	Doc# MAS-2016-0183R01-Access_Control_Using_Temporary_Semantic_Graph_Stores_R2.doc
Change Request
	[image: image4.png]

	

	CHANGE REQUEST

	Meeting:*
	TP24

	Source:*
	Martin Bauer, NEC Europe (ETSI), martin.bauer@neclab.eu

	Date:*
	2016-07-17

	Contact:*
	Martin Bauer, NEC Europe (ETSI), martin.bauer@neclab.eu

	Reason for Change/s:*
	Explicity describe the approach of using temporary graph stores for executing SPARQL requests in R2. The temporary graph stores are populated from relevant semantic descriptor resources when a specific SPARQL request comes in. This allows using the normal access control procedures on resources when retrieving the information for populating the temporary graph stores.

	CR against: Release*
	oneM2M R2

	CR against: WI*
	 FORMCHECKBOX
 Active <Work Item number>

 FORMCHECKBOX
 MNT Maintenance / < Work Item number(optional)>
 FORMCHECKBOX
 STE Small Technical Enhancements / < Work Item number (optional)>
Only ONE of the above shall be ticked

	CR against: TS/TR*
	TR-0007-V2.10.0

	Clauses/Sub Clauses*
	Section 8.5.7

	Type of change: *
	 FORMCHECKBOX
 Editorial change
 FORMCHECKBOX
 Bug Fix or Correction
 FORMCHECKBOX
 Change to existing feature or functionality
 New feature or functionality
Only ONE of the above shall be ticked

	Post Freeze checking:*
	This CR contains only essential changes and corrections? YES
 NO
This CR may break backwards compatibility with the last approved version of the TS? YES
 NO
This CR is a mirror CR? YES FORMCHECKBOX
 if YES, please indicate the document number of the original CR: <Document Number) : NO FORMCHECKBOX

	Template Version:27 May 2015 (Dot not modify)

oneM2M Notice

The document to which this cover statement is attached is submitted to oneM2M. Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.

GUIDELINES for Change Requests:

Provide an informative introduction containing the problem(s) being solved, and a summary list of proposals.

Each CR should contain changes related to only one particular issue/problem.
In case of a correction, and the change apply to previous releases, a separated “mirror CR” should be posted at the same time of this CR
Follow the principle of completeness, where all changes related to the issue or problem within a deliverable are simultaneously proposed to be made E.g. A change impacting 5 tables should not only include a proposal to change only 3 tables. Includes any changes to references, definitions, and acronyms in the same deliverable.
Follow the drafting rules.
All pictures must be editable.
Check spelling and grammar to the extent practicable.
Use Change bars for modifications.
The change should include the current and surrounding clauses to clearly show where a change is located and to provide technical context of the proposed change. Additions of complete sections need not show surrounding clauses as long as the proposed section number clearly shows where the new section is proposed to be located.
Multiple changes in a single CR shall be clearly separated by horizontal lines with embedded text such as, start of change 1, end of change 1, start of new clause, end of new clause.
When subsequent changes are made to content of a CR, then the accepted version should not show changes over changes. The accepted version of the CR should only show changes relative to the baseline approved text.
Introduction
In TR-0007 we have now detailed discussions about how to do access control on semantic triples stored in a common (and permanent) graph store. The approach presented in this contribution uses temporary graph stores for executing SPARQL requests in R2. The temporary graph stores are populated from relevant semantic descriptor resources when a specific SPARQL request comes in. This allows using the normal access control procedures on resources when retrieving the information for populating the temporary graph stores and avoids any specific access control rules in the semantic graph store.

