
	[image: image1.png]

	oneM2M
Technical Report

	Document Number
	TR-0038-V-0.3.0

	Document Name:
	Developer guide: Implementing security example

	Date:
	2017-12-04

	Abstract:
	The document provides a simple use case for guiding developers to implement security when developing applications using functionalities provided by a oneM2M service platform.

	Template Version: 08 September 2015 (Dot not modify)

This Specification is provided for future development work within oneM2M only. The Partners accept no liability for any use of this Specification.
The present document has not been subject to any approval process by the oneM2M Partners Type 1. Published oneM2M specifications and reports for implementation should be obtained via the oneM2M Partners' Publications Offices.
About oneM2M

The purpose and goal of oneM2M is to develop technical specifications which address the need for a common M2M Service Layer that can be readily embedded within various hardware and software, and relied upon to connect the myriad of devices in the field with M2M application servers worldwide.

More information about oneM2M may be found at: http//www.oneM2M.org

Copyright Notification

© 2017, oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC).

All rights reserved.
The copyright and the foregoing restriction extend to reproduction in all media.

Notice of Disclaimer & Limitation of Liability

The information provided in this document is directed solely to professionals who have the appropriate degree of experience to understand and interpret its contents in accordance with generally accepted engineering or other professional standards and applicable regulations. No recommendation as to products or vendors is made or should be implied.

NO REPRESENTATION OR WARRANTY IS MADE THAT THE INFORMATION IS TECHNICALLY ACCURATE OR SUFFICIENT OR CONFORMS TO ANY STATUTE, GOVERNMENTAL RULE OR REGULATION, AND FURTHER, NO REPRESENTATION OR WARRANTY IS MADE OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR AGAINST INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS. NO oneM2M PARTNER TYPE 1 SHALL BE LIABLE, BEYOND THE AMOUNT OF ANY SUM RECEIVED IN PAYMENT BY THAT PARTNER FOR THIS DOCUMENT, WITH RESPECT TO ANY CLAIM, AND IN NO EVENT SHALL oneM2M BE LIABLE FOR LOST PROFITS OR OTHER INCIDENTAL OR CONSEQUENTIAL DAMAGES. oneM2M EXPRESSLY ADVISES ANY AND ALL USE OF OR RELIANCE UPON THIS INFORMATION PROVIDED IN THIS DOCUMENT IS AT THE RISK OF THE USER.

Contents

3Contents

1
Scope
4
2
References
4
2.1
Normative references
4
2.2
Informative references
4
3
Definitions, symbols and abbreviations
5
3.1
Definitions
5
3.2
Symbols
5
3.3
Abbreviations
5
4
Conventions
6
5
Use case
6
6
Functional architecture
7
7
Procedures and call flows
9
7.1
Security Association Establishment
9
7.1.1
Security Requirements
9
7.1.2
Provisioned Symmetric Key SAE between the Locks and the Home Gateway
9
7.1.3
Certificate-based SAE between Home Gateway and IN-CSE
11
7.1.4
MAF-based SAE between Smartphone and IN-CSE
12
7.1.5
Registration upon successful SAE
16
7.2
Authorisation
16
7.3
Secure communications
16
8
Implementation
16
8.1
Definition and assumption
16
8.2
Resource structures
16
8.3
Roles of entities
16
8.4
Procedures
17
9
Conclusions
17
Proforma copyright release text block
17
Annexes
17
Annex A: Security Association Establishment Message Flows
17
A.1 Introduction
17
A.2 PSK-Based Security Association Establishment
18
A.3 Certificate-Based Security Association Establishment
21
A.4
MAF-Based Security Association Establishment
25
Annex B: Generation of Certificates
26
B.1 Introduction
26
B.2 Setting up a root CA
26
B.3 Generation of CA private key and root certificate
28
B.4 Generation of end user private key and certificates
28
Annex <y>: Bibliography
29
History
29

1
Scope

This Technical Report aims at providing guidelines to developers to implement security as specified by oneM2M TS-0003, using a simple use case as example. It addresses the initial security provisioning for enrolment with a Service Provider, and the operational phase relying on a Security Association Establishment process to implement secure connection and access control services for basic use cases.

