOutputexposesCommand...OutputXquantifiesTemperatureAspectcommandKDevice12hasServicehasFunctionalityService23hasOperationOperationA......commandKresourceDescriptorLinkresourceDescriptorLink

Figure 8.5.5.4-1: Distributed concepts across different <semanticDescriptor> resources

Figure 8.5.5.4-1 shows the example of two semantic descriptions in the form of RDF triples, visualized as semantic graphs, each stored in a separate <semanticDescriptor> resource. The two descriptions are logically related, as "OperationA" and “CommandK” instances are part of both trees. Other concept instances might be common between the two trees, so several resourceDescriptorLinks might be established between the same two descriptors.
In this proposal an attribute relatedSemantics is added to the <semanticDescriptor> resource to indicate all the resources with semantics descriptors related to the current one.

[image: image9.emf]<semanticDescriptor>relatedSemanticsdescriptor<subscription>ontologyRef0..n0..10..10..1

Figure 8.5.5.4-2: relatedSemantics attribute
Two representations of the relatedSemantics information are envisioned, and may be used in the same implementation:

· List of links: In this case the relatedSemantics attribute contains a list of links pointing to other <sematicDescriptor> resources which should be used together to perform semantic queries as described in section 8.5.5.4.1
· Group of links: In this case the relatedSemantics attribute points to either:

· a <group> resource with the functionality described in section 8.5.5.4.2
· a newly proposed <semanticGroup> resource as described in section 8.5.5.4.3.
The way the SPARQL query results are produced is detailed with the previous example of graphs containing information relevant to each other, but which are stored in two independent resources <Device12>, and <OperationA>. Semantically the OperationA concept from the first graph is further described in the descriptor of <Device12>, while the relationship exposesCommand and object commandK are contained in both.
The goal is to enable the creation of a larger resultant graph to be submitted for evaluation of the SPARQL query, as shown in Figure 40.

[image: image10.emf]exposesCommandhasOutputOutputXquantifiesTemperatureAspectDevice12hasServicehasFunctionalityService23hasOperationOperationA......commandK

Figure 8.5.5.4-3: Composite graph from sub-graphs distributed in separate descriptors
8.5.5.4.1 “List of links” use
In this representation the relatedSemantics attribute contains a list of links pointing to descriptors associated with other resources, which should be used together with the descriptor in the given <semanticDescriptor> resource in order to perform semantic queries. In our case the list points to the semantic descriptor of <operationA>.

[image: image11.emf]Device 12<semanticDescriptor>Operation ArelatedSemanticsdescriptor<subscription>ontologyRef0..n0..10..10..1<semanticDescriptor>relatedSemanticsdescriptor<subscription>ontologyRef0..n0..10..10..1exposesCommand...Operation AhasOutputexposesCommand...OutputXquantifiesTemperatureAspectcommandKDevice12hasServicehasFunctionalityService23hasOperationOperationA......commandK

Figure 8.5.5.4.1-1: Use of relatedSemantics attribute with a list of links

This representation is useful in cases like the one presented, when a more limited number of semantic descriptors are related, making the link list short.
8.5.5.4.2 <group> Resource use
In this representation the relatedSemantics attribute points to a <group> resource which includes <Device12> and <operationA> resources.

[image: image13.emf]Device 12<semanticDescriptor>Operation ArelatedSemanticsdescriptor<subscription>ontologyRef0..n0..10..10..1<semanticDescriptor>relatedSemanticsdescriptor<subscription>ontologyRef0..n0..10..10..1exposesCommand...Operation AhasOutputexposesCommand...OutputXquantifiesTemperatureAspectcommandKDevice12hasServicehasFunctionalityService23hasOperationOperationA......commandK<group>reourceIDmemberIDgroupName10..111memberType[...<device12>, <operationA>…]

Figure 8.5.5.4.2-1 Use of relatedSemantics attribute with a <group> resource

By using the memberID attribute, all the descriptors to be used together when performing semantic queries are identified. The SPARQL query engine would use all the links to retrieve the needed descriptors and perform the Query on the overall graph.
For descriptors distributed across CSEs, this is useful when there is only one SPARQL query engine which will process all the descriptors, including on the other CSEs. This means that the process of fetching descriptors from other CSEs is left for implementation and the process of retrieving descriptors from other CSEs is not specified.
When there are individual SPARQL query engines in each CSE, the <group> resource may be used as well to target queries to resources belonging to different CSEs by using the <fanOutPoint> virtual resource. If the <group> resource residing on a first CSE includes member resources on other CSEs, the <group> hosting CSE will forward the RETRIEVE request including the SPARQL query to each CSE containing a group member resource. The individual SPARQL engines on each CSE can process the SPARQL request individually. This means that the SPARQL engine on the <group> hosting CSE needs to be able to merge the results before the returning the final query result.
8.5.5.4.3 <semanticGroup> Resource use
In this representation the relatedSemantics attribute points to a new <semanticGroup> resource shown below, which also includes <Device12> and <operationA> resources.

