	CHANGE REQUEST

	Meeting:*
	TST 23

	Source:*
	Richard Catmur, Spirent Communications, richard.catmur@spirent.com

	Date:*
	2016-05-10

	Contact:*
	Richard Catmur, Spirent Communications, richard.catmur@spirent.com

	Reason for Change/s:*
	Addition of TTCN Verification rules to TS-0015

	CR against: Release*
	Release 1

	CR against: WI*
	 FORMCHECKBOX
 Active <Work Item number>

 FORMCHECKBOX
 MNT maintenace / < Work Item number(optional)>
 FORMCHECKBOX
 STE Small Technical Enhancements / < Work Item number (optional)>
Only ONE of the above shall be ticked

	CR against: TS/TR*
	TS-0015 version 0.5.0

	Clauses/Sub Clauses*
	

	Type of change: *
	 FORMCHECKBOX
 Editorial change

 Bug Fix or Correction

 Change to existing feature or functionality

 FORMCHECKBOX
 New feature or functionality
Only ONE of the above shall be ticked

	Post Freeze checking:*
	This CR contains only essential changes and corrections? YES FORMCHECKBOX
 NO
This CR may break backwards compatibility with the last approved version of the TS? YES
 NO
This CR is a mirror CR? YES FORMCHECKBOX
 if YES, please indicate the document number of the original CR: NO FORMCHECKBOX

	Template Version:27 May 2015 (Dot not modify)

oneM2M Notice

The document to which this cover statement is attached is submitted to oneM2M. Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.

6
Conformance testing
6.1
Introduction
The following clauses show how to apply the oneM2M conformance testing methodology in order to properly produce oneM2M conformance test specifications.

The Conformance testing can show that a product correctly implements a particular standardized protocol, that is, it establishes whether or not the implementation under test meets the requirements specified for the protocol itself.

For example, it will test protocol message contents and format as well as the permitted sequences of messages. In that context, tests are performed at open standardized interfaces that are not (usually) accessible to an end user, and executed by a dedicated test system that has full control of the system under test and the ability to observe all incoming and out coming communications; the high degree of control of the test system over the sequence and contents of the protocol messages allows to test both valid and invalid behaviour

[image: image1]
Figure 6.1-1: Conformance testing

Conformance test specifications should be produced following the methodology described in ISO/IEC 9646-1 [i.2]. In summary, this methodology begins with the collation and categorization of the features and options to be tested into a tabular form which is normally referred to as the " Implementation Conformance Statement" (ICS). All implemented capabilities supported by the Implementation Under Test (IUT) are listed by the implementer in the ICS, so that the tester knows which options have to be tested. This ensures that complete coverage is obtained.

The next step is to collect the requirements from the specification that is tested. For each requirement, one or more tests should be identified and classified into a number of groups which will provide a structure to the overall test suite (TSS). A brief Test Purpose (TP) should then be written for each identified test and this should make it clear what is to be tested but not how this should be done. Although not described or mandated in ISO 9646-1 [i.2], in many situations (particularly where the TPs are complex) it may be desirable to develop a Test Description (TD) for each TP. The TD describes in plain language (often tabulated) the actions required to reach a verdict on whether an implementation passes or fails the test. Finally, a detailed Test Case (TC) is written for each TP. In the interests of test automation, TCs are usually combined into an Abstract Test Suite (ATS) using a specific testing language such as TTCN-3. The TCs in the ATS are then “Verified” against a number of IUTs for correct operation according to some agreed procedures, before being released for use by the industry. An Implementation eXtra Information for Test (IXIT) proforma associated to the ATS, should be produced in supplement of the ICS document and Test Cases to help to execute Protocol conformance testing using oneM2M dedicated test equipment.
In summary, the oneM2M Conformance Testing methodology consists of:

· Selection of Implementations Under Test (IUT);

· Identification of reference points;

· Development of test specifications, which includes:

Development of "Implementation Conformance Statements" (ICS), if not already provided as part of the base standard.

Development of "Test Suite Structure and Test Purposes" (TSS&TP).

