	Doc# PRO-2017-0129R01-JSON_Serialization_issues-R3 2
Change Request
	[image: image1.png]

	
	

	CHANGE REQUEST

	Meeting:*
	PRO#29

	Source:*
	IBM (ETSI)

	Date:*
	2017-05-25

	Contact:*
	Peter Niblett, peter_niblett@uk.ibm.com

	Reason for Change/s:*
	See the introduction part of this CR.

	 CR against: Release*
	R3

	CR against: WI*
	 FORMCHECKBOX
 Active <Work Item number>

 FORMCHECKBOX
 MNT maintenace / <Work Item number(optional)>
 FORMCHECKBOX
 STE Small Technical Enhancements / < Work Item number (optional)>
Only ONE of the above shall be ticked

	CR against: TS/TR*
	TS-0004 V2.11.0

	Clauses/Sub Clauses*
	8.4

	Type of change: *
	 FORMCHECKBOX
 Editorial change
 FORMCHECKBOX
 Bug Fix or Correction
 FORMCHECKBOX
 Change to existing feature or functionality
 FORMCHECKBOX
 New feature or functionality
Only ONE of the above shall be ticked

	Post Freeze checking:*
	This CR contains only essential changes and corrections? YES FORMCHECKBOX
 NO FORMCHECKBOX

This CR may break backwards compatibility with the last approved version of the TS? YES FORMCHECKBOX
 NO FORMCHECKBOX

This CR is a mirror CR? YES FORMCHECKBOX
 if YES, please indicate the document number of the original CR: PRO-2017-0130R01-JSON_Serialization_issues-R3

	Template Version:27 May 2015 (Dot not modify)

oneM2M Notice

The document to which this cover statement is attached is submitted to oneM2M. Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.

GUIDELINES for Change Requests:

Provide an informative introduction containing the problem(s) being solved, and a summary list of proposals.

Each CR should contain changes related to only one particular issue/problem.
In case of a correction, and the change apply to previous releases, a separated “mirror CR” should be posted at the same time of this CR
Follow the principle of completeness, where all changes related to the issue or problem within a deliverable are simultaneously proposed to be made E.g. A change impacting 5 tables should not only include a proposal to change only 3 tables. Includes any changes to references, definitions, and acronyms in the same deliverable.
Follow the drafting rules.
All pictures must be editable.
Check spelling and grammar to the extent practicable.
Use Change bars for modifications.
The change should include the current and surrounding clauses to clearly show where a change is located and to provide technical context of the proposed change. Additions of complete sections need not show surrounding clauses as long as the proposed section number clearly shows where the new section is proposed to be located.
Multiple changes in a single CR shall be clearly separated by horizontal lines with embedded text such as, start of change 1, end of change 1, start of new clause, end of new clause.
When subsequent changes are made to content of a CR, then the accepted version should not show changes over changes. The accepted version of the CR should only show changes relative to the baseline approved text.
Introduction
This CR addresses some of the issues found in the Taipei interop test. It adds some more examples of how the JSON serialization is supposed to work, applying the rules in clause 8.4.2
-----------------------Start of change 1---
8.4 JSON serialization
8.4.1 Terminology

The following conventions are used in the clause that follows.

· The italicized terms object, member, name, array, number, string, boolean and null are to be interpreted as in IETF RFC 7159 [Error! Reference source not found.].
· The italicized term element is to be interpreted to encompass oneM2M Primitive Parameters, Resource Attributes and other elements or attributes used inside oneM2M complex type definitions.
8.4.2 Method

The primitive shall be encoded as a JSON object, conforming to the requirements of IETF RFC 7159 [Error! Reference source not found.]. This JSON object shall be restricted to Unicode characters defined in The Unicode Standard and encoded using UTF-8 as described in IETF RFC 3629 [Error! Reference source not found.]. The names in each object in the JSON shall be unique.
The structure of the top-level primitive object shall be determined by the data type definitions in clause 6 and clause 7 of the present document, as follows:

1) All member's names shall use the short name defined in clause Error! Reference source not found..
2) If an element is defined in the present document as having a complex type, then it is serialized in the JSON member as an object and its children are recursively serialized as members of that object, using short names as defined in clause Error! Reference source not found..
3) Where an element has a Global Element Declaration in the XSD its member name in the JSON serialization shall be prefixed with a namespace identifier followed by a “:” character. In particular, if the member serializes a Resource defined in the present specification its name shall have the prefix “m2m:”.
4) The membership of each nested object shall respect the cardinality constraints from the corresponding XSD complex type definition,

5) If an element is defined in the present document as having an atomic data type that is numeric (including enumeration data types in clause Error! Reference source not found.) then its value is serialized into the JSON member as a number.

6) If an element is defined as having an atomic data type that is non-numeric then its value is serialized into the JSON member as a string.