As example, the considered use cases are implementing a home door lock service with:-

· Authentication

· Authorisation
· Integrity
· Confidentiality
2
References

The following text block applies.

References are either specific (identified by date of publication and/or edition number or version number) or non‑specific. For specific references, only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.

2.1
Normative references

As a Technical Report (TR) is entirely informative it shall not list normative references.
The following referenced documents are necessary for the application of the present document.
Not applicable.

2.2
Informative references
Clause 2.2 shall only contain informative references which are cited in the document itself.

The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.

[i.1]

oneM2M Drafting Rules (http://www.onem2m.org/images/files/oneM2M-Drafting-Rules.pdf)

[i.2]

oneM2M TS-0001: "Functional Architecture".

[i.3]

oneM2M TS-0004: "Service Layer Core protocol Specification”.

[i.4]

oneM2M TS-0003: "Security Solutions".

[i.5]

oneM2M TS-0011: "Common Terminology".

[i.6]

oneM2M TR-0025: "Application Developer Guide"
[i.7]

Stefan H. Holek: "OpenSSL PKI Tutorial", Release v1.1, 13-Aug-2017
[i.8]

Ivan Ristić: "OpenSSL Cookbook ", Version 1.1, Oct-2013
[i.9]

OpenSSL User Manual, https://www.openssl.org/docs/manmaster/man1/ciphers.html
[i.10]

oneM2M TS-0032: "MAF and MEF Interface Specification"
3
Definitions, symbols and abbreviations

Delete from the above heading the word(s) which is/are not applicable.
3.1
Definitions

Clause numbering depends on applicability.

· A definition shall not take the form of, or contain, a requirement.

· The form of a definition shall be such that it can replace the term in context. Additional information shall be given only in the form of examples or notes (see below).

· The terms and definitions shall be presented in alphabetical order.
For the purposes of the present document, the [following] terms and definitions [given in ... and the following] apply:

Definition format

<defined term>: <definition>

If a definition is taken from an external source, use the format below where [N] identifies the external document which must be listed in Section 2 References.
<defined term>[N]: <definition>

example 1: text used to clarify abstract rules by applying them literally

NOTE:
This may contain additional information.

3.2
Symbols

Clause numbering depends on applicability.

For the purposes of the present document, the [following] symbols [given in ... and the following] apply:

Symbol format

<symbol>
<Explanation>

<2nd symbol>
<2nd Explanation>

<3rd symbol>
<3rd Explanation>

3.3
Abbreviations

Abbreviations should be ordered alphabetically.

Clause numbering depends on applicability.

For the purposes of the present document, the [following] abbreviations [given in ... and the following] apply:

Abbreviation format

ARIB
Association of Radio Industries and Businesses
ATIS
Alliance for Telecommunications Industry Solutions
CCSA
China Communications Standards Association
ETSI
European Telecommunications Standards Institute

TIA
Telecommunications Industry Association,
TSDSI
Telecommunications Standards Development Society
TTA
Telecommunications Technology Association
TTC
Telecommunication Technology Committee
<ABBREVIATION1>
<Explanation>

<ABBREVIATION2>
<Explanation>

<ABBREVIATION3>
<Explanation>

4
Conventions

The key words “Shall”, ”Shall not”, “May”, ”Need not”, “Should”, ”Should not” in this document are to be interpreted as described in the oneM2M Drafting Rules [i.1]
5
Use case
This guide is based on a smart key use case involving front and back door locks in a home that can be remotely controlled by a user's smartphone leveraging the capabilities of oneM2M. For example, the user can remotely open the doors when friends, relatives, housekeeper or babysitter come to the user’s home. However, if a system of the use case is not secured, attackers can easily unlock the door locks by spoofing.

An overview of the use case is shown in figure 5.1-1 and the main components are introduced as follows:
·
The door locks are deployed in a home and are connected to a home gateway.

·
The home gateway communicates with a cloud service platform allowing the door locks to be controlled remotely by the smartphone.

·
The cloud service platform supports a set of services to enable the smartphone to more easily control the door locks in the home. Some examples of services include registration, discovery, data management, group management, subscription/notification etc

·
The smartphone hosts an application used to remotely control the door locks in the home and supports the following capabilities:

· Discovery of door locks deployed in the home.