Development of “Abstract Test Suite and Implementation eXtra Information for Test” (ATS&IXIT) including:

Definition of the Abstract Protocol Tester (APT)

Definition of TTCN-3 test architecture

Development of TTCN-3 test suite, e.g. naming conventions, code documentation, test case structure.
Verification of ATS (TTCN-3)
IXIT proforma

6.2
Test architecture
6.2.1
Selection of Implementation Under Test
6.2.1.1
Definition

The "Implementation Under Test" (IUT) is a protocol implementation considered as an object for testing. This means that the test process will focus on verifying the compliance of this protocol implementation (IUT) with requirements set up in the related base standard. An IUT normally is implemented in a "System Under Test" (SUT). For testing, a SUT is connected to a test system over at least a single interface. Such an interface is identified as "Reference Point" (RP) in the present document. Further details on RPs are presented in clause 6.2.2.
NOTE:
Other interfaces between the test system and the IUT may be used to control the behaviour of the IUT during the test process.

Figure 6.2.1.1-1 shows a complete view of communication layer for oneM2M domain. Further details are presented in the following clauses.

[image: image2.emf]Management

oneM2M

oneM2M

HTTP/CoAP/MQTT

WiFi/6LoWPAN/

Ethernet, Zigbee,...

Security

Service Layer

Network & Transport

Access

oneM2M

Management

oneM2M

Security

IUT

Figure 6.2.1.1-1: Example of IUT in the oneM2M reference architecture

6.2.1.2
oneM2M Service Layer Communication

Table 6.2.1.2-1 shows the IUTs for oneM2M reference architecture as defined in [1].

Table 6.2.1.2-1: IUTs for oneM2M

	IUT (node)
	Entities
	Interfaces
	Notes

	ASN
	Application Entity (AE)
	Mca
	

	
	Common Services Entity (CSE)
	Mca, Mcc, Mcn
	

	ADN
	Application Entity (AE)
	Mca
	

	MN
	Application Entity (AE)
	Mca
	

	
	Common Services Entity (CSE)
	Mca, Mcc, Mcn
	

	IN
	Application Entity (AE)
	Mca
	

	
	Common Services Entity (CSE)
	Mca, Mcc, Mcn, Mcc’, Mch
	

	ASN/MN/IN
	Network Services Entity (NSE)
	Mcn
	

Table 6.2.1.2-1 needs to be amended in the following cases:

· A new node or entity is defined on the base specifications.
· A new interface is defined on the base specifications between any of the existing nodes or entities.

6.2.2
Identification of the Reference Points

This clause illustrates candidate reference points (RPs) where test systems can be connected in order to test conformance of oneM2M protocols (IUTs) with oneM2M base standards.
Table 6.2.2-1. RPs for oneM2M

	RP Identifier
	RP Type
	oneM2M node-entity
	oneM2M node-entity
	Network

	RP-oneM2M-1
	Mca
	ASN-AE
	ASN-CSE
	

	RP-oneM2M-2
	Mca
	MN-AE
	MN-CSE
	

	RP-oneM2M-3
	Mca
	IN-AE
	IN-CSE
	

	RP-oneM2M-4
	Mca
	ADN-AE
	IN-CSE
	

	RP-oneM2M-5
	Mca
	ADN-AE
	MN-CSE
	

	RP-oneM2M-6
	Mcc
	ASN-CSE
	IN-CSE
	

	RP-oneM2M-7
	Mcc
	ASN-CSE
	MN-CSE
	

	RP-oneM2M-8
	Mcc
	MN-CSE
	MN-CSE
	

	RP-oneM2M-9
	Mcc
	MN-CSE
	IN-CSE
	

	RP-oneM2M-10
	Mcn
	ASN-CSE
	NSE
	

	RP-oneM2M-11
	Mcn
	MN-CSE
	NSE
	

	RP-oneM2M-12
	Mcn
	IN-CSE
	NSE
	

	RP-oneM2M-13
	Mcc’
	IN-CSE
	IN-CSE’
	

	RP-oneM2M-14
	Mch
	IN-CSE
	Charging Server
	

6.3
Development of Conformance Test Specifications
6.3.1
Implementation Conformance Statement (ICS)

The purpose of a ICS is to identify those standardized functions which an IUT shall support, those which are optional and those which are conditional on the presence of other functions. It helps to provide a means for selection of the suite of tests which will subsequently be developed.