[image: image14.emf]<semanticGroup>semanticGroupNamesemanticGroupLinks<subscription>ontologyRef0..n0..10..11<semanticFanOutPoint>0..1

Figure 8.5.5.4.3-1 <semanticGroup> resource

[image: image15.emf]Device 12<semanticDescriptor>Operation ArelatedSemanticsdescriptor<subscription>ontologyRef0..n0..10..10..1<semanticDescriptor>relatedSemanticsdescriptor<subscription>ontologyRef0..n0..10..10..1exposesCommand...Operation AhasOutputexposesCommand...OutputXquantifiesTemperatureAspectcommandKDevice12hasServicehasFunctionalityService23hasOperationOperationA......commandK<semanticGroup>semanticGroupNamesemanticGroupLinksontologyRef0..10..10..11[...<device12>, <operationA>…]<subscription><semanticFanOutPoint>0..1

Figure 8.5.5.4.3-1 Use of relatedSemantics attribute with a <semanticGroup> resource
The semanticGroupLinks attribute of the <sematicGroup> resource has the same role as the memberID of <group>, containing the descriptors to be used together when performing semantic queries are identified. The SPARQL query engine would use all the links to retrieve the needed descriptors and perform the query on the overall graph.

The difference in using the <semanticGroup> resource, compared to the <group> resource, is in targeting queries to resources belonging to different CSEs using <semanticFanOutPoint>. In this case the <semanticGroup> hosting CSE will transform the RETRIEVE request including the SPARQL query into RETRIEVE requests for the semantic descriptors on each CSE. Upon return of the results, the SPARQL engine at the <semanticGroup> hosting CSE will be

For enabling semantic filtering on semantic descriptions stored across several resources connected by relatedSemantics attributes, in either representation, the semantic engine has to be modified in the following way:
When a resource other than <semanticFanOutPoint> is targeted:
· The receiver begins processing the request by retrieving the <semanticDescriptor> resource of the request target

· Based on the relatedSemantics attribute of the <semanticDescriptor> resource targeted, all the related descriptors are discovered, as follows:

· If the relatedSemantics attribute includes a list of links, each of the linked Descriptors are accessed based on the respective access control policies.

· If the relatedSemantics points to a <group> resource, the group members from the memberID attribute are used and each of their <semanticDescriptor>(s) are accessed based on the respective access control policies.
· If the relatedSemantics points to a <semanticGroup> resource, the group members from the semanticGroupLinks attribute are used and each of their <semanticDescriptor>(s) are accessed based on the respective access control policies.
· Once all of the related <semanticDescriptor>(s) have been accessed, the content of each of the descriptor attributes is added to the content on which the SPARQL request is being executed.

· The full/enlarged content subject to the SPARQL request is provided to the SPARQL engine for processing
When a <semanticFanOutPoint> resource is targeted:

· Based on the semanticGroupLinks attribute targeted all the related Descriptors are discovered, and those on the <semanticGroup> hosting CSE are retrieved together
· If there are descriptors stored on a different CSE, individual RETRIEVE requests are sent to each CSE for retrieving the external descriptors.
· All semantic descriptors are accessed based on the respective access control policies.

· Once all of the related <semanticDescriptor>(s) have been accessed, the content of each of the descriptor attributes is added to the content on which the SPARQL request is being executed.

· The full/enlarged content subject to the SPARQL request is provided to the SPARQL engine for processing

It may be left to implementation or local policies if, in case the discovered related descriptors specify further relatedSemantics, these are added to the original list and how many levels of indirection may be accommodated. This would enable different implementations and applications to specifically target their goals towards either: expansive and thorough query results with potential runtime costs, or narrower query results optimized for time and/or memory. Other rules which may be specified may include for example handling of the descriptors of child resources e.g. by default all the descriptors attached to children may be considered related (or not, or for a certain number of levels only, etc.)
Advantages of the proposed solution 2:

· The required semantic information can be found

· Resource-based access control can be easily enforced as the information is being accessed at execution time of the operation and the access privileges of the requester can be applied

· The content to be processed by the SPARQL engine is collected prior to processing, allowing the use of external, non-oneM2M specific engines.

· Descriptors containing more than one common concept are linked by only one link, allowing for easier avoidance of duplicate content being considered for request processing.

Disadvantages of the proposed solution 2:
·
· All linked semantic information has to be fetched, even if it is not needed for the execution of the SPARQL query

Editor’s note: It is FFS if/how the processing described using <semanticGroup> resource may be implemented using the <group> resource.
8.5.5.4.4 SPARQL query result examples for Solution 2
Consider the example in figure 8.5.5.4-1 where semantic descriptions are stored across resources <operationA> and <device12> with the following filter request:
“Find all devices that have a service that has an operation whose output quantifies a temperature aspect, and filter it for those with the output = OutputX and command = commandK”
The corresponding SPARQL representation of the request is:

…

SELECT ?device

WHERE {
?device rdf:type base:Device .

?device base:hasService ?service .

?service base:hasOperation ?operation .

?operation base:hasOutput ?output .

?output base:quantifies temp:TemperatureAspect .

?device base:exposesCommand ?command .