· Sending commands to change door lock states i.e. LOCKED and UNLOCKED.

· Retrieval of door lock states.

· Receiving notifications when certain events occurred.

· M2M Authentication Function (MAF) is used when employing MAF-based Security Association Establishment (SAE) between field nodes and infrastructure nodes. When using Pre-Shared Key or Certificate-based SAE, the MAF is not required.

[image: image2.emf]Cloud Service

Platform

Smartphone with

embedded application

acting as remote door lock

controller

Back Door Lock

Front Door Lock

Home Gateway

M2M Authentication

Function

Figure 5.1-1 Overview of remote door locks control use case
6
Functional architecture
This clause describes how the different components of this use case can be represented by corresponding oneM2M architectural entities as shown in figure 6.1-1.

[image: image3.emf]Cloud Service

Platform

Smartphone with

embedded application

acting as a remote

door lock controller

Mcc

ADN-AE3

Mca

Front Door Lock

Back Door Lock

Home Gateway

MN-AE

ADN-

AE-1

MN-CSE

Mca

Mca

Home Domain

ADN-

AE-2

MAFMAF

IN-CSEIN-CSE

Mmaf

Mmaf

MAF

client

MAF client

M2M Authentication

Function

Figure 6.1-1 oneM2M functional architecture of remote door locks control use case
An IN-CSE is hosted in the cloud by the oneM2M Service Provider and a MN-CSE is hosted on the Home Gateway. Applications and MAF used in the current use case are classified as follows:

·
ADN-AE1: an application embedded in Front Door Lock with capabilities to control Front Door Lock and interact with the home gateway MN-CSE through Mca reference point;

·
ADN-AE2: an application embedded in Back Door Lock with capabilities to control Back Door Lock and interact with the home gateway MN-CSE through Mca reference point;

·
ADN-AE3: an application embedded in the smartphone device with capabilities to interact directly with the oneM2M service platform IN-CSE through Mca reference point used to remotely control Front Door Lock and Back Door Lock;

·
MN-AE: a gateway application embedded into the home gateway that interacts with the MN-CSE through Mca reference point.

· MAF: M2M Authentication Function assigns symmetric keys to MAF clients on the IN-CSE and the ADN-AE3 through Mmaf reference point.

7
Procedures and call flows

7.1
Security Association Establishment
7.1.1
Security Requirements
M2M services are offered by CSEs to AEs and/or other CSEs. To be able to use M2M services offered by one CSE, the AEs and/or CSEs need to be mutually identified and authenticated by that CSE, in order to provide protection from unauthorized access and Denial of Service attacks.

This mutual authentication enables to additionally provide encryption and integrity protection for the exchange of messages across a single Mca, Mcc or Mcc' reference point. In addition, communicating AEs that require similar protection for their own information exchanges can be provisioned to apply the same security method to their communications. This is the purpose of the Security Association Establishment (SAE) procedure.

When CoAP binding of oneM2M primitives is used, i.e. the Underlying Network communication uses UDP/IP transport, Authentication is performed by means of a DTLS Handshake.

When HTTP, MQTT or WebSocket binding of oneM2M primitives is used, i.e. the Underlying Network communication uses TCP/IP transport, Authentication is performed by means of a TLS Handshake.

For the use cases in this guideline document it is assumed that HTTP binding is employed between all applicable pairs of entities (see also TR-0025 [i.6])

In order to exemplify the use of all three Security Association Establishment Frameworks (SAEF) defined in TS-0003 [i.4] the following use cases are described:

· Provisioned Symmetric Key SAE between Door Locks and Home Gateway,

· Pre-provisioned Certificate Based SAE between Home Gateway and IN-CSE,

· MAF Based Symmetric Key SAEF between the smartphone and IN-CSE.

