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Introduction
In TR-0007 we have now detailed discussions about how to do access control on semantic triples stored in a common (and permanent) graph store. The approach presented in this contribution uses temporary graph stores for executing SPARQL requests in R2. The temporary graph stores are populated from relevant semantic descriptor resources when a specific SPARQL request comes in. This allows using the normal access control procedures on resources when retrieving the information for populating the temporary graph stores and avoids any specific access control rules in the semantic graph store. 

This approach has been implicitly considered as a straightforward option for implementing the semantic functionality supported in R2 of oneM2M. 
R01
· changed numbering to reflect new v.2.10.0 baseline of TR-0007

· made clear that Temporary Semantic Graph Store is only an implementation component and not a separate architectural oneM2M component
· access to the <semanticDescriptor> initiated by Temporary Semantic Graph Store which is logically part of Hosting CSE is done on behalf of original Originator with its access rights

· fixed some minor text issues in figures
-----------------------Start of change 1-------------------------------------------
8.5.7 Access Control for Semantic Information
8.5.7.X Access Control Using Temporary Semantic Graph Stores
This section describes an implementation approach that can be used for implementing the semantic features supported in Release 2 of oneM2M. <semanticDescriptor> resources have been introduced to be able to semantically annotate oneM2M resources of certain resource types, including AE, Container, ContentInstance, FlexContainer and more. Semantic functionalities have been added for filtering and selectively updating the semantic information stored in the descriptor attribute of the <semanticDescriptor> , which is represented in the form of RDF triples. The SPARQL language has been selected as the most suitable for specifying the filter and selective update operations.
For implementing the SPARQL-based semantic functionality, a SPARQL-engine is needed and such engines are typically provided on top of semantic graph stores. Thus, it is a straight-forward implementation choice to use such a semantic graph store.

<semanticDescriptor> resources as any other oneM2M resources have associated access policies which determine whether a requester is allowed to access the content of the resource. These access policies also apply for the semantic description stored in a <semanticDescriptor> resource and have to be adhered to when executing SPARQL requests on and across semantic information contained in these <semanticDescriptor> resources. So even when storing the semantic information in semantic graph stores and accessing them using SPARQL requests, the access control policies have to be applied. Approaches for translating and applying access control policies within the semantic graph store are described in other Subsections of Section 8.5.7.
In this subsection, we show how the SPARQL-based functionality needed for oneM2M Release 2 can be implemented using temporary semantic graph stores. For an incoming SPARQL request, the access control policies are applied when accessing the relevant <semanticDescriptor> resource(s) for populating the temporary semantic graph store. Once this has happened, the SPARQL query can be executed without further access control checks.
Figure 8.5.7.X-1 shows the different steps in the case of a single <semanticDescriptor> resource being accessed to enable the execution of a SPARQL request on its semantic content.
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Figure 8.5.7.X-1 Execute SPARQL request on single <semanticDescriptor>
When receiving the request with the SPARQL content, the Hosting CSE checks the access control policy applying to the <semanticDescriptor> resource. If the originator of the request is allowed to access it, it retrieves the semantic  information from its descriptor attribute, initializes the Temporary Semantic Graph Store, and populates it with the semantic information. Then it forwards the SPARQL request to the Temporary Semantic Graph Store to be executed. Note that the Temporary Semantic Graph Store in this context is seen as an implementation component and not an architectural component according to the oneM2M architecture.
Figure 8.5.7.X-2 shows the case that, in addition to the targeted <semanticDescriptor> resource, a set of related <semanticDescriptor> resources needs to be included before executing the SPARQL request. This is described in Section 8.5.5.4 and TS-0001 [i.39] Section 10.2.35.2.2. The relevant <semanticDescriptor> resources are identified through the relatedSemantics attribute.
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Figure 8.5.7.X-2 Execute SPARQL request on <semanticDescriptor> plus those identified through relatedSemantics attribute
In addition to the steps shown in Figure 8.5.7.X-1, the Hosting CSE attempts to retrieve the semantic content of the <semanticDescriptor> resources identified by the relatedSemantics attribute and updates the Temporary Semantic Graph Store accordingly. The respective access control policies are checked as part of the retrieval as in any other resource access. Only once all the identified (and accessible) content has been added is complete, the SPARQL request is forwarded for execution.
Figure 8.5.7.X-3 shows the case that the semantic content of the targeted <semanticDescriptor> resource contains links to further <semanticDescriptor> resoruces identified by resourceDescriptorLink properties. This annotation-based approach is described in Section 8.5.5.3 and in TS-0001 [i.39], Section 10.2.35.2.1.
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Figure 8.5.7.X-2 Execute SPARQL request on <semanticDescriptor> plus those encountered during the execution in form of resourceDescriptorLink properties 

In this case, the modified SPARQL engine of the Temporary Semantic Graph Store may encounter elements with resourceDescriptorLink properties when matching variables as part of the execution of the SPARQL request. In this case the execution will be halted and the engine requests the content of the <semanticDescriptor> resource identified by the resourceDescriptorLink property before continuing execution on the merged content. This can happen 0 to n times during the execution. Note that the Temporary Semantic Graph Store is not an architectural oneM2M component and logically should be seen as part of the Hosting CSE. The semantic content is requested on behalf of the original Originator with its access rights.
The advantage of the implementation with the Temporary Semantic Graph Store is that no special care has to be taken with respect to access control policies. Access control policies are evaluated in the usual way when accessing the semantic content on which the SPARQL request is to be executed. The disadvantage is of course that a Temporary Semantic Graph store has to be initialized and populated each time a SPARQL request is to be executed.
-----------------------End of change 1---------------------------------------------
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