In addition, the ICS can be used as a proforma for identifying which functions an IUT will support when performing conformance testing. The purpose of this ICS proforma is to provide a mechanism whereby an oneM2M implementation supplier may provide information about the implementation in a standardized manner. The information in a ICS is usually presented in tabular form as recommended in ISO/IEC 9646‑7 [i.2].

The ICS can be considered as a set of "switches" which specify the capability of supporting the requirement in base standards to be tested. It is possible that with different choices in a ICS proforma, several different set of TPs will be necessary.

The ICS proforma is subdivided into clauses for the following categories of information:

guidance for completing the ICS proforma;

identification of the implementation;

identification of the <reference specification type>;

global statement of conformance
Part of an example ICS table can be found in Annex A.
6.3.2
Test Suite Structure & Test Purposes (TSS&TP)

6.3.2.1
Introduction

A test purpose is a prose description of a well-defined objective of testing. Applying to conformance testing, it focuses on a single conformance requirement or a set of related conformance requirements from the base standards.

Several types of presentation of the test purposes exist. These presentations are combining text with graphical presentations, mainly tables, and include sometimes message sequence charts. The present document presents a proposed table template to write test purposes with recommendations concerning the wording and the organization of the test purposes.

There are usually numerous test purposes, which need to be organized in structured groups. The organization of the test purposes in groups is named "Test Suite Structure".

The development of the test purposes follows the analysis of the conformance requirements, clearly expressed in the base standards. Furthermore, the analysis of a base standard leads to the identification of different groups of functionalities, which are used to define the first levels of the test suite structure.

6.3.2.2
Test Suite Structure

Defining the test suite structure consists of grouping the test purposes according to different criteria like for instance:

· The functional groups and sub-groups of procedures in the base standard, from which the requirement of the test purpose is derived.

· The category of test applying to the test purposes, for instance:

· valid behaviour test;

· invalid behaviour test;

· timer test;

· etc.

Usually the identification of the different functional groups of procedures leads to the definition of the top levels of the TSS. Then further levels at the bottom of the TSS is used to group test purposes belonging to the same type of test.

Table 6.3.2.2-1 shows an example of a two level TSS used in the TSS&TP for the oneM2M system.

Table 6.3.2.2-1: Example of test suite structure for oneM2M system

	TP/<root>/<gr>/<sgr>/<xx>/<nnn>

	<root> = root
	oneM2M
	oneM2M

	<gr> = group
	AE
	Application Entity

	
	CSE
	Common Services Entity

	<sgr> = sub- group
	REG
	Registration

	
	DMR
	Data Management and Repository

	
	SUB
	Subscription and Notification

	
	GMG
	Group Management

	
	DIS
	Discovery

	
	LOC
	Location

	
	DMG
	Device Management

	
	CMDH
	Communication Management and Delivery Handling

	
	SEC
	Security

	<xx> = type of testing
	BI
	Invalid Behaviour tests

	
	BO
	Inopportune Behaviour tests

	
	BV
	Valid Behaviour tests

	<nnn> = sequential number
	
	001 to 999

6.3.2.3
Test Purpose

A test purpose is an informal description of the expected test behaviour. As such it is written in prose.
When needed to clarify the TP, it is helpful to add some graphical presentations, mainly tables, and include message sequence charts.
In order to increase the readability of the TP, the following two recommendations should be followed:

· Each TP should be presented in a table, containing two main parts:

· The TP header, which contains the TP identifier, the TP objective and the external references (ICS, and base standard).

· The behaviour part, which contains the test behaviour description. This part can be optionally divided in the three following parts, in order to increase the readability:

· the initial conditions;

· the expected behaviour;

· the final conditions.

· The prose describing the test behaviour (including initial and final conditions) should follow some rules, as for instance the use of reserved keywords and syntax.