Communication between the MN-AE and MN-CSE internally to the Home Gateway is assumed to not require Security Association Establishment.
7.1.2
Provisioned Symmetric Key SAE between the Locks and the Home Gateway
In this example it is assumed that authentication between the Locks (ADN-AE1 and ADN-AE2) and the Home Gateway (MN-CSE) is performed using provisioned keys (Kpsa) and key identifiers (KpsaID).
Configuration of ADN-AE1 and ADN-AE2:

· The AEs are configured with the set of allowed TLS ciphersuites when using TLS-PSK as defined in clause 10.2.2 of TS-0003 [i.4]. The set of ciphersuites includes TLS_PSK_WITH_AES_128_CBC_SHA256.
· The AE is assumed to be configured with the CSE-ID of the Home Gateway which is a unique identifier within the M2M-SPs domain. The CSE-ID value is assumed as mn-cse-123456.
· The AE is assumed to be configured with a pair of credentials (psk, psk_identity) associated with the CSE-ID. An example of credential configuration is given in Table 7.1.2-1. The length of the keys Kpsa is not mandated by TS-0003 [i.4] and left to implementation. In this example the key length of 8 bytes (64 bits) is chosen. The key identifiers comply with the format specified in clause 10.5 of TS-0003 [i.4].
Table 7.1.2-1: Example Credentials configured on ADN-AE1 and ADN-AE2

	Entity
	Kpsa (hex format)
	KpsaID

	ADN-AE1
	1a2b3c4d5e6f7a8b
	AE123456789012-Lock@in.provider.com

	ADN-AE2
	12345678abcdefab
	AE123456789015-Lock@in.provider.com

Configuration of MN-CSE (Home Gateway):

· The MN-CSE is configured with the set of allowed TLS ciphersuites when using TLS-PSK as defined in clause 10.2.2 of TS-0003 [i.4]. The set of ciphersuites includes TLS_PSK_WITH_AES_128_CBC_SHA256.

· The MN-CSE is assumed to have a psk-lookup-table with columns for (client identity, psk, psk_identity), such that when a TLS client provides a particular psk_identity, then the MN-CSE uses the corresponding psk for establishing a TLS session, and the client identity is associated with the established TLS session. This needs to be integrated to the TLS server. Table 7.1.2-2 shows an example of credentials configured on the Home Gateway to serve ADN-AE1 and ADN-AE2, containing AE-ID, KpsaID, Kpsa. A new row would need to be added to this table for each additional AE allowed to register to the MN-CSE by using TLS_PSK.

NOTE: Some open source libraries, e.g. OpenSSL, do not provide a psk-lookup-table, but do indicate a spot in the source code where a psk-lookup could be implemented. The psk-look-up-table values could then be provided in a configuration file.
Table 7.1.2-2: Credentials configured on MN-CSE

	AE-ID
	Kpsa (hex format)
	KpsaID

	Clock-AE1
	1a2b3c4d5e6f7a8b
	AE123456789012-Lock@in.provider.com

	Clock-AE2
	12345678abcdefab
	AE123456789015-Lock@in.provider.com

Operation of ADN-AE1 and ADN-AE2

When the AE is triggered to establish a TLS-PSK session with the MN-CSE using some pair (Kpsa, KpsaID), the following should occur automatically based on the AE’s configuration:

· AE’s TLS Client is triggered to perform a TLS-PSK handshake with the TLS values (psk, psk_identity) set to the values of (Kpsa, KpsaID), and with the configured list of TLS ciphersuites.

· On completion of the TLS handshake, the AE associates the established TLS session with the MN-CSE’s CSE-ID.

Operation of MN-CSE

The MN-CSE’ TLS Server is listening on the TLS Server port and the following should occur automatically based on the MN-CSE’s configuration:

· A TLS handshake is started at the MN-CSE TLS Server on receiving a TLS handshake Client_Hello message. In the case of the AE, this includes the list of TLS-PSK ciphersuites supported by the AE for use with the MN-CSE. The MN-CSE will select a ciphersuite that is also in its configured list.

· A later TLS handshake message will include the psk_identity element set to KpsaID.

· The MN-CSE’s TLS Server looks up the psk-lookup-table using KpsaID as an index, and retrieves the AE’s (AE-ID, Kpsa). If AE-ID is not available, then the MN-CSE may query the node’s <serviceSubscribedAppRule> resource.

· The MN-CSE’s TLS client continues the TLS handshake with the TLS value psk set to the value of Kpsa.

· On completion of the TLS handshake, the MN-CSE associates the established TLS session with the AE’s AE-ID.

