	Doc# PRO-2018-0023-notification_serialization_type
Change Request
	[image: image1.png]

	

	CHANGE REQUEST

	Meeting ID:*
	PRO#34

	Source:*
	SeungMyeong JEONG, KETI, sm.jeong@keti.re.kr
Il-Yeup Ahn, KETI, iyahn@keti.re.kr

	Date:*
	2010-03-05

	Reason for Change/s:*
	To apply the notification serialization type in TS-0001

	CR against: Release*
	3

	CR against: WI*
	 FORMCHECKBOX
 Active
 FORMCHECKBOX
 MNT maintenance / < Work Item number(optional)>
Is this a mirror CR? Yes FORMCHECKBOX
 No FORMCHECKBOX

mirror CR number: (Note to Rapporteur - use latest agreed revision)
 FORMCHECKBOX
 STE Small Technical Enhancements / < Work Item number (optional)>
Only ONE of the above shall be ticked

	CR against: TS/TR*
	TS-0004

	Clauses *
	

	Type of change: *
	 FORMCHECKBOX
 Editorial change
 FORMCHECKBOX
 Bug Fix or Correction
 Change to existing feature or functionality
 FORMCHECKBOX
 New feature or functionality
Only ONE of the above shall be ticked

	Impacted other TS/TR(s)
	n/a

	Post Freeze checking:*
	This CR contains only essential changes and corrections? YES FORMCHECKBOX
 NO FORMCHECKBOX

This CR may break backwards compatibility with the last approved version of the TS? YES
 NO

	Template Version: January 2017 (Do not modify)

oneM2M Notice

The document to which this cover statement is attached is submitted to oneM2M. Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.

GUIDELINES for Change Requests:

Provide an informative introduction containing the problem(s) being solved, and a summary list of proposals.

Each CR should contain changes related to only one particular issue/problem.
In case of a correction, and the change apply to previous releases, a separate “mirror CR” should be posted at the same time of this CR
Mirror CR: applies only when the text, including clause numbering are exactly the same.

Companion CR: applies when the change means the same but the baselines differ in some way (e.g. clause number).
Follow the principle of completeness, where all changes related to the issue or problem within a deliverable are simultaneously proposed to be made E.g. A change impacting 5 tables should not only include a proposal to change only 3 tables. Includes any changes to references, definitions, and acronyms in the same deliverable.
Follow the drafting rules.
All pictures must be editable.
Check spelling and grammar to the extent practicable.
Use Change bars for modifications.
The change should include the current and surrounding clauses to clearly show where a change is located and to provide technical context of the proposed change. Additions of complete clauses need not show surrounding clauses as long as the proposed clause number clearly shows where the new clause is proposed to be located.
Multiple changes in a single CR shall be clearly separated by horizontal lines with embedded text such as, start of change 1, end of change 1, start of new clause, end of new clause.
When subsequent changes are made to content of a CR, then the accepted version should not show changes over changes. The accepted version of the CR should only show changes relative to the baseline approved text.
Introduction
This contribution proposes the notification serialization preference (or indication) in the subscription resource type. When it is set in the notificationURI attribute, then the subsequent notificadtions will be serialized in that type (i.e. JSON, XML and CBOR).
R01:

· restricted to use this feature only for the URL formatted notification target, not the resource ID in the notificationURI
· added missing text regarding copying notification target information from notificationURI and putting into the To parameter of the Notify request
· explicitly said that “?ct=json” will NOT get into the To parameter of the Notify request
R02:

· If the “nu” does not contains “?” for application query, then “?” will be used to have the notification serialization type indicator. If not, “&” indicator will be used to extend the existing query component in the “nu” e.g. “?q=true&ct=json”. Example for those two cases are both listed in the spec.
-----------------------Start of change 1---

7.4.8 Resource Type <subscription>

7.4.8.1
Introduction

The <subscription> resource contains subscription information for its subscribed-to resource. The subscription resource is a child of the subscribed to resource.