Table 6.3.2.3-1: TP pro-forma template

	TP Id
	

	Test objective
	

	Reference
	

	Config Id
	

	PICS Selection
	

	Initial conditions
	

	Expected behaviour
	Test events
	Direction

	
	when {
}
	IUT (AE

	
	then {
}
	IUT (AE

Table 6.3.2.3-2: Description of the fields of the TP pro-forma

	TP Header

	TP ID
	The TP ID is a unique identifier. It shall be specified according to the TP naming conventions defined in the above clause.

	Test objective
	Short description of test purpose objective according to the requirements from the base standard.

	Reference
	The reference indicates the clauses of the reference standard specifications in which the conformance requirement is expressed.

	ICS selection
	Reference to the ICS statement involved for selection of the TP. Contains a Boolean expression.

	TP Behaviour

	Initial conditions
	The initial conditions defines in which initial state the IUT has to be to apply the actual TP. In the corresponding Test Case, when the execution of the initial condition does not succeed, it leads to the assignment of an Inconclusive verdict.

	Expected behaviour
(TP body)
	Definition of the events, which are parts of the TP objective, and the IUT are expected to perform in order to conform to the base specification. In the corresponding Test Case, Pass or Fail verdicts can be assigned there.

	Final conditions
	Definition of the events that the IUT is expected to perform or shall not perform, according to the base standard and following the correct execution of the actions in the expected behaviour above. In the corresponding Test Case, the execution of the final conditions is evaluated for the assignment of the final verdict.

Defining the initial and final conditions, separately from the expected behaviour, makes the reading of the TP easier and avoid misinterpretations.

The "expected behaviour", which matches the events corresponding to the TP objective, can also be named "TP body", which is similar to the "test case body" in an abstract test suite (ATS).
6.3.2.3.1
TP identifier

The TP identifier identifies uniquely the test purposes. In order to ensure the uniqueness of the TP identifier, it follows a naming convention.

The more useful and straightforward naming convention consists of using the test suite structure, to form the first part of the TP identifier. Then the final part consists of a number to identify the TP order within a TP group.

Table y shows an example of TP naming convention applying to the TSS described in table x.

The TP identifier is formed by the abbreviation "TP", followed by abbreviation representing the group of the following TSS levels, ending with a number representing the TP order. Each field of the TP identifier is separated by a "/".

Table 6.3.2.3.1-1: Example of TP naming convention for oneM2M

	TP/<root>/<gr>/<sgr>/<xx>/<nnn>

	<root> = root
	oneM2M
	oneM2M

	<gr> = group
	AE
	Application Entity

	
	CSE
	Common Services Entity

	<sgr> = sub- group
	REG
	Registration

	
	DMR
	Data Management and Repository

	
	SUB
	Subscription and Notification

	
	GMG
	Group Management

	
	DIS
	Discovery

	
	LOC
	Location

	
	DMG
	Device Management

	
	CMDH
	Communication Management and Delivery Handling

	
	SEC
	Security

	<xx> = type of testing
	BI
	Invalid Behaviour tests

	
	BO
	Inopportune Behaviour tests

	
	BV
	Valid Behaviour tests

	<nnn> = sequential number
	
	001 to 999

A TP identifier, following the TP naming convention of the table could be for instance TP/oneM2M/CSE/DMR/BV/001.

The TP numbering uses two digits for presentation, and starts with 01 rather than with 00. Exceeding 99 TPs per group is not recommended. In such a case, it is rather recommended to create sub-groups, in order to keep clarity in the Test Suite Structure.
6.3.2.3.2
Test objective

The test objective clearly indicates which requirement is intended to be tested in the test purpose. This part eases the understanding of the TP behaviour. This also eases the identification of the requirements, which were used as a basis for the test purpose.

It is recommended to limit the length of the test objective to one sentence.

See also the example in Table 6.3.2.3.5-2.
6.3.2.3.3
Reference

In the reference row, the TP writer indicates, in which clauses of the protocol standards, the requirement are expressed. This information is critical, because it justifies the existence and the behaviour of the TP.