Annex A provides details for implementing the TLS handshake procedure.
7.1.3
Certificate-based SAE between Home Gateway and IN-CSE

In this example, it is assumed that authentication between the Home Gateway (MN-CSE) and the IN-CSE is performed using CSE-ID certificates compliant with clause 10.1 of TS-0003 [i.4], which are signed by a Certification Authority (CA). The production of suitable certificates is described in Annex B.

Configuration of MN-CSE:

· The MN-CSE is configured with the set of allowed TLS ciphersuites when using certificates as defined in clause 10.2.3 of TS-0003 [i.4]. The set of ciphersuites includes TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256.

· The MN-CSE is assumed to be configured with a CSE-ID certificate which includes its own CSE-ID in the Subject Alternative Name (subjectAltName) field (“DNS:my.example_m2mprovider.org/mn-cse-123456”). The CSE-ID certificate is signed by a root CA certificate (in the considered example).
Table 7.1.3-1: Example credentials configured on MN-CSE
	Entity
	Entity-ID
	private key file
	certificate file

	MN-CSE
	mn-cse-123456
	mn_cse_key.pem
	02.pem

Configuration of IN-CSE:

· The IN-CSE is configured with the set of allowed TLS ciphersuites when using certificates as defined in clause 10.2.2 of TS-0003 [i.4]. The set of ciphersuites includes TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256.
· The IN-CSE is assumed to be configured with a CSE-ID certificate which includes its own CSE-ID in the Subject Alternative Name (subjectAltName) field (“DNS:my.example_m2mprovider.org/in-cse”). The CSE-ID certificate is signed by a root CA certificate. Acceptable CA certificates should be stored by the IN-CSE in a certificate store.
Table 7.1.3-2: Example credentials configured on IN-CSE
	Entity
	Entity-ID
	private key file
	certificate file

	IN-CSE
	in-cse
	in_cse_key.pem
	01.pem

Operation of MN-CSE

When the MN-CSE is triggered to establish a TLS session with the IN-CSE, the following should occur automatically based on the MN-CSE’s configuration:

· MN-CSE’s TLS Client is triggered to perform a TLS handshake indicating its configured list of TLS ciphersuites and providing its MN-CSE certificate upon request of the TLS server to the IN-CSE.
· The MN-CSE verifies the certificate (chain) received from the IN-CSE by validating the signature(s) and by verifying that the root certificate can be trusted. Furthermore, the MN-CSE checks if the CSE-ID included in the subjectAltName field of the IN-CSEs certificate matches its configured IN-CSE ID.
· On completion of the TLS handshake, the MN-CSE associates the established TLS session with the IN-CSE’s CSE-ID.

Operation of IN-CSE

The IN-CSE’ TLS Server is listening on the TLS Server port and the following should occur automatically based on the IN-CSE’s configuration:

· A TLS handshake is started at the IN-CSE TLS Server on receiving a TLS handshake Client_Hello message. In the case of the MN-CSE, this includes the list of TLS ciphersuites supported by the MN-CSE for use with the IN-CSE. The IN-CSE will select a ciphersuite that is also in its configured list.

· The IN-CSE’s TLS Server is configured

· to send its own certificate and (optional) certificate chain in a Certificate TLS handshake message

· to request the certificate from the TLS client in a Certificate Request TLS handshake message and to validate this certificate
· to check the CSE-ID of the MN-CSE included in the MN-CSE’s certificate. If this CSE-ID is not available, then the IN-CSE obtains it from the node’s <serviceSubscribedAppRule> resource.

· On completion of the TLS handshake, the IN-CSE associates the established TLS session with the MN-CSE’s CSE-ID.
7.1.4
MAF-based SAE between Smartphone and IN-CSE

In this example, we consider the case where the AE implemented on a smartphone registers to the IN-CSE using MAF-based SAE.

We assume that the MAF client, associated with ADN-AE3 and implemented on the smartphone, is configured to use certificate-based SAE when communicating with the MAF. The MAF Client of the IN-CSE is assumed to be already registered with the MAF. The security association between AE1 and the IN-CSE is then established as illustrated in figure 7.1.4-1 with the steps described below. The communication between MAF clients and the MAF is assumed to comply with the MAF interface specification TS-0032 [i.10], where HTTP is used as binding protocol. JSON serialization of primitives is employed.