The detailed description can be found in clause 9.6.8 in TS-0001 [6].

Table 7.4.8.1‑1: Data type definition of <subscription> resource

	Data Type ID
	File Name
	Note

	subscription
	CDT-subscription-v3_4_0.xsd
	

Table 7.4.8.1‑2: Universal/Common Attributes of <subscription> resource
	Attribute Name
	Request Optionality

	
	Create
	Update

	@resourceName
	O
	NP

	resourceType
	NP
	NP

	resourceID
	NP
	NP

	parentID
	NP
	NP

	accessControlPolicyIDs
	O
	O

	creationTime
	NP
	NP

	expirationTime
	O
	O

	lastModifiedTime
	NP
	NP

	labels
	O
	O

	creator
	O
	NP

	dynamicAuthorizationConsultationIDs
	O
	O

Table 7.4.8.1‑3: Resource Specific Attributes of <subscription> resource
	Attribute Name
	Request Optionality
	Data Type
	Default Value and Constraints

	
	Create
	Update
	
	

	eventNotificationCriteria
	O
	O
	m2m:eventNotificationCriteria
	Default behaviour is notification on Update_of_Resource

	expirationCounter
	O
	O
	xs:positiveInteger
	No default

	notificationURI
	M
	O
	list of xs:anyURI
	No default
In this value, it may contain notification serialization type (i.e. xml, json, cbor) per target. This shall be applied only for the URL formatted target (c.f. resource ID). When the type is set, only one type indication shall be appended in the target as the key-value format with delimiter “?”. If the value already contains “?” character for application queries, the type information shall be appended with “&”. The key shall be “ct” (content serialization type). Note that this serialization type is in lower cases.
Examples :
 http://mydomain/notificationHandler?ct=json
http://mydomain/notificationHandler?q=true&ct=json

	groupID
	O
	O
	xs:anyURI
	No default

	notificationForwardingURI
	O
	O
	xs:anyURI
	No default

	batchNotify
	O
	O
	m2m:batchNotify
	No default

	rateLimit
	O
	O
	m2m:rateLimit
	No default

	preSubscriptionNotify
	O
	NP
	xs:positiveInteger
	No default

	pendingNotification
	O
	O
	m2m:pendingNotification
	No default

	notificationStoragePriority
	O
	O
	xs:positiveInteger
	No default

	latestNotify
	O
	O
	xs:boolean
	No default

	notificationContentType
	O
	O
	m2m:notificationContentType
	Default value is set to ‘all attributes'

	notificationEventCat
	O
	O
	m2m:eventCat
	No default

	subscriberURI
	O
	NP
	xs:anyURI
	No default

Table 7.4.8.1‑4: Reference of child resources

	Child Resource Type
	Child Resource Name
	Multiplicity
	Ref. to in Resource Type Definition

	<schedule>
	notificationSchedule
	0..1
	Clause 7.4.9

	<notificationTargetMgmtPolicyRef>
	[variable]
	0..n
	Clause 7.4.30

	<notificationTargetSelfReference>
	ntsr
	1
	Clause 7.4.33

-----------------------End of change 1---
-----------------------Start of change 2---
7.5.1.2.2 Notification for <subscription> resources
When the notification message is forwarded or aggregated by transit CSEs, the Originator or a transit CSE shall check whether there are notification policies to enforce between subscription resource Hosting CSE and the notification target. In that case, the transit CSE as well as the Originator shall process Notify request primitive(s) by using the corresponding policy and send processed Notify request primitive(s) to the next CSE with notification policies related to the enforcement so that the transit CSE is able to enforce the policy defined by the subscriber. The notification policies related to the enforcement at this time is verified by using the subscription reference in the Notify request primitive. In the notification policies, the latestNotify attribute is only enforced in the transit CSE as well as the Originator.