This approach has been implicitly considered as a straightforward option for implementing the semantic functionality supported in R2 of oneM2M.
R01
· changed numbering to reflect new v.2.10.0 baseline of TR-0007

· made clear that Temporary Semantic Graph Store is only an implementation component and not a separate architectural oneM2M component
· access to the <semanticDescriptor> initiated by Temporary Semantic Graph Store which is logically part of Hosting CSE is done on behalf of original Originator with its access rights

· fixed some minor text issues in figures
-----------------------Start of change 1---
8.5.7 Access Control for Semantic Information
8.5.7.X Access Control Using Temporary Semantic Graph Stores
This section describes an implementation approach that can be used for implementing the semantic features supported in Release 2 of oneM2M. <semanticDescriptor> resources have been introduced to be able to semantically annotate oneM2M resources of certain resource types, including AE, Container, ContentInstance, FlexContainer and more. Semantic functionalities have been added for filtering and selectively updating the semantic information stored in the descriptor attribute of the <semanticDescriptor> , which is represented in the form of RDF triples. The SPARQL language has been selected as the most suitable for specifying the filter and selective update operations.
For implementing the SPARQL-based semantic functionality, a SPARQL-engine is needed and such engines are typically provided on top of semantic graph stores. Thus, it is a straight-forward implementation choice to use such a semantic graph store.

<semanticDescriptor> resources as any other oneM2M resources have associated access policies which determine whether a requester is allowed to access the content of the resource. These access policies also apply for the semantic description stored in a <semanticDescriptor> resource and have to be adhered to when executing SPARQL requests on and across semantic information contained in these <semanticDescriptor> resources. So even when storing the semantic information in semantic graph stores and accessing them using SPARQL requests, the access control policies have to be applied. Approaches for translating and applying access control policies within the semantic graph store are described in other Subsections of Section 8.5.7.
In this subsection, we show how the SPARQL-based functionality needed for oneM2M Release 2 can be implemented using temporary semantic graph stores. For an incoming SPARQL request, the access control policies are applied when accessing the relevant <semanticDescriptor> resource(s) for populating the temporary semantic graph store. Once this has happened, the SPARQL query can be executed without further access control checks.
Figure 8.5.7.X-1 shows the different steps in the case of a single <semanticDescriptor> resource being accessed to enable the execution of a SPARQL request on its semantic content.

[image: image1.emf]SPARQL request targeting directly

(e.g. SPARQL update) or indirectly

(e.g. filter on parent resource)

<semanticDescriptor> resource

Check whether

Originator is allowed to

access

<semantic Descriptor>

Initialize and populate Semantic

Graph Store with semantic content

Forward SPARQL request

Execute SPARQL

Request

Return result

...

Originator Hosting CSE

Temporary

Semantic

GraphStore

Figure 8.5.7.X-1 Execute SPARQL request on single <semanticDescriptor>
When receiving the request with the SPARQL content, the Hosting CSE checks the access control policy applying to the <semanticDescriptor> resource. If the originator of the request is allowed to access it, it retrieves the semantic information from its descriptor attribute, initializes the Temporary Semantic Graph Store, and populates it with the semantic information. Then it forwards the SPARQL request to the Temporary Semantic Graph Store to be executed. Note that the Temporary Semantic Graph Store in this context is seen as an implementation component and not an architectural component according to the oneM2M architecture.
Figure 8.5.7.X-2 shows the case that, in addition to the targeted <semanticDescriptor> resource, a set of related <semanticDescriptor> resources needs to be included before executing the SPARQL request. This is described in Section 8.5.5.4 and TS-0001 [i.39] Section 10.2.35.2.2. The relevant <semanticDescriptor> resources are identified through the relatedSemantics attribute.

[image: image2.emf]SPARQL request targeting directly

(e.g. SPARQL update) or indirectly

(e.g. filter on parent resource)

<semanticDescriptor> resource

Check whether

Originator is allowed to

access

<semantic Descriptor>

Initialize and populate Semantic

Graph Store with semantic content

Forward SPARQL request

Execute SPARQL

Request

Return result

...