[image: image4.emf]AE3

IN-CSE

MAF

Client

MAF

MAF

Client

1) Certificate-based SAE

2) MAF Client

Registration Request

3) MAF Client

Registration Response

4) MAF Key

Registration Request

5) MAF Key

Registration Response

ADN on Smartphone

6. Cred.

transfer

8) MAF Key Retrieval

7) PSK-based SAE

9) Application Data

Figure 7.1.4-1: MAF-Based Security Association Establishment
1. A security association between the MAF client and the MAF is established. This procedure is the same as described in clause 7.1.4 and Annex A.3. In this example we assume that keying material to be used later on in the security association between ADN-AE3 and IN-CSE is derived at both ends using the TLS key exporter function (see clauses 8.2.2.3 and 8.3.5.3.7 of TS-0003 [i.4]). Further details of this procedure are described in Annex A.4.

Editor’s note: When a MAF client is associated with a single AE or CSE, an already existing AE-ID or CSE-ID certificate may be used in the TLS handshake. This would require some clarifications in TS-0003. TS-0003 currently mandates the use of a device certificate, which requires a device ID in subjectAltName.
2. The MAF client registers to the MAF by sending a MAF client registration request as specified in clause 8.8.2.3 of TS-0003 [i.4]:
	JSON serialized primitive
	Comments

	{"rqp": {
 "op": 1,
 "to": "//myMAF.provider.org/-/",
 "fr": "0 2 481 1 100 3030 10011",
 "rqi": "0001",
 "ty": 3,
 "pc": {"sec:macr": {
 "et": "20181113T110000",
 "adfq": "mytrustenabler.org"

 }},
 "rcn": 7
}}
	request primitive

operation = CREATE

to = default MAFBase address
from = device id of device where MAF client is installed

request identifier, assigned by originator

resource type = <mafClientReg> to be created

content = global element name of <mafClientReg>

expirationTime = 2018-11-13 11:00:00 UTC

adminFQDN

result content = Original Resource

3. The MAF sends the response to the MAF client:
	JSON serialized primitive
	Comments

	{"rsp": {
 "rsc": 2001,
 "rqi": "0001",
 "pc": {"sec:macr": {
 "rn": "MACR000001",
 "ty": 3,
 "ri": "macr000001",
 "pi": "mb01",
 "ct": "20171113T110000",
 "lt": "20171113T110000",
 "et": "20181113T110000",
 "cr": "0 2 481 1 100 3030 10011",
 "adfq": "mytrustenabler.org",
 "aski": "FF15D84E3E38D6974B0EB3E5606C85FE@myMAF.provider.org"
 }}
}}
	response primitive

response status code, CREATED
request identifier

content=global element name <mafClientReg>
resource name, assigned by MAF
resource type = <mafClientReg>

resource identifier, assigned by MAF

parent identifier, resource id of MAFBase
creation time

last modified time

expiration time, 1 year after creation

creator, MAF client id

adminFQDN, fqdn of trust enabler

key identifier

4. MAF key registration request as described in clause 8.8.2.7 of TS-0003 [i.4].
	JSON serialized primitive
	Comments

	{"rqp": {
 "op": 1,
 "to": "//myMAF.provider.org/-/macr000001",
 "fr": "0 2 481 1 100 3030 10011",
 "rqi": "0002",
 "ty": 5,
 "pc": {"sec:mkr": {
 "et": "20171120T110000",
 "adfq": "mytrustenabler.org",

 "suid": 11
 }},
 "rcn": 7
}}
	request primitive

operation = CREATE

to = address of <mafClientReg> parent resource
from = device id of MAF client (= MAF client ID)

request identifier, assigned by originator

resource type = <symmKeyReg> to be created

content = global element name of <symmKeyReg>

expiration time, 1 week after creation

adminFQDN, fqdn ofd trust enabler

security usage id = MAF-based SAEF

result content = Original Resource

5. MAF key registration response. Note that the keyValue attribute is not returned to the MAF client as this key is derived from the TLS key exporter function.
	JSON serialized primitive
	Comments