The reference row may refer to several clauses. When the clause containing the requirement is big (for instance, more than ½ page), it is recommended to indicate the paragraph of the clause where the requirement was identified.

The reference to the base standard actually is precise enough to enable the TP reader to identify quickly and precisely the requirement.

See also the example in Table 6.3.2.3.5-2.

6.3.2.3.4
ICS selection

The ICS selection row contains a Boolean expression, made of ICS parameters. It is recommended to use ICS acronym, which clearly identify the role of the ICS.

A mapping table is included in the TP document to link the ICS acronym with its corresponding reference in the ICS document.
Table 6.3.2.3.4-1: Example of pre-defined keywords for ICS

	Mnemonic
	ICS item

	PICS_REGISTRATION
	A.5.2. 1/1 [ICS document]

	PICS_DATA_MGMT
	A.5.2. 1/2 [ICS document]

	
	

	PICS_AE
	A.2/1 [ICS document]

	PICS_CSE
	A.2/2 [ICS document]

	PICS_ASN
	A.1/1 [ICS document]

	PICS_ADN
	A.1/2 [ICS document]

	PICS_IN
	A.1/3 [ICS document]

6.3.2.3.5
TP behaviour

First of all, the following global rules apply, when writing the behaviour description:

· The behaviour description is written in an explicit, exhaustive and unambiguous manner.
· The behaviour description only refers to externally observable test events (send/receive PDUs, timer, counters, etc.) or to events or states, which can be directly or indirectly observed externally.

· All test events used in the behaviour description are part of the procedures specified in the standards.

· The wording of the test events in the behaviour description is explicit, so that the ATS writers do not have to interpret the behaviour description.

· All test events in the behaviour description should result as far as possible in one ATS statement (for instance a TTCN statement).

The test behaviour is described in prose. This enables to use different ways to express similar behaviour. But using different expressions to define identical behaviours can lead to some misinterpretation of the test purposes. Also the meaning and the expected order of the test event have a clear and unique meaning for different readers.
Thus, the present document recommends to use pre-defined keywords in order to express clearly and uniquely the test behaviour.

Table 6.3.2.3.5-1 shows some recommended pre-defined keywords and their context of usage. The pre-defined keywords are also likely to be used in combination with the "{" "}"delimiters, in order to clearly delimitate their action in the test behaviour description.

Table 6.3.2.3.5-1 does not present an exhaustive list, so that additional keywords might be defined as necessary. The definition of additional keywords is included in the corresponding TSS&TP document.

Table 6.3.2.3.5-1: List of pre-defined keywords for the behaviour description

	Behavioural keywords

	with
	with, together with "{" "}" delimiters is used to express the initial conditions, which consist of a set of events, to be executed before starting with the test behaviour corresponding to the test objective.

EXAMPLE:

With { the IUT having sent a container create request message and ... }

	ensure that
	ensure that, together with "{" "}" delimiters is used to define the place of the expected behaviour (TP body) or the final conditions.

EXAMPLE:

ensure that {

when { the IUT receives a valid container create request message... }

	when/then
	when combined with then enables to define the test behaviour involving a combination of stimuli and response events. The when/then combination is used when the occurrence of an event is triggered by the realization of a previous event.

EXAMPLE:
ensure that {
when {
a XXX signal is activated }
then {
the IUT sends a message containing YYY Value indicating "True"} }

	Event keywords

	the IUT
	Event in the TP is expressed from the point of view of the IUT. This avoid any misinterpretation.

	receives
	states for an event corresponding to the receipt of a message by the IUT.

	having received
	states for a condition where the IUT has received a message.

	sends
	states for an event corresponding to the sending of a message by the IUT.

	having sent
	states for a condition where the IUT has sent a message.

	from/to
	Indicates the destination or the origin of a message as necessary (interface, ...)

EXAMPLE:

ensure that {

when { the IUT receives a valid XXX message from the YYY port.. }

	on expiry of
	Indicate the expiry of a timer, being a stimulus for forthcoming event.

