	Doc# PRO-2018-0091_TS-0020_WebSocket_corrections_R2.doc
Change Request
	[image: image4.png]

	

	CHANGE REQUEST

	Meeting ID:*
	PRO#34

	Source:*
	Nobu Uchida, nuchida@qti.qualcomm.com
Wolfgang Granzow, Qualcomm, wgranzow@qti.qualcomm.com

	Date:*
	2018-03-12

	Reason for Change/s:*
	Corrections to TS-0020

	CR against: Release*
	Release 2

	CR against: WI*
	 FORMCHECKBOX
 Active WI

 FORMCHECKBOX
 MNT maintenance / < Work Item number(optional)>
Is this a mirror CR? Yes FORMCHECKBOX
 No FORMCHECKBOX

mirror CR number:
 FORMCHECKBOX
 STE Small Technical Enhancements / < Work Item number (optional)
Only ONE of the above shall be ticked

	CR against: TS/TR*
	TS-0020 v2.1.1

	Clauses *
	5, 6.2.1, 6.6. Annex A

	Type of change: *
	 FORMCHECKBOX
 Editorial change
 FORMCHECKBOX
 Bug Fix or Correction
 FORMCHECKBOX
 Change to existing feature or functionality
 FORMCHECKBOX
 New feature or functionality
Only ONE of the above shall be ticked

	Impacted other TS/TR(s)
	<TS/TR number>, <Version Number>, and <Description on which aspect should be reflected in this TS/TR>

	Post Freeze checking:*
	This CR contains only essential changes and corrections? YES FORMCHECKBOX
 NO FORMCHECKBOX

This CR may break backwards compatibility with the last approved version of the TS? YES FORMCHECKBOX
 NO FORMCHECKBOX

	Template Version: January 2017 (Do not modify)

oneM2M Notice

The document to which this cover statement is attached is submitted to oneM2M. Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.

GUIDELINES for Change Requests:

Provide an informative introduction containing the problem(s) being solved, and a summary list of proposals.

Each CR should contain changes related to only one particular issue/problem.
In case of a correction, and the change apply to previous releases, a separate “mirror CR” should be posted at the same time of this CR
Mirror CR: applies only when the text, including clause numbering are exactly the same.

Companion CR: applies when the change means the same but the baselines differ in some way (e.g. clause number).
Follow the principle of completeness, where all changes related to the issue or problem within a deliverable are simultaneously proposed to be made E.g. A change impacting 5 tables should not only include a proposal to change only 3 tables. Includes any changes to references, definitions, and acronyms in the same deliverable.
Follow the drafting rules.
All pictures must be editable.
Check spelling and grammar to the extent practicable.
Use Change bars for modifications.
The change should include the current and surrounding clauses to clearly show where a change is located and to provide technical context of the proposed change. Additions of complete clauses need not show surrounding clauses as long as the proposed clause number clearly shows where the new clause is proposed to be located.
Multiple changes in a single CR shall be clearly separated by horizontal lines with embedded text such as, start of change 1, end of change 1, start of new clause, end of new clause.
When subsequent changes are made to content of a CR, then the accepted version should not show changes over changes. The accepted version of the CR should only show changes relative to the baseline approved text.
Introduction

This CR proposes a number of corrections ands clarifications to TS-0020. This addresses issues found at Interop Event #5 and addressed in TST-2018-0005R01-oneM2M_5th_Interop_TestReport.
A specific issue raised at the 5th Interopo Event was how to handle Notify request messages, how to represent notification targets, i.e. the To request primitive parameter, and members of the notificationURI attribute of <subscription> resources.
Such issues related to notification procedures, however, are not specific to WebSocket binding.

In our opinion a source of confusion is due to the many options shown in TS-0001 how to represent members of the notificationURI attribute. The table below shows the definition of the notificationURI attribute in clause 9.6.8 of TS-0001:
	notificationURI
	1 (L)
	RW
	This attribute shall be configured as a list consisting of one or more targets that the Hosting CSE shall send notifications to. A target shall be formatted as a oneM2M compliant Resource-ID as defined in clause 7.2 or as an identifier compliant with a oneM2M supported protocol binding (e.g. http, coap, mqtt).

