	Doc# PRO-2017-0241R05-Cross_Resource_Subscription_Notification_Procedure
Change Request
	[image: image1.png]

	CHANGE REQUEST

	Meeting ID:*
	PRO34

	Source:*
	Chonggang Wang, Convida, Wang.Chonggang@ConvidaWireless.Com
Dale Seed, Convida, Seed.Dale@ConvidaWireless.Com
Bob Flynn, Convida, Flynn.Bob@ConvidaWireless.com

	Date:*
	2018-03-15

	Reason for Change/s:*
	Stage-3 protocol details for <crossResourceSubscription> resources and its RESTful operations, which have been defined in TS-0001 V3.7.0 clauses 9.6.58, 9.6.59, 10.2.10.22, 10.2.10.23, 10.2.10.24, 10.2.10.25, 10.2.10.26, and 10.2.10.27.

	CR against: Release*
	Release-3

	CR against: WI*
	 FORMCHECKBOX
 Active <Work Item number>

 FORMCHECKBOX
 MNT maintenance / < Work Item number(optional)>
Is this a mirror CR? Yes FORMCHECKBOX
 No FORMCHECKBOX

mirror CR number: (Note to Rapporteur - use latest agreed revision)
 FORMCHECKBOX
 STE Small Technical Enhancements / < Work Item number (optional)>
Only ONE of the above shall be ticked

	CR against: TS/TR*
	TS-0004 V3.4.0

	Clauses *
	

	Type of change: *
	 FORMCHECKBOX
 Editorial change
 FORMCHECKBOX
 Bug Fix or Correction
 Change to existing feature or functionality
 FORMCHECKBOX
 New feature or functionality
Only ONE of the above shall be ticked

	Impacted other TS/TR(s)
	<TS/TR number>, <Version Number>, and <Description on which aspect should be reflected in this TS/TR>

	Post Freeze checking:*
	This CR contains only essential changes and corrections? YES FORMCHECKBOX
 NO FORMCHECKBOX

This CR may break backwards compatibility with the last approved version of the TS? YES
 NO

	Template Version: January 2017 (Do not modify)

oneM2M Notice

The document to which this cover statement is attached is submitted to oneM2M. Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.

GUIDELINES for Change Requests:

Provide an informative introduction containing the problem(s) being solved, and a summary list of proposals.

Each CR should contain changes related to only one particular issue/problem.
In case of a correction, and the change apply to previous releases, a separate “mirror CR” should be posted at the same time of this CR
Mirror CR: applies only when the text, including clause numbering are exactly the same.

Companion CR: applies when the change means the same but the baselines differ in some way (e.g. clause number).
Follow the principle of completeness, where all changes related to the issue or problem within a deliverable are simultaneously proposed to be made E.g. A change impacting 5 tables should not only include a proposal to change only 3 tables. Includes any changes to references, definitions, and acronyms in the same deliverable.
Follow the drafting rules.
All pictures must be editable.
Check spelling and grammar to the extent practicable.
Use Change bars for modifications.
The change should include the current and surrounding clauses to clearly show where a change is located and to provide technical context of the proposed change. Additions of complete clauses need not show surrounding clauses as long as the proposed clause number clearly shows where the new clause is proposed to be located.
Multiple changes in a single CR shall be clearly separated by horizontal lines with embedded text such as, start of change 1, end of change 1, start of new clause, end of new clause.
When subsequent changes are made to content of a CR, then the accepted version should not show changes over changes. The accepted version of the CR should only show changes relative to the baseline approved text.
Introduction
R01 – Changed to align with updates to PRO-2017-0239 and PRO-2017-0240. This contribution has not been discussed yet.