EXAMPLE:

ensure that { on expiry of the Timer T1, the IUT sends a valid XXX message...

	after expiry of
	Used to indicate that an event is expected to occur after the expiry of a timer.

EXAMPLE:

ensure that { the IUT sends a valid XXX message after expiry of the minimum timer interval }

	before expiry of
	Used to indicate that an event is expected to occur before the expiry of a timer.

EXAMPLE:

ensure that { the IUT sends a valid XXX message before expiry of the maximum timer interval }

	Event attribute keywords

	valid
	Indicates that the event sent or received is a valid message according to the protocol standard, thus:

· containing all mandatory parameters, with valid field values;

· containing required optional fields according to the protocol context, with valid field values.

	invalid
	Indicates that the event sent or received is a invalid message according to the protocol standard. Further details describing the invalid fields of the message is added.

EXAMPLE:

With { the IUT having sent an invalid XXX message containing no mandatory YYY parameter... }

	containing
	Enables to describe the content of a sent or received message

	indicating
	Enables to specify the interpretation of the value allocated to a message parameter.

EXAMPLE:

With { the IUT having sent a valid XXX message containing a mandatory YYY parameter indicating "ZZZ supported"... }

	Logical keywords

	and
	Used to combine statements of the behaviour description.

	or
	

	not
	

Table 6.3.2.3.5-2: TP example for oneM2M

	TP Id
	TP/oneM2M/CSE/DMR/RET/BO/002

	Test objective
	Check that the IUT responds with an error when the AE tries to retrieve the resource TARGET_RESOURCE_ADDRESS which does not exist

	Reference
	TS-0001 10.1.2 - item 13)

	Config Id
	CF01

	PICS Selection
	PICS_CSE

	Initial conditions
	with {

the IUT being in the "initial state"

and the IUT having registered the AE

and the IUT not having created a resource TARGET_RESOURCE_ADDRESS
}

	Expected behaviour
	Test events
	Direction

	
	when {

the IUT receives a valid RETRIEVE request from AE containing

To set to TARGET_RESOURCE_ADDRESS and

From set to AE_ID and

no Content attribute

}
	IUT (AE

	
	then {

the IUT sends a Response message containing

Response Status Code set to 4004 (NOT_FOUND)
 }
	IUT (AE

6.3.3
Abstract Test Suite (ATS)

6.3.3.1
Abstract protocol tester

An abstract protocol tester presented in Figure 6.3.3.1-1 is a process providing the test behaviour for testing an IUT. Thus it will emulate a peer IUT of the same layer/the same entity. This type of test architecture provides a situation of communication which is equivalent to real operation between real oneM2M systems. The oneM2M test system will simulate valid and invalid protocol behaviour, and will analyse the reaction of the IUT. Then the test verdict, e.g. pass or fail, will depend on the result of this analysis. Thus this type of test architecture enables to focus the test objective on the IUT behaviour only.

In order to access an IUT, the corresponding abstract protocol tester needs to use lower layers to establish a proper connection to the system under test (SUT) over a physical link (Lower layers link).

[image: image3.png]test system suT
Abstract protocol tester T
lower
lower layers layers

Lower layerslnk

Figure 6.3.3.1-1: Generic abstract protocol tester

The "Protocol Data Units" (PDUs) are the messages exchanged between the IUT and the abstract protocol tester as specified in the base standard of the IUT. These PDUs are used to trigger the IUT and to analyse the reaction from the IUT on a trigger. Comparison of the result of the analysis with the requirements specified in the base standard allows to assign the test verdict.

Further control actions on the IUT may be necessary from inside the SUT, for instance to simulate a primitive from the upper layer or the management/security entity. Further details on such control actions are provided by means of an upper tester presented in clause 6.3.2.

The above "Abstract Test Method" (ATM) is defined in ISO 9646-1 [i.2] and supports a wide range of approaches for testing including the TTCN-3 abstract test language [i.4].