If a target is formatted as a oneM2M compliant Resource-ID, then the target shall be formatted as a structured or unstructured CSE-Relative-Resource-ID, SP-Relative-Resource-ID, and/or Absolute-Resource-ID of an <AE> or <CSEBase> resource. A Hosting CSE shall use this information to determine proper pointOfAccess, requestReqchability and/or pollingChannel information needed to send a notification to the target. The following is an example.

· /CSE0001/AE0001

For a target that is formatted as an identifier compliant with a oneM2M supported protocol binding, the details of this format are defined by the respective oneM2M protocol specification. The following is an example of an HTTP URI compliant with oneM2M HTTP protocol binding.

· https://172.25.30.25:7000/notification/handler
For a subscription to a <fanoutpoint> resource, if <subscription> resource in request contains a notificationForwardingURI, then the group hosting CSE shall configure the notificationURI of the fanout subscription request with an address specified by the Group Hosting CSE that can be used by the Group Hosting CSE to receive aggregated notifications.
A notification serialization type may be appended to each notification target configured in this list. The Hosting CSE shall serialize notifications and send it to a notification target based on this serialization type indicator. Possible serialization types are defined in the TS-0004 [3] (e.g. XML, JSON or CBOR). If a notification serialization type is not appended to a notification target, a default shall apply based on the Hosting CSE local policy. The syntax for appending a serializatino type to a notification target shall use the “?” delimiter character as shown in the below examples.

· http://mydomain/notificationHandler?ct=json
· CSE02/base/ae2?ct=xml

The obove table states that members of notificationURI can be represented as resource identifier of an <AE> or <CSEBase> resource associated with the entity which shall receive the Notify request.
According to the definitions in Table 7.2-1 of TS-0001, the resource identifier of an AE may take the following values:
CSE-relative structured: csebase/AE002
 unstriuctured: ae002
SP-relative /CSE124/./AE002 (structured) or /CSE1234/ae002 (unstructured)
Absolute: //my-sp.org/CSE1234/./AE002 (structured) or //my-sp.org/CSE1234/ae002 (unstructured)
The above format is obviously independent of the employed binding protocol and such definition of notificationURI format should satisfy all use cases for sending Notify requests to oneM2M entities.
The source of confusion is due to the yellow shaded text in the above table:

“A target shall be formatted … as an identifier compliant with a oneM2M supported protocol binding (e.g. http, coap, mqtt). “

 If a notificationURI is formatted in this way as a URI associated with a specific binding protocol obviously information is required which binding protocol is in use between the trequest arget and the originating ebtities. If the Notify request is sent to a request reachable entity there is apparently also a relation with the setting of the pointOfAccess. This means the information in the notificationURI is redundant and can possibly even conflict with the pointOfAccess.
Applying this format of notificationURI to WebSocket binding results in inappropriate representations of a WebSocketURI since both, adding a path or a query component to a WebSocket URI have no specified meaning in the WebSocket protocol RFC 6455 or in TS-0020. Examples of such inappropriate URIs are the following:
ws://ws-server.example.com?ct=xml
wss://ws-server.example.com/notification/handler

wss://ws-server.example.com/notification/handler?ct=json
We strongly suggest to cleanup TS-0001 with regard to the representation of notification targets and members of the notificationURI attribute. We recommend to restrict the format to resource identifiers.

There is no need to define the format of notification targets and/or members of the notificationURI attribute in the present WebSocket binding specification because this information is completely transparent to the binding protocol.
-----------------------Start of change 1---
5 Overview on WebSocket Binding
5.1 Use of WebSocket
This binding makes use of the WebSocket protocol IETF RFC 6455 [1] to transport serialized representations of oneM2M request and response primitives over the Mca or Mcc reference points.