FILTER (?output == OutputX && ? command == commandK)

}

The SPARQL request will be applied across the resultant graph in Figure 8.5.5.4-3. The RDF representation below reflects the resultant description, in red for the subgraph retrieved from <Device12>, in blue for the subgraph retrieved from <operationA>.
[image: image16.png]
Figure 8.5.5.4.4-1 RDF representation of resultant graph
The SPARQL query execution result on <Device12>, using this solution is ex:Device12. The query execution without the ability to link in the <operationA> semantic descriptor content would be empty as the output filter would not be matched.

-----------------------End of change 1---

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix oneM2M: <http://oneM2M.org/owl#> .

@prefix ex: <http://example.com/cseBase/> .

<rdf:Description rdf:about ex: Device12>

<oneM2M:hasService> ex:Service23 </oneM2M:hasService>.

<oneM2M:hasFunctionality> ex:FuncF </oneM2M:hasFunctionality>

</rdf:Description>

<rdf:Description rdf:about ex: Service23 >

<oneM2M:hasOperation> ex:OperationA </oneM2M:hasOperation>

</rdf:Description>

<rdf:Description rdf:about ex: OperationA >

<oneM2M:exposesCommand> ex:CommandK </oneM2M:exposesCommand>

<oneM2M:hasOutput> ex:OutputX </oneM2M:hasOutput>

</rdf:Description>

<rdf:Description rdf:about ex: OutputX >

<oneM2M:quantifies> ex:TemperatureAspect </oneM2M:quantifies>

</rdf:Description>

© 2015 oneM2M Partners
 Page 18 (of 18)

[image: image17.png][image: image18.png][image: image19.png][image: image20.png][image: image21.png][image: image22.jpg]Device 12
<semanticDescriptor>
Operation A
descriptor
<subscription>
ontologyRef
0..1
<semanticDescriptor>
descriptor
<subscription>
ontologyRef
0..n
0..1
0..1
exposesCommand
...
Operation A
hasOutput
exposesCommand
...
OutputX
quantifies
Temperature
Aspect
commandK
Device12
hasService
hasFunctionality
Service23
hasOperation
OperationA
...
...
commandK
resourceDescriptorLink
resourceDescriptorLink

Device 12
<semanticDescriptor>
Operation A
relatedSemantics
descriptor
<subscription>
ontologyRef
0..n
0..1
0..1
0..1
<semanticDescriptor>
relatedSemantics
descriptor
<subscription>
ontologyRef
0..n
0..1
0..1
0..1
exposesCommand
...
Operation A
hasOutput
exposesCommand
...
OutputX
quantifies
Temperature
Aspect
commandK
Device12
hasService
hasFunctionality
Service23
hasOperation
OperationA
...
...
commandK
<group>
reourceID
memberID
groupName
1
0..1
1
1
memberType
[...<device12>, <operationA>…]

<semanticGroup>
semanticGroupName
semanticGroupLinks
<subscription>
ontologyRef
0..n
0..1
0..1
1
<semanticFanOutPoint>
0..1

Device 12
<semanticDescriptor>
Operation A
relatedSemantics
descriptor
<subscription>
ontologyRef
0..n
0..1
0..1
0..1
<semanticDescriptor>
relatedSemantics
descriptor
<subscription>
ontologyRef
0..n
0..1
0..1
0..1
exposesCommand
...
Operation A
hasOutput
exposesCommand
...
OutputX
quantifies
Temperature
Aspect
commandK
Device12
hasService
hasFunctionality
Service23
hasOperation
OperationA
...
...
commandK
<semanticGroup>
semanticGroupName
semanticGroupLinks
ontologyRef
0..1
0..1
0..1
1
[...<device12>, <operationA>…]
<subscription>
<semanticFanOutPoint>
0..1

<semanticDescriptor>
relatedSemantics
descriptor
<subscription>
ontologyRef
0..n
0..1
0..1
0..1

Device 12
<semanticDescriptor>
Operation A
relatedSemantics
descriptor
<subscription>
ontologyRef
0..n
0..1
0..1
0..1
<semanticDescriptor>
relatedSemantics
descriptor
<subscription>
ontologyRef
0..n
0..1
0..1
0..1
exposesCommand
...
Operation A
hasOutput
exposesCommand
...
OutputX
quantifies
Temperature
Aspect
commandK
Device12
hasService
hasFunctionality
Service23
hasOperation
OperationA
...
...
commandK

exposesCommand
...
Operation A
hasOutput
exposesCommand
...
OutputX
quantifies
Temperature
Aspect
commandK
Device12
hasService
hasFunctionality
Service23
hasOperation
OperationA
...
...
commandK
resourceDescriptorLink
resourceDescriptorLink

exposesCommand
hasOutput
OutputX
quantifies
Temperature
Aspect
Device12
hasService
hasFunctionality
Service23
hasOperation
OperationA
...
...
commandK

<semanticGroup>
semanticGroupID
semanticGroupLinks
<subscription>
ontologyRef
0..n
0..1
0..1
0..1
<semanticFanOutPoint>
0..1