For instance, to test the oneM2M IUT, the abstract protocol tester will emulate the oneM2M primitives. use e.g HTTP, CoAP or MQTT in the OSI Application Layer, TCP/UDP and IPV4/IPV6 protocol in the transport and networking layer and Ethernet/WiFi technology in the access layer.
 SHAPE * MERGEFORMAT

Figure 6.3.3.1-2: Abstract protocol tester for oneM2M

A current snap-shot of protocols to be tested (IUT) is shown in table 6. This table indicates which lower layer protocols (may) belong to which IUT in order to build the proper M2M test system.

Table 6.3.3.1-1: Mapping between protocols (IUTs) and lower layer protocols for Reference Point

	Protocol to be tested (IUT)
	Protocols of lower layers
	IUT base standards

	oneM2M
	IP, UDP, CoAP
	TS-0008

	
	IP, TCP, HTTP
	TS-0009

	
	IP, TCP, MQTT
	TS-0010

6.3.3.2
TTCN-3 test architecture

This clause illustrates how to implement the abstract test architecture presented in clause 6.3.3.1 in a functional test environment. There are many possibilities to implement this abstract test architecture using different types of programming languages and test devices. This oneM2M testing framework uses TTCN-3 being a standardized testing methodology including a standardized testing language [i.4], which is fully compliant with the ISO 9646 abstract test methodology [i.2].
[image: image5.png]test system

SuT

Test control

Upper tester
application

Upper testor transport Ik

8 TTCN-3 test components.
3 wr
R =
Test adapter I
Upper tester Tower Tower Upper tester
transport layers layers transport
Lower ayers nk

Figure 6.3.3.2-1: Conformance test system architecture

The "System Under Test" (SUT) contains:

· The "Implementation Under Test" (IUT), i.e. the object of the test.

· The "Upper tester application" enables to simulate sending or receiving service primitives from protocol layers above the IUT or from the management/security entity.

· The lower layers enable to establish a proper connection to the system under test (SUT) over a physical link (Lower layers link). The lower layers link is located at a "Reference Point" (RP), see clause 6.2.

· The "Upper tester transport" is a functionality, which enables the test system to communicate with the upper tester application. Then the upper tester can be controlled by a TTCN-3 test component as part of the test process.

The "test system" contains:

· The "TTCN-3 test components" are processes providing the test behaviour. The test behaviour may be provided as one single process or may require several independent processes.

· The "Codec" is a functional part of the test system to encode and decode messages between the TTCN-3 internal data representation and the format required by the related base standard.

· The "Test Control" enables the management of the TTCN-3 test execution (parameter input, logs, test selection, etc.).

· The "Test adapter" (TA) realizes the interface between the TTCN-3 ports using TTCN-3 messages, and the physical interfaces provided by the IUT.
6.3.3.3
Test configurations

The test suite uses test configurations in order to cover the different test scenarios.

In following 2 examples, the IUT is tested by the test system simulating an AE in CF01 (no hop configuration) or an AE and a CSE in a CF02 (single hop configuration)
 SHAPE * MERGEFORMAT

 SHAPE * MERGEFORMAT

6.3.3.4
ATS conventions
6.3.3.4.1
Importing XSD definition

The oneM2M set of standards uses XSD for the definition of the message types. The process for using XSD data types and values in TTCN-3 modules consists of importing the existing XSD productions. For this purpose, the TTCN-3 "import from" statement should be used, in association with the "language" statement.

6.3.3.4.2
The TTCN-3 naming conventions

TTCN-3 core language contains several types of elements with different rules of usage. Applying naming conventions aims to enable the identification of the type when using specific identifiers according to the type of element.

For instance, a variable declared in a component has different scoping rules than a local variable declared in a test case. Then identifiers of component variables are different from identifiers of local variables, in order to recognize which type of variable the identifier belongs to.