If Event Category parameter is set to 'latest' in the notification request primitive, the transit CSE as well as Originator shall cache the most recent Notify request. That is, if a new Notify request is received by the CSE with a subscription reference that has already been buffered for a pending Notify request, the newer Notify request will replace the buffered older Notify request.

Originator: When an event is generated, the Originator shall execute the following steps in order:

Step 1.0
Check the eventNotificationCriteria attribute of the <subscription> resource associated with the modified resource:
· If the eventNotificationCriteria attribute is set, then the Originator shall check whether the corresponding event matches with the event criteria.

· If notificationEventType is not set within the eventNotificationCriteria attribute, the Originator shall use the default setting of Update_of_Resource to compare against the event.

· If the notificationEventType has either an explicit or default value of "Update_of_Resource" and the attribute condition is also present then the matching event shall only be detected if one of the attributes in the list has been updated. If the attribute condition is not present then a matching event is generated whenever any attribute has been updated.

· If the event matches, go to the step 2.0. Otherwise, the Originator shall discard the corresponding event.

· If the eventNotificationCriteria attribute is not configured, the Originator shall use the default setting of Update_of_Resource for notificationEventType and then continue with the step 2.0.

Step 2.0
The Originator shall check the notification policy as described in the below steps, but the notification policy may be checked in different order. After checking the notification policy in step 2.0 (i.e. from step 2.1to step 2.6), then continue with step 3.0

Step 2.1
The Originator shall determine the type of the notification per the notificationContentType attribute. The possible values of for notificationContentType attribute are 'Modified Attributes', 'All Attributes' or 'ResourceID'. This attribute may be used joint with eventType attribute in the eventNotificationCriteria to determine if it is the attributes/resourceID of the subscribed-to resource or the attributes/resourceID of the child resource of the subscribed-to resource that shall be returned in the notification.

· If the value of notificationContentType is set to 'Modified Attribute', the Notify request primitive shall include the partial resource containing modified attribute(s) only (Refer to clause 7.2.1.2 for response content description).
· If the value of notificationContentType is set to 'All Attributes', the Notify request primitive shall include the complete resource with all attributes (Refer to clause 7.2.1.2 for response content description).
· If the value of notificationContentType is set to 'ResourceID', the Notify request primitive shall include the URI of the resource (Refer to clause 7.2.1.2 for response content description).
Step 2.2
Check the notificationEventCat attribute:

· If the notificationEventCat attribute is set, the Notify request primitive shall employ the Event Category parameter as given in the notificationEventCat attribute. Then continue with the step 2.3.

· If the notificationEventCat attribute is not configured, then continue with step 2.3.

Step 2.3
Check the latestNotify attribute:

· If the latestNotify attribute is set, the Originator shall assign Event Category parameter of value 'latest' of the notifications generated pertaining to the subscription created. Then continue with step 2.3.
Step 2.4
Check the notificationURI attribute:

· The Originator shall fetch the notificationURI attribute and set the value to the To parameter of the Notify request. When the notificationURI attribute contains more than one target, the Originator shall generate each Notify request per target.
· If the notificationURI attribute includes the notification serialization indication, in form of key-value pair, e.g. “ct=json”, after the delimiter “?”, the Originator shall serialize the notification for the notification target in that serialization type. The delimiter with the serialization indication shall be removed when the target is set to the To parameter of the Notify request. Then continue with step 3.0.
NOTE:
The use of some attributes such as rateLimit, batchNotify and preSubscriptionNotify is not supported in the present document.
Step 3.0
The Originator shall check the notification and reachability schedules, but the notification schedules may be checked in different order.

· If the <subscription> resource associated with the modified resource includes a <notificationSchedule> child resource, the Originator shall check the time periods given in the scheduleElement attribute of the <notificationSchedule> child resource.