7) If an element is defined as xs:boolean (or a type derived from xs:boolean) then it is serialized in the JSON member as a boolean.

8) If an element is defined as having an xs:list type in the corresponding XSD then it is serialized in the JSON member as an array.

9) If an element instance has a null value then it is serialized into the JSON member as a null, regardless of the data type that it has in the corresponding XSD.

10) If an element is defined as having maxOccurs > 1 in the corresponding XSD then its occurrences are serialized in a single JSON member as an array.
11) If an element has an XSD data type that is a simple type with XML attributes, then it is serialized in the JSON member as an object. The XML attributes appear as members of that object (using their short names) and the value of the element is serialized as a member of that object with the special short name "val" (lower case).

12) The members (at each level) may be serialized in any order. The order in which they appear in the corresponding XSD file is immaterial.

13) If an element has an XSD data type that is a complex type with XML attributes, then it is serialized in JSON as an object. The XML attributes appear as members of that object (using their short names) as do the XML elements.

The Content parameter is serialized as an object containing a single member, as defined in the first column of Tables 7.5.2-1 and 7.5.2-2 using the short name from Table 8.2.4-1 or Table 8.2.3-2.
JSON serialized representations of request and response primitives shall not be encapsulated under member names m2m:rqp and m2m:rsp. Note that this is in contrast to XML serialized representations of primitives which shall include such root elements in order to assert XSD compliance, cf. clause Error! Reference source not found..
8.4.3 Examples

An example of a request message serialized using JSON is given below:

{"op": "1", "fr": "C2345", "to": "//example.net/myCSE/99", "rqi": "A1234",
 "pc": {"m2m:sch": {"se": {"sce":["* 0-5 2,6,10 * * * *"]}}},
 "ty": 18}
· op: operation (in this case it is Create)

· fr: ID of the Originator (an AE in this example)

· to: URI of the target resource

· rqi: request identifier (this is a string)

· pc: attributes of the <schedule> resource with member name "m2m:sch" to be provided by Originator. This is serialized as a nested JSON object

· ty: type of resource to be created (in this case a Schedule resource). This is a number.

Note that the Operation (op) parameter is present only in Request primitives. The presence of this parameter in JSON serialized primitive representations allows to differentiate Request primitives from Response primitives.

The next example shows an <AE> resource serialized using JSON, containing references to three child resources: two <container> resources (type 3) and a <schedule> (type 18).

The top level member, m2m:ae, is an object whose name consists of the prefix m2m: followed by the short name for the <AE> resource defined in Table 8.2.4-1. The members of this object are the attributes of <AE> using the short names from Table 8.2.3-2.
The ch member is an array containing references to the child resources. Note the use of the special short name val to hold the reference itself, as specified by clause 8.4.2, rule 10.

{
 "m2m:ae": {
 "rn": "appname",
 "aei":"CAE01",
 "ct": "20160404T132648",
 "et": "20160408T004648",
 "lt": "20160404T132648",
 "pi": "ONET-CSE-02",
 "ri": "REQID1",
 "ty": 2,
 "ch": [{"nm":"container1", "typ":3, "val":"1234"},
 {"nm":"container2", "typ":3, "val":"1235"},

{"nm":"mySchedule", "typ":18, "val":"5678"}]
 }
}
The third example shows the same <AE> resource, but with the child resources serialized inline. For brevity it does not include all the attributes of the child resources

{
 "m2m:ae": {
 "rn": "appname",
 "aei": "CAE01",
 "ct": "20160404T132648",
 "et": "20160408T004648",
 "lt": "20160404T132648",
 "pi": "ONET-CSE-02",
 "ri": "REQID1",
 "ty": 2,

 "m2m:cnt":[{"rn":"container1", "ty":3, …},
 {"rn":"container2", "ty":3, …}],

 "m2m:sch":[{"rn":"mySchedule", "ty":18, …}]
 }
}
-----------------------End of change 1---
CHECK LIST

· Does this change request include an informative introduction containing the problem(s) being solved, and a summary list of proposals.?
· Does this CR contain changes related to only one particular issue/problem?
· Have any mirror crs been posted?
· Does this change request make all the changes necessary to address the issue or problem? E.g. A change impacting 5 tables should not only include a proposal to change only 3 tables. Includes any changes to references, definitions, and acronyms in the same deliverable?
· Does this change request follow the drafting rules?
· Are all pictures editable?
· Have you checked the spelling and grammar?
· Have you used change bars for all modifications?
· Does the change include the current and surrounding clauses to clearly show where a change is located and to provide technical context of the proposed change? (Additions of complete sections need not show surrounding clauses as long as the proposed section number clearly shows where the new section is proposed to be located.)
· Are multiple changes in this CR clearly separated by horizontal lines with embedded text such as, start of change 1, end of change 1, start of new clause, end of new clause.?
© 2017 oneM2M Partners
 Page 1 (of 6)

[image: image1.png]