Check and if allowed

retrieve all content from

<semanticDesriptor>

resources in

relatedSemantics

Update Semantic Graph Store

Originator Hosting CSE

Temporary

Semantic

GraphStore

Figure 8.5.7.X-2 Execute SPARQL request on <semanticDescriptor> plus those identified through relatedSemantics attribute
In addition to the steps shown in Figure 8.5.7.X-1, the Hosting CSE attempts to retrieve the semantic content of the <semanticDescriptor> resources identified by the relatedSemantics attribute and updates the Temporary Semantic Graph Store accordingly. The respective access control policies are checked as part of the retrieval as in any other resource access. Only once all the identified (and accessible) content has been added is complete, the SPARQL request is forwarded for execution.
Figure 8.5.7.X-3 shows the case that the semantic content of the targeted <semanticDescriptor> resource contains links to further <semanticDescriptor> resoruces identified by resourceDescriptorLink properties. This annotation-based approach is described in Section 8.5.5.3 and in TS-0001 [i.39], Section 10.2.35.2.1.

[image: image3.emf]SPARQL request targeting directly

(e.g. SPARQL update) or indirectly

(e.g. filter on parent resource)

<semanticDescriptor> resource

Originator Hosting CSE

Temporary

Semantic

GraphStore

Check whether

Originator is allowed to

access

<semantic Descriptor>

Initialize and populate Semantic

Graphh Store with semantic content

Forward SPARQL request

Execute SPARQL

Request

Return result

...

Check and if allowed

retrieve all content from

requested

<semanticDesriptor>

Update Semantic Graphh Store

Continue SPARQL

Request Execution

Request content from

additional <SemanticDescriptor>

optional,

0..n times

Figure 8.5.7.X-2 Execute SPARQL request on <semanticDescriptor> plus those encountered during the execution in form of resourceDescriptorLink properties

In this case, the modified SPARQL engine of the Temporary Semantic Graph Store may encounter elements with resourceDescriptorLink properties when matching variables as part of the execution of the SPARQL request. In this case the execution will be halted and the engine requests the content of the <semanticDescriptor> resource identified by the resourceDescriptorLink property before continuing execution on the merged content. This can happen 0 to n times during the execution. Note that the Temporary Semantic Graph Store is not an architectural oneM2M component and logically should be seen as part of the Hosting CSE. The semantic content is requested on behalf of the original Originator with its access rights.
The advantage of the implementation with the Temporary Semantic Graph Store is that no special care has to be taken with respect to access control policies. Access control policies are evaluated in the usual way when accessing the semantic content on which the SPARQL request is to be executed. The disadvantage is of course that a Temporary Semantic Graph store has to be initialized and populated each time a SPARQL request is to be executed.
-----------------------End of change 1---

© 2016 oneM2M Partners
 Page 6 (of 6)

[image: image4.png]SPARQL request targeting directly

(e.g. SPARQL update) or indirectly
(e.g. filter on parent resource)

<semanticDescriptor> resource

Check whether
Originator is allowed to access

<semantic Descriptor>

Initialize and populate Semantic
Graph Store with semantic content

Forward SPARQL request

Execute SPARQL

Request

Return result

...

Check and if allowed retrieve all content from

<semanticDesriptor> resources in relatedSemantics

Update Semantic Graph Store

Originator

Hosting CSE

Temporary

Semantic

GraphStore

SPARQL request targeting directly

(e.g. SPARQL update) or indirectly
(e.g. filter on parent resource)

<semanticDescriptor> resource

Check whether
Originator is allowed to access

<semantic Descriptor>

Initialize and populate Semantic
Graph Store with semantic content

Forward SPARQL request

Execute SPARQL

Request

Return result

...

Originator

Hosting CSE

Temporary

Semantic

GraphStore

SPARQL request targeting directly

(e.g. SPARQL update) or indirectly
(e.g. filter on parent resource)

<semanticDescriptor> resource

Originator

Hosting CSE

Temporary

Semantic

GraphStore

Check whether
Originator is allowed to access

<semantic Descriptor>

Initialize and populate Semantic
Graphh Store with semantic content

Forward SPARQL request

Execute SPARQL

Request

Return result

...

Check and if allowed retrieve all content from requested

<semanticDesriptor>

Update Semantic Graphh Store

Continue SPARQL

Request Execution

Request content from
additional <SemanticDescriptor>

optional,

0..n times