Establishment of a WebSocket connection shall be initiated by a WebSocket client by sending a handshake to a WebSocket server as specified in section 4 of IETF RFC 6455 [1]. Once the WebSocket connection is established, both oneM2M request and response primitives can be exchanged bi-directionally between the two endpoints of the connection. Serialized representations of the request and response primitives shall be mapped in the Payload Data field of the WebSocket base framing protocol, as defined in section 5.2 of IETF RFC 6455 [1].

A WebSocket connection employs either a TCP/IP or a TLS over TCP/IP connection. The underlying TCP and TLS connections are established prior to sending the WebSocket client handshake as the first step (see example in Annex A).
5.2
Binding Overview
WebSocket binding may be employed for communication between any two endpoints which can be connected over the Mca, Mcc or Mcc' interface reference points supported by the oneM2M Architecture as shown in figure 6.1-1 of oneM2M TS-0001 [2].

When using the WebSocket protocol, one communication endpoint shall act as the WebSocket server. The WebSocket server listens for inbound handshake messages arriving from any WebSocket client to which a WebSocket connection is not yet established. Whether a communication endpoint takes the role of the client or the server shall depend on the registration relationship between the communicating entities as follows: the registree shall always use a WebSocket client, while the associated registrar shall always use a WebSocket server on the respective reference point.

This implies that ADN and ASN always take the role of a WebSocket client when WebSocket binding is employed. An MN-CSE uses a WebSocket server to communicate with its registrees and a WebSocket client to communicate with its own registrar (which can be another MN-CSE or an IN-CSE).

The IN-CSE provides a WebSocket server functionality to communicate with all its registrees, i.e. within a service provider's domain. On the Mcc' reference points, i.e. for communication between IN-CSEs of different Service Provider domains, the IN-CSE shall provide both WebSocket client and server functionality. This enables any IN-CSE to open a WebSocket connection to any IN-CSE of another Service Provider's domain.

Figure 5.2.-1 shows some applicable example system configuration.

[image: image1]
Figure 5.2-1: Example scenarios of WebSocket client and server configurations

There exists a maximum of one WebSocket connection between two nodes. A WebSocket connection is established for the first time when the initial registration procedure of an entity to its registrar is performed. On an established WebSocket connection, request and response primitives can be exchanged in both directions. Any connection may be closed by either the WebSocket client or the server, depending on the communication schedule of either entity. However, the connection can be reopened from the client side only.

If the connection is closed temporarily, it shall be reopened when the next request primitive is sent from the client to the server side, or when the time to become reachable configured at <schedule> resource. If the WebSocket connection with the next-hop entity is not opened, and the WebSocket connection cannot be established due to lack of pointOfAccess address for the entity, a sending CSE may enable buffering of primitives which should be sent to the entity until the connection is reopened or their expiration time is reached. See Annex H of oneM2M TS-0004 [5] about buffering of primitives by CMDH functionality.
Figure 5.2-2 shows an example message flow for a scenario where an ADN-AE registers to its registrar MN-CSE using an unsecured TCP connection without proxy and then continues exchanging non-registration request and response primitives.

[image: image2]
Figure 5.2-2: Example message flow with Websocket binding
1) The ADN-AE wants to register to its registrar MN-CSE. If a WebSocket connection does not exist, it is established by the following steps 2) and 3). It is assumed that the ADN-AE knows the point of access (i.e. WebSocket URI specified in IETF RFC 6455 [1]) under which the registrar CSE can be reached with WebSocket binding.

2) The WebSocket client opens handshake to the server with subprotocol name oneM2M.R2.0.json ' following IETF RFC 6455 [1].
If the server can be reached under the WebSocket URI ws://example.net:9000/, the client handshake may look as follows:

GET / HTTP/1.1

Host: mncse1234.net:9000

Upgrade: WebSocket

Connection: Upgrade

Sec-WebSocket-Key: ud63env87LQLd4uIV20/oQ==
Sec-WebSocket-Protocol: oneM2M-pro-v1.0

Sec-WebSocket-Version: 13

3) The WebSocket server replies with a handshake to the client. In the successful case, the status-line of this HTTP response may look as follow (note that text shown in brackets [...] is not sent explicitely):