Furthermore, applying naming conventions maintains the consistency of the TTCN-3 code across the test suites, and thus increase the readability for multiple users and ease the maintenance.
	Language element
	Naming convention
	Prefix
	Example identifier

	Module
	Use upper-case initial letter
	none
	OneM2M_Templates

	Group within a module
	Use lower-case initial letter
	none
	messageGroup

	Data type
	Use upper-case initial letter
	none
	SetupContents

	Message template
	Use lower-case initial letter
	m_
	m_setupInit

	Message template with wildcard or matching expression
	Use lower-case initial letters
	mw_
	mw_anyUserReply

	Signature template
	Use lower-case initial letter
	s_
	s_callSignature

	Port instance
	Use lower-case initial letter
	none
	signallingPort

	Test component instance
	Use lower-case initial letter
	none
	userTerminal

	Constant
	Use lower-case initial letter
	c_
	c_maxRetransmission

	Constant (defined within component type)
	Use lower-case initial letter
	cc_
	cc_minDuration

	External constant
	Use lower-case initial letter
	cx_
	cx_macId

	Function
	Use lower-case initial letter
	f_
	f_authentication()

	External function
	Use lower-case initial letter
	fx_
	fx_calculateLength()

	Altstep (incl. Default)
	Use lower-case initial letter
	a_
	a_receiveSetup()

	Test case
	Use a naming convention
	TC_
	TC_COR_0009_47_ND

	Variable (local)
	Use lower-case initial letter
	v_
	v_macId

	Variable (defined within a component type)
	Use lower-case initial letters
	vc_
	vc_systemName

	Timer (local)
	Use lower-case initial letter
	t_
	t_wait

	Timer (defined within a component)
	Use lower-case initial letters
	tc_
	tc_authMin

	Module parameters for PICS
	Use all upper case letters
	PICS_
	PICS_DOOROPEN

	Module parameters for other parameters
	Use all upper case letters
	PX_
	PX_TESTER_STATION_ID

	Formal Parameters
	Use lower-case initial letter
	p_
	p_macId

	Enumerated Values
	Use lower-case initial letter
	e_
	e_syncOk

6.3.3.5
Verification of TTCN-3
 Before release for use by oneM2M members and external organisations (for example Certification Bodies) the TTCN-3 should be Verified for correct operation by TST WG-6. A list of all TTCN-3 test cases and their Verification status is maintained in TS-0019.
6.3.4
Implementation eXtra Information for Testing (IXIT)

The ICS contains base specification dependent information. To derive executable tests this is insufficient; also information about the IUT and its environment shall be supplied. Such information is called Implementation eXtra Information for Testing (IXIT).
An IXIT proforma identifies which ICS items are to be tested and which parameters to be instantiated for the TSS&TP being developed. The production of a IXIT Proforma is specified in ISO/IEC 9646-6 [i.2]. A supplier, providing an IUT for conformance testing, is required to complete a IXIT proforma, which contains additional questions that need to be answered in order to turn on/off the "switches" and identify Means of Testing for a particular Implementation Under Test (IUT).

The IXIT may contain address information of the IUT, or parameter and timer values which are necessary for the execution of the test suite. The IXIT information , is supplied by the supplier of the IUT to the testing laboratory. To guide production of the IXIT the testing laboratory provides an IXIT proforma.

The selected and implemented test cases with parameter values according to the IXIT form the executable test suite, which are executed on a test system. The testing laboratory uses the IXIT values stated in the IXIT proforma for executing test cases according to the capabilities of the Implementation Under Test. Supported values are given as a single value or a range depending on the nature of the parameter.
Conformance Test System

Implementation Under Test

 	ATS

Lower Layers LLayers

Test System

Lower Layers link

IP

TCP/UDP

HTTP/CoAP/MQTT

Lower Layers

IUT

System Under Test

IP

TCP/UDP

HTTP/CoAP/MQTT

Figure � SEQ Figure * ARABIC �1�. Test configuration 1 (CF01)

IUT

TEST SYSTEM

AE

CSE

Mca

Mcc

IUT

TEST SYSTEM

AE

CSE

Mca

CSE

Figure � SEQ Figure * ARABIC �2�. Test configuration 2 (CF02)

© oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC)
Page 2 of 17
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Management
oneM2M
oneM2M
HTTP/CoAP/MQTT
WiFi/6LoWPAN/Ethernet, Zigbee,...
Security
Service Layer
Network & Transport
Access
oneM2M Management
oneM2M Security
IUT