· Change 1: 7.5.1.2.1 Introduction – add <crossResourceSubscription> to list of notification types
· Change 2: 7.5.1.2.2 Notification for modification of subscribed resources - editorial changes
· Change 3: 7.5.1.2.16 Cross-Resource Notification – New procedures

· Change 4: 7.5.1.2.4 Notification for subscription deletion. – Update to send notification to associatedCrossResourceSub, if present.
R02 –
· Change 3: 7.5.1.2.17 Notification for subscription deletion – New procedure added to change 3
R03-04 – Drafting session changes
Cross-resource subscription as a new feature has been adopted in TS-0001 (V3.7.0), which is supported by the following new attributes, resources, and operations included in TS-0001.
· New attribute associatedCrossResourceSub is introduced to <subscription> resource in clause 9.6.8.
· New resource <crossResourceSubscription> is described in clause 9.6.58.
· <crossResourceSubscription> can be a child resource of <CSEBase>, <remoteCSE>, and <AE>
· <crossResourceSubscription> has a virtual child resource subscriptionLinkDeletion

· <crossResourceSubscription> has a few new attributes: several of them (i.e. regularResourcesAsTarget, subscriptionsAsTarget, timeWindowSize) will be supported using existing oneM2M simple data type or create new oneM2M simple data type; one attribute (i.e. timeWindowType) will be supported using a enumeration type; one attribute (i.e. eventNotificationCriteriaSet) will be supported by definiting a new oneM2M complex data type.
· <crossResourceSubscription> also re-uses a few attributes of <subscription> resource.
· New virtual resource subscriptionLinkDeletion is described in clause 9.6.59
· CRUD operations on <crossResourceSubscription> are described in clauses 10.2.10.22-10.2.10.25
· Cross-resource notification procedure is described in clause 10.2.10.26
· The virtual resource subscriptionLinkDeletion is used to remove a <subscription> resource from the subscriptionResourcesAsTarget attribute of a <crossResourceSubscription> resource. This is described in clause 10.2.10.27
Based on the above resources, attributes, and operations in TS-0001 (V3.7.0), the following changes/updates are proposed in this contribution for cross-notification procedure for TS-0004.
· Cross-resource notification procedure is introduced to “7.5 Primitive-specific procedures and definitions” – Change 1
-----------------------Start of change 1---
7.5.1.1.1 Introduction
Notification procedures shall be employed for the following use cases:

· to notify Receiver(s) of modifications of a resource for an associated <subscription> resource,

· to request Receiver(s) to perform resource subscription verification,

· to notify deletion of the <subscription> resource,

· to notify Receiver(s) for Asynchronous Non-blocking Request,

· to notify Receiver(s) of modifications of a resource when the subscription relationship is established through the <group> resource.
· to send the response corresponding to a request delivered via service layer long polling (clause 7.4.22.2.2 Retrieve <pollingChannelURI>).
· to notify Receiver(s)(i.e. IPE) for on-demand discovery request.

· to notify Receiver(s) of the missing Time Series Data points for an associated <subscription> resource.
· to notify Receiver(s) of a security related request (e.g. dynamic authorization and end-to-end security).
· to notify Receiver(s) of a cross-resource notification generated by a <crossResourceSubscription> Hosting CSE.
The following sub-clauses specify the notification procedures for each of the above use cases.
-----------------------End of change 1---
-----------------------Start of change 2---
7.5.1.1.2 Notification for modification of subscribed resources
When the notification message is forwarded or aggregated by transit CSEs, the Originator or a transit CSE shall check whether there are notification policies to enforce between subscription resource Hosting CSE and the notification target. In that case, the transit CSE as well as the Originator shall process Notify request primitive(s) by using the corresponding policy and send processed Notify request primitive(s) to the next CSE with notification policies related to the enforcement so that the transit CSE is able to enforce the policy defined by the subscriber. The notification policies related to the enforcement at this time is verified by using the subscription reference in the Notify request primitive. In the notification policies, the latestNotify attribute is only enforced in the transit CSE as well as the Originator.

If Event Category parameter is set to 'latest' in the notification request primitive, the transit CSE as well as Originator shall cache the most recent Notify request. That is, if a new Notify request is received by the CSE with a subscription reference that has already been buffered for a pending Notify request, the newer Notify request will replace the buffered older Notify request.

Originator: When an event is generated, the Originator shall execute the following steps in order:

Step 1.0
Check the eventNotificationCriteria attribute of the <subscription> resource associated with the modified resource:
· If the eventNotificationCriteria attribute is set, then the Originator shall check whether the corresponding event matches with the event criteria.