[Request-Version:] HTTP/1.1

[Status-Code:] 101

[Response-Phrase:] Switching Protocols

Upgrade: WebSocket

Connection: Upgrade

Sec-WebSocket-Protocol: oneM2M.R2.0.json
Sec-WebSocket-Accept: FuSSKANnI7C/6/FrPMt70mfBY8E=

4) The ADN-AE issue a registration request primitive. The request primitive may e.g. look as follows as JSON-serialized representation (note that only mandatory parameters of the request primitive are shown in this example; the message may include any optional primitive parameters in addition, e.g. “fr”):

{"op":1,"to":"//example.net/mncse1234","rqi":"A1234","pc":{"m2m:ae":{"api":"a56", "apn":"app1234"}},"ty": 2}

NOTE:
The WebSocket client associated with an ADN-AE does not need to be reachable for WebSocket Server handshake messages.

5) WebSocket Binding process, which transforms a single oneM2M primitive into one or more data frames of the WebSocket Framing protocol, as specified in IETF RFC 6455 [1]. When transmitting a JSON-serialized primitive in utf-8 text format, the 4-bit opcode in the WebSocket Base Framing Protocol of the first message fragment will be set to x1 ("text frame").

6) The WebSocket message (consisting of one or more frames) shall be sent to the WS server.

7) The original request primitive shall be unpacked from the WebSocket message by the WS server.

8) The request primitive is delivered to the MN-CSE.

9) The MN-CSE performs the receiver side operations of AE registration as specified in oneM2M TS-0001 [2].
10) The response primitive is issued to the WebSocket server.

11) WebSocket binding process for the response primitive is performed.

12) The WebSocket message (consisting of one or more frames) is sent to the client.

13) The response primitive is unpacked.

14) The response primitive is to the ADN-AE.

15) After successful completion of AE registration any other CRUDN requests and response primitives can be exchanged over the existing WebSocket connection in both directions. If the ADN-AE has no other requests to send, the WebSocket connection may be closed temporarily. When the WebSocket connection is closed after registration and reopened later again, the registration procedure as outlined in steps 4 to 14 is omitted. In this case any non-registration request primitives can be sent directly.
-----------------------End of change 1---

-----------------------Start of change 2---

6.6 Use of proxy servers
The connection to a proxy shall be requested by sending a request-line with the method token "CONNECT", followed by the request target host and port of the WebSocket server and the HTTP version set to "HTTP/1.1" for example as follows:

CONNECT WSserver.example.com:80 HTTP/1.1

-----------------------End of change 2---

-----------------------Start of change 3---

6.2.1 General
A WebSocket connection is opened by the client side as specified in section 4 of IETF RFC 6455 [1] with sending of a client handshake. The server responds with a server handshake.

The client handshake consists of an HTTP upgrade request, along with a list of required and optional header fields.

The handshake shall be a valid HTTP request as specified by IETF RFC 7230 [3]. The server handshake consists of a HTTP status-line and a list of header fields.

The applicable format of the request-line, status-line and the applicable header fields are specified in the following sub-clauses.

HTTP headers fields have case-insensitive field names.

CSEs capable to support WebSocket shall indicate the schemes ws and/or wss together with the applicable host name and port numbers in the pointOfAccess attribute of their <CSEBase> and in the <remoteCSE> resources, i.e. as ws://host:port1 and wss://host:port2, where host refers to either an IP address or an FQDN.
By default, the WebSocket Protocol uses port 80 for regular WebSocket connections and port 443 for WebSocket connections over Transport Layer Security (TLS) [1]. If a WebSocket URI does not include an explicit port number, the default port number shall apply.
Possible example representations of the pointOfAccess attribute <CSEBase> or <remoteCSE> resources associated with entities supporting a WebSocket server are the following:
ws://ws-server.example.com:80
ws://ws-server.example.com
wss://10.251.232.119:443
NOTE: ADN-AEs and ASN-CSEs do not need to support WebSocket servers and therefore do not require a WebSocket URI in the pointOfAccess attribute (see figure 5.2.1).
-----------------------End of change 3---

-----------------------Start of change 4---

6.5 Handling of Non-Registration Request
Registered entities (AE and CSE) are allowed to send and receive non-registration request primitives. A WebSocket connection should support any of the transfer modes defined in clause 8.2 of oneM2M TS-0001 [2], i.e. blocking requests, and non-blocking requests for both synchronous and asynchronous cases.