· Also, the Originator shall check the reachability schedule associated with the Receiver by exploring its <schedule> resource. If reachability schedules are not present in a Node then that Entity is considered to be always reachable

· If notificationSchedule and reachability schedule indicate that message transmission is allowed, then proceed with step 5.0. Otherwise, proceed with step 4.0

· In particular, if the notificationEventCat attribute is set to 'immediate' and the <notificationSchedule> resource does not allow transmission, then go to step 5.0 and send the corresponding Notify request primitive by temporarily ignoring the Originator's notification schedule
Step 4.0
Check the pendingNotification attribute:

· If the pendingNotification attribute is set, then the Originator shall cache pending Notify request primitives according to the pendingNotification attribute. The possible values are 'sendLatest' and 'sendAllPending'. If the value of pendingNotification is set to 'sendLatest', the most recent Notify request primitive shall be cached by the Originator and it shall set the Event Category parameter to 'latest'. If pendingNotification is set to 'sendAllPending', all Notify request primitives shall be cached by the Originator. If the pendingNotification attribute is not configured, the Originator shall discard the corresponding Notify request primitive. The processed Notify request primitive by the pendingNotification attribute is sent to the Receiver after the reachability recovery (see the step 6.0)

Step 5.0
Check the expirationCounter attribute:

· If the expirationCounter attribute is set, then it shall be decreased by one when the Originator successfully sends the Notify request primitive. If the counter equals to zero('0'), the corresponding <subscription> resource shall be deleted. Then end the 'Compose Notify Request Primitive' procedure

· If the expirationCounter attribute is not configured, then end the 'Compose Notify Request Primitive' procedure

Originator: After reachability recovery, the Originator shall execute the following steps in order:

Step 6.0
If the pendingNotification attribute is set, the Originator shall send the processed Notify request primitive by the pendingNotification attribute and, then continue with the step 7.0

Step 7.0
Check the expirationCounter attribute:

· If the expirationCounter attribute is set, then its value shall be decreased by one when the Originator successfully sends the Notify request primitive. If the counter meets zero, the corresponding <subscription> resource shall be deleted. Then end the 'Compose Notify Request Primitive' procedure.

· If the expirationCounter attribute is not configured, then end the 'Compose Notify Request Primitive' procedure

Receiver: When the Hosting CSE receives a Notify request primitive, the Hosting CSE shall check validity of the primitive parameters. In case the Receiver is a transit CSE which forwards or aggregates Notify request primitives before sending to the subscriber or other transit CSEs, upon receiving the Notify request primitive with the Event Category parameter set to 'latest', the Receiver shall identify the latest Notify request primitive with the same subscription reference while storing Notify request primitives locally. When the Receiver as a transit CSE needs to send pending Notify request primitives, it shall send the latest Notify request primitive. When the Receiver as a transit CSE needs to send Notify request primitives, it shall use one of the serializations specified in the subscriber or other transit CSE contentSerialization attribute. If there is no contentSerialization value specified the transit CSE may use any serialization format.
-----------------------End of change 2---

CHECK LIST

· Does this Change Request include an informative introduction containing the problem(s) being solved, and a summary list of proposals.?
· Does this CR contain changes related to only one particular issue/problem?
· Have any mirror CRs been posted?
· Does this Change Request make all the changes necessary to address the issue or problem? E.g. A change impacting 5 tables should not include a proposal to change only 3 tables?Does this Change Request follow the drafting rules?
· Are all pictures editable?
· Have you checked the spelling and grammar?
· Have you used change bars for all modifications?
· Does the change include the current and surrounding clauses to clearly show where a change is located and to provide technical context of the proposed change? (Additions of complete clauses need not show surrounding clauses as long as the proposed clause number clearly shows where the new clause is proposed to be located.)
· Are multiple changes in this CR clearly separated by horizontal lines with embedded text such as, start of change 1, end of change 1, start of new clause, end of new clause.?
© 2018 oneM2M Partners
 Page 6 (of 8)

[image: image1.png]