· If notificationEventType is not set within the eventNotificationCriteria attribute, the Originator shall use the default setting of Update_of_Resource to compare against the event.

· If the notificationEventType has either an explicit or default value of "Update_of_Resource" and the attribute condition is also present then the matching event shall only be detected if one of the attributes in the list has been updated. If the attribute condition is not present then a matching event is generated whenever any attribute has been updated.

· If the event matches, go to the step 2.0. Otherwise, the Originator shall discard the corresponding event.

· If the eventNotificationCriteria attribute is not configured, the Originator shall use the default setting of Update_of_Resource for notificationEventType and then continue with the step 2.0.

Step 2.0
The Originator shall check the notification policy as described in the below steps, but the notification policy may be checked in different order. After checking the notification policy in step 2.0 (i.e. from step 2.1to step 2.3), then continue with step 3.0

Step 2.1
The Originator shall determine the type of the notification per the notificationContentType attribute. The possible values of for notificationContentType attribute are 'Modified Attributes', 'All Attributes' or 'ResourceID'. This attribute may be used joint with eventType attribute in the eventNotificationCriteria to determine if it is the attributes/resourceID of the subscribed-to resource or the attributes/resourceID of the child resource of the subscribed-to resource that shall be returned in the notification.

· If the value of notificationContentType is set to 'Modified Attribute', the Notify request primitive shall include the partial resource containing modified attribute(s) only (Refer to clause 7.2.1.2 for response content description).
· If the value of notificationContentType is set to 'All Attributes', the Notify request primitive shall include the complete resource with all attributes (Refer to clause 7.2.1.2 for response content description).
· If the value of notificationContentType is set to 'ResourceID', the Notify request primitive shall include the URI of the resource (Refer to clause 7.2.1.2 for response content description).
Step 2.2
Check the notificationEventCat attribute:

· If the notificationEventCat attribute is set, the Notify request primitive shall employ the Event Category parameter as given in the notificationEventCat attribute. Then continue with the step 2.3.

· If the notificationEventCat attribute is not configured, then continue with step 2.3.

Step 2.3
Check the latestNotify attribute:

· If the latestNotify attribute is set, the Originator shall assign Event Category parameter of value 'latest' of the notifications generated pertaining to the subscription created. Then continue with step 3.0.

NOTE:
The use of some attributes such as rateLimit, batchNotify and preSubscriptionNotify is not supported in the present document.
Step 3.0
The Originator shall check the notification and reachability schedules, but the notification schedules may be checked in different order.

· If the <subscription> resource associated with the modified resource includes a <notificationSchedule> child resource, the Originator shall check the time periods given in the scheduleElement attribute of the <notificationSchedule> child resource.
· Also, the Originator shall check the reachability schedule associated with the Receiver by exploring its <schedule> resource. If reachability schedules are not present in a Node then that Entity is considered to be always reachable
· If notificationSchedule and reachability schedule indicate that message transmission is allowed, then proceed with step 5.0. Otherwise, proceed with step 4.0
· In particular, if the notificationEventCat attribute is set to 'immediate' and the <notificationSchedule> resource does not allow transmission, then go to step 5.0 and send the corresponding Notify request primitive by temporarily ignoring the Originator's notification schedule
Step 4.0
Check the pendingNotification attribute:
· If the pendingNotification attribute is set, then the Originator shall cache pending Notify request primitives according to the pendingNotification attribute. The possible values are 'sendLatest' and 'sendAllPending'. If the value of pendingNotification is set to 'sendLatest', the most recent Notify request primitive shall be cached by the Originator and it shall set the Event Category parameter to 'latest'. If pendingNotification is set to 'sendAllPending', all Notify request primitives shall be cached by the Originator. If the pendingNotification attribute is not configured, the Originator shall discard the corresponding Notify request primitive. The processed Notify request primitive by the pendingNotification attribute is sent to the Receiver after the reachability recovery (see the step 6.0)

Step 5.0
Check the expirationCounter attribute:

· If the expirationCounter attribute is set, then it shall be decreased by one when the Originator successfully sends the Notify request primitive. If the counter equals to zero('0'), the corresponding <subscription> resource shall be deleted. Then end the 'Compose Notify Request Primitive' procedure

· If the expirationCounter attribute is not configured, then end the 'Compose Notify Request Primitive' procedure

Originator: After reachability recovery, the Originator shall execute the following steps in order:

Step 6.0
If the pendingNotification attribute is set, the Originator shall send the processed Notify request primitive by the pendingNotification attribute and, then continue with the step 7.0

Step 7.0
Check the expirationCounter attribute:

· If the expirationCounter attribute is set, then its value shall be decreased by one when the Originator successfully sends the Notify request primitive. If the counter meets zero, the corresponding <subscription> resource shall be deleted. Then end the 'Compose Notify Request Primitive' procedure.

· If the expirationCounter attribute is not configured, then end the 'Compose Notify Request Primitive' procedure

Receiver: When the Hosting CSE receives a Notify request primitive, the Hosting CSE shall check validity of the primitive parameters. In case the Receiver is a transit CSE which forwards or aggregates Notify request primitives before sending to the subscriber or other transit CSEs, upon receiving the Notify request primitive with the Event Category parameter set to 'latest', the Receiver shall identify the latest Notify request primitive with the same subscription reference while storing Notify request primitives locally. When the Receiver as a transit CSE needs to send pending Notify request primitives, it shall send the latest Notify request primitive. When the Receiver as a transit CSE needs to send Notify request primitives, it shall use one of the serializations specified in the subscriber or other transit CSE contentSerialization attribute. If there is no contentSerialization value specified the transit CSE may use any serialization format.

-----------------------End of change 2---
-----------------------Start of change 3---
7.5.1.2.16 Cross-Resource Notification
When the <crossResourceSubscription> Hosting CSE receives a notification from the Host of a <subscription> indicated in regularResourcesAsTarget or subscriptionResourcesAsTarget the <crossResourceSubscription> Hosting CSE shall perform the following steps:

1) the Hosting CSE shall send a notification response to the <subscription> resource Hosting CSE.
2) Aggregate notifications using the time window mechanism indicated by timeWindowType attribute of the <crossResourceSubscription> resource to determine if a cross-resource notification shall be issued.
a) the Hosting CSE shall store the received notification until the current time window expires. When the current time window expires, the Hosting CSE shall discard stored notifications.
i) If timeWindowType is PeriodicWindow then a new time window shall be started when the current time window expires.

ii) If timeWindowType is SlidingWindow then a new time window shall be started when the next notification is received.
b) When notifications from all target <subscription> resources occur within the required time window the Hosting CSE shall issue a cross-resource notification in a notification data object with type m2m:notification with subscriptionReference element set as the URI of the <crossResourceSubscription> resource.
3) Send the notification to the notificationURI using the procedure defined in clause 7.5.1.2.2.
4) "Wait for Response primitive" procedure.

The Subscriber or Notification Targets which receive cross-resource notifications from the Hosting CSE shall perform the following steps in order:

1) "Create a success response" procedure defined in clause 7.3.3.12;
2) "Send the Response primitive" procedure.
7.5.1.2.17 Notification for subscription deletion

Whenever the subscribed to resources' modification triggers a notification for subscription deletion procedure as defined in clause 7.5.1.2.4 and the subscription relationship is established with <crossResourceSubscription> resource, the following procedure shall be performed.
1) The <crossResourceSubscription> resource is deleted using the procedure defined in 7.4.X1.2.4
.

-----------------------End of change 3---
-----------------------Start of change 4---
7.5.1.2.4 Notification for Subscription Deletion

Originator:
When the <subscription> resource is deleted and subscriberURI or associatedCrossResourceSub of the <subscription> resource is configured, the Originator shall send a Notify request primitive with a subscriptionDeletion element of the notification data object set as TRUE and subscriptionReference element set as the ID of the <subscription> resource to the entity indicated in subscriberURI or associatedCrossResourceSub.
-----------------------End of change 4---
�(<crossResourceSubscription> Delete)

© 2018 oneM2M Partners
 Page 9 (of 9)

[image: image1.png]