When sending blocking requests, the WebSocket connection shall not be closed before the response is received, or before any configured timeout period has expired.

When sending non-blocking requests, the WebSocket connection shall not be closed before the acknowledgment response is received, or before any configured timeout period has expired. If the entities' communication policies and power saving requirements allow, the connection should be kept open at least until an ongoing procedure has fully completed, i.e. requesting of the result in synchronous mode or completion of Notify procedure in asynchronous mode.

If no WebSocket connection with a client exists when a Notify request primitive for this client becomes available at the server side, it should be stored and sent when the WebSocket connection is opened again by the client.
-----------------------End of change 4---
-----------------------Start of change 5---

Annex A (informative):
Example Procedures

A.1
AE Registration and creation of a container child resource

Figure A.1-1 illustrates a message flow for registration of an ADN-AE to an IN-CSE as described in clause 7.3.5.2.1 of oneM2M TS-0004 [5] with WebSocket mapping and subsequent creation of a <container> child resource.

[image: image3.emf]AE IN-CSE

5) Check access controls,

process request and

create <AE> resource for

originating AE

1) TCP connection and Security Association

Establishment

2) WSS client handshake

4) Create AE request primitive

3) WSS server handshake

6) Response primitive

8) Check access controls,

process request and

create <Container>

resource for originating

AE

7) Create Container request primitive

9) Response primitive

10) Other procedures

Figure A.1-1: Message flow for registration of an ADN-AE to an IN-CSE

In the considered example, the WebSocket protocol is used to send JSON serialized request and response primitives in text format.

The message flow may look as follows:

16) TCP connection establishment and Security Association Establishment as defined in oneM2M TS-0003 [4] based on TLS handshake procedure is accomplished.

17) The WSS client sends e.g. the following opening handshake message, offering to use either JSON or XML serialization of primitives:

GET / HTTP/1.1

Host: mncse1234.net:9000

Upgrade: WebSocket

Connection: Upgrade

Sec-WebSocket-Key: ud63env87LQLd4uIV20/oQ==

Sec-WebSocket-Protocol: oneM2M.R2.0.json, oneM2M.R2.0.xml

Sec-WebSocket-Version: 13

18) The WSS server selects use of JSON serialization and responds the following handshake message:

Request-Version: HTTP/1.1

Status-Code: 101

Response-Phrase: Switching Protocols

Upgrade: WebSocket

Connection: Upgrade

Sec-WebSocket-Protocol: oneM2M.R2.0.json

Sec-WebSocket-Accept: FuSSKANnI7C/6/FrPMt70mfBY8E=

19) The AE sends the following request primitive in textual JSON serialized format:

{"op":1,"to":"//example.net/mncse1234","rqi":"A1000", "rcn":7,"pc":{"m2m:ae":{"rn":"SmartHomeApplication", "api":"Na56", "apn":"app1234"}},"ty":2}

The above JSON object is mapped by the WS client into a data frame of the WebSocket Framing protocol in utf-8 text format, the 4-bit opcode in the WebSocket Base Framing Protocol of the first message fragment is set to x1 ("text frame").

20) The IN-CSE validates the privilege of the originator to create an <AE> resource, and accepts the request to create the resource.

21) The IN-CSE acknowledges the success of the request by responding the following JSON serialized response primitive. The response primitive includes all attributes of <AE> instance created in Step 5.