	{"rsp": {
 "rsc": 2001,
 "rqi": "0002",
 "pc": {"sec:mkr": {
 "rn": "SK00001",
 "ty": 5,
 "ri": "FF15D84E3E38D6974B0EB3E5606C85FE",
 "pi": "macr000001",
 "ct": "20171113T110001",
 "lt": "20171113T110001",
 "et": "20171120T110001",
 "cr": "0 2 481 1 100 3030 10011",
 "adfq": "mytrustenabler.org",
 "suid": 11,
 "tgis": "//my.m2mprovider.org/in-cse"
 }}
}}
	response primitive

response status code, CREATED
request identifier

content=global element name <symmKeyReg>
resource name, assigned by MAF

resource type = <symmKeyReg>
resource identifier, assigned by MAF equal to

relativeKeyID, see Annex A.4
parent identifier, resource id of <mafClientReg>
creation time

last modified time

expiration time, 1 week after creation

creator, MAF client id

adminFQDN, fqdn of trust enabler

security usage id = MAF-based SAEF
list of target identifiers, registrar CSE id
Note: key value is not returned to MAF client in this procedure

6. Using the keying material established in step 1 the security credentials psk and psk_identity are transferred from the MAF client to the AE (see Annex A.4 for more details).
7. PSK-based security association is established between AE3 and the IN-CSE, as described in clause 7.1.3 and Annex A.2 using psk and psk_identity from step 6.
8. As part of step 7), the MAF client associated with the IN-CSE retrieves the PSK credential from the MAF which is identified from the fqdn-part of the psk_identity value by means of triggering a MAF Key Retrieval procedure as specified in clause 8.8.2.8 of TS-0003 [i.4]. It is assumed that a security association between IN-CSE's MAF client and the MAF already exists prior to execution of the MAF Key Retrieval procedure.
The Key Retrieval request and response primitives are shown in the Table below:
	JSON serialized primitive
	Comments

	{"rqp": {
 "op": 2,
 "to": "//myMAF.provider.org/-/FF15D84E3E38D6974B0EB3E5606C85FE",
 "fr": "//my.m2mprovider.org/in-cse",
 "rqi": "ABC28F",
 "rcn": 7
}}
	request primitive

operation = RETRIEVE
to = address of <symmKeyReg> parent resource = KcID
from = IN-CSE identifier

request identifier, assigned by originator
result content = Original Resource

	{"rsp": {
 "rsc": 2000,
 "rqi": "ABC28F",
 "pc": {"sec:mkr": {
 "rn": "SK00001",
 "ty": 5,
 "ri": "FF15D84E3E38D6974B0EB3E5606C85FE",
 "pi": "macr000001",
 "ct": "20171113T110001",
 "lt": "20171113T110001",
 "et": "20171120T110001",
 "cr": "0 2 481 1 100 3030 10011",
 "adfq": "mytrustenabler.org",
 "suid": 11,
 "tgis": "//my.m2mprovider.org/in-cse",
 "kv": "37F61D5A7FEA1E9CFD8DB76D2F8B6230130EF8A84F9F9F967DA385867984EED0"
 }}
}}
	response primitive

response status code, OK
request identifier

content=global element name <symmKeyReg>
resource name, assigned by MAF

resource type = <symmKeyReg>
resource identifier = relative Key id
parent identifier, resource id of <mafClientReg>

creation time

last modified time

expiration time, 1 week after creation

creator, MAF client id

adminFQDN, fqdn of trust enabler

security usage id = MAF-based SAEF
list of target identifiers, registrar CSE id
key value, as derived with TLS key material exporter function

9. Encrypted messages can be exchanged between AE3 and the IN-CSE.
7.1.5
Registration upon successful SAE

Editor’s note: this clause will provide an example of the registration procedure following successful Security Association Establishment. This procedure is independent of the SAE procedures described in clauses 7.1.2 to 7.1.4. It will also include an example of AE impersonation checking procedure.
<Text>
7.2
Authorisation

<Text>
7.3
Secure communications

<Text>
8
Implementation
8.1
Definition and assumption
<Text>
8.2
Resource structures

<Text>

8.3
Roles of entities
<Text>

8.4
Procedures

<Text>
9
Conclusions
<Text>
Proforma copyright release text block

This text box shall immediately follow after the heading of an element (i.e. clause or annex) containing a proforma or template which is intended to be copied by the user. Such an element shall always start on a new page.