{"rsc":2001,"rqi":"A1000","pc":{"m2m:ae":{"rn":"SmartHomeApplication","ty":2,"ri":"ae1","api":"Na56","apn":"app1234","pi":"cb1","ct":"20160506T153208", "lt":"20160506T153208","acpi":["acp1","acp2"],"et":"20180506T153208", "aei":"S_SAH25"}}}

NOTE: JSON serialized primitives are not encapsulated under member names “m2m:rqp” and “m2m:rsp” as in XML serialized representations, which allows differentiation between request and response primitives (see clause 8.4 of TS-0004 [5]). JSON serialized primitives can be differentiated by the presence of mandatory members such as “op” in request primitives (see step 4) above), and “rsc” in response primitives.
The above JSON object is mapped by the WS server into a data frame of the WebSocket Framing protocol in utf-8 text format, the 4-bit opcode in the WebSocket Base Framing Protocol of the first message fragment is set to x1 ("text frame").

22) The AE sends in textual JSON serialized format the following request primitive to create a <container> resource as child resource of the <AE> created in Step 5:

{"op":1,"to":"//example.net/mncse1234/SmartHomeApplication",”fr”:”S_SAH25”,"rqi":"A1001","rcn":7,"pc":{"m2m:cnt":{"rn":"SmartHomeContainer","mbs":100000, "mni":500}},"ty":3}

The above JSON object is mapped by the WS client into a data frame of the WebSocket Framing protocol in utf-8 text format, the 4-bit opcode in the WebSocket Base Framing Protocol of the first message fragment is set to x1 ("text frame").

23) The IN-CSE validates the privilege of the originator to create an <container> resource under the <AE> resource created in step 5, and accepts the request to create the resource.

24) The IN-CSE acknowledges the success of the request by responding the following JSON serialized response primitive

{"rsc":2001,"rqi":"A1001","pc":{"m2m:cnt":{"rn":"SmartHomeContainer", "ty":3,"ri":"cnt1","pi":"ae1","ct":"20160506T154048", "lt":"20160506T154048","acpi":["acp1"],"et":"20180506T154048","cr":" S_SAH25","st":0,"mni":500,"mbs":100000,"cni":0,"cbs":0,"mia":3600}}}

The above JSON object is mapped by the WS server into a data frame of the WebSocket Framing protocol in utf-8 text format, the 4-bit opcode in the WebSocket Base Framing Protocol of the first message fragment is set to x1 ("text frame").

25) Primitives of further subsequent CRUDN procedures may be transferred on the existing WebSocket connection.

-----------------------End of change 5---

CHECK LIST

· Does this Change Request include an informative introduction containing the problem(s) being solved, and a summary list of proposals.?
· Does this CR contain changes related to only one particular issue/problem?
· Have any mirror CRs been posted?
· Does this Change Request make all the changes necessary to address the issue or problem? E.g. A change impacting 5 tables should not include a proposal to change only 3 tables?Does this Change Request follow the drafting rules?
· Are all pictures editable?
· Have you checked the spelling and grammar?
· Have you used change bars for all modifications?
· Does the change include the current and surrounding clauses to clearly show where a change is located and to provide technical context of the proposed change? (Additions of complete clauses need not show surrounding clauses as long as the proposed clause number clearly shows where the new clause is proposed to be located.)
· Are multiple changes in this CR clearly separated by horizontal lines with embedded text such as, start of change 1, end of change 1, start of new clause, end of new clause.?
AE

WS

 Client

CSE

WS

 Server

WS

 Client

AE

CSE

WS

 Client

AE

AE

WS

 Client

CSE

WS

 Client

AE

CSE

WS

 Server

WS

 Client

AE

 CSE

WS

 Server

WS

 Client

ADN

ASN

ADN

MN

MN

ASN

IN

Mcc’

Mcc

Mca

Mcc

Mca

Mcc

AE

WS client

c

client

CSE

WS server

c

client

ADN

MN

AE wants to start registration procedure and triggers WebSocket connection establishment

Client handshake

Server handshake

Request primitive

WebSocket Binding

WebSocket message

Unpacking request primitive

Request primitive

Receiver side processing of AE registration procedure

Response primitive

WebSocket Binding

WebSocket message

Unpacking response primitive

Response primitive

non-registration CRUDN operations

© 2018 oneM2M Partners
 Page 11 (of 11)

[image: image4.png]_1581861588.vsd
AE

IN-CSE

1) TCP connection and Security Association Establishment

5) Check access controls, process request and create <AE> resource for originating AE