Notwithstanding the provisions of the copyright clause related to the text of the present document, oneM2M grants that users of the present document may freely reproduce the <proformatype> proforma in this {clause|annex} so that it can be used for its intended purposes and may further publish the completed <proformatype>.

<PAGE BREAK>

Annexes

Each annex shall start on a new page (insert a page break between annexes A and B, annexes B and C, etc.).

Use the Heading 9 style for the title and the Normal style for the text.
Annex A: Security Association Establishment Message Flows

A.1 Introduction

This Annex presents some example message flows which are useful to understand the operation of the oneM2M security establishment frameworks, to verify correct operation or to identify the cause of misbehavior.

Some details of TLS message flows and message content depend on the employed SSL/TLS implementation. Implementations of oneM2M entities will typically make use of SSL/TLS libraries to enable support of the required security functions specified in TS-0003. Examples of open source SSL/TLS libraries include OpenSSL, gnuSSL and mbed TLS.

Such SSL/TLS libraries implement the basic cryptographic functions and provide various utility functions such as e.g. TLS clients and servers which may be executed from a command line.

The message flows shown here have been produced using OpenSSL Version 1.1.1-dev on an Ubuntu 14.04 computer using the s_client and s_server utility functions, and employing Wireshark for capturing and analyzing the exchanged data packets. Note that OpenSSL Version 1.1.0 or higher is required to support the PSK ciphers defined in RFC 5989 and mandated to be used by TS-0003.
The commands given in the subsections below may be used to reproduce these flows.

A.2 PSK-Based Security Association Establishment

A typical flow of messages and actions for a successful PSK-Based Security Association Establishment is shown in figure A.2-1. The message content described in the steps below applies to the example described in clause 7.1.2.

Subsequent to TCP connection establishment (not shown in the Figure), the following messages are exchanged between ADN-AE1 and the MN-CSE:

1. The TLS client on ADN-AE1 sends a Client Hello Handshake message which is encapsulated in a TLS Record layer frame. The record layer message includes the following fields:
i. Record layer header fields:
· Content type 0x16 (Handshake)
· Version 0x0301 (indicating TLS 1.0)
· Length of the message (2 bytes, value depending on the message content)
ii. Application data (handshake message):
· Handshake Type 0x01 (Client Hello)
· Length of the message (3 bytes, value depending on the message content)

· Client Version 0x0303 (TLS 1.2)
· (Client) Random (32 bytes, generated by the TLS client’s pseudo random number generator (PRNG))
· Length of cipher suites field (value at least 1)
· List of cipher suites supported by the client. Must include identifier for TLS_PSK_WITH_AES_128_CBC_SHA256 (0x00ae)
· Extension length and Extensions (irrelevant for this example)
2. The TLS server handshake protocol responds with Server Hello and Server Hello Done messages. For the implementation employed here, each of these messages is encapsulated into a dedicated record layer frame.
i. Record layer header fields:

· Content type 0x16 (Handshake)

· Version 0x0303 (indicating TLS 1.2)

· Length of the application data field (2 bytes, value depending on the message content)

ii. Application data (“Server Hello” handshake message):
· Handshake Type 0x02 (Server Hello)

· Length of the message (3 bytes, value depending on the message content)

· Server version 0x0303 (indicating TLS 1.2)

· (Server) Random (32 bytes, generated by the TLS server’s PRNG)

· Session-Id length (0x00, no session ID supplied)

·
· Cipher suite selected by the server is TLS_PSK_WITH_AES_128_CBC_SHA256 (0x00ae)
· Compression method (null, no compression)
· Extension length and Extensions (irrelevant for this example)
iii. Record layer header fields:

· Same as in step 2.i

iv. Application data (“Server Hello Done” handshake message):
· Handshake type 0x0e (Server Hello Done)

· Length of the message (0x0000, message has no content)

3. The TLS client responds with Client Key exchange, Change Cipher Spec, Finished messages. For the implementation employed here, each of these messages is encapsulated into a dedicated record layer frame.
i. Record layer header fields:

· Same as in step 2.i

ii. Application data (“Client Key Exchange” handshake message):
· Handshake Type 0x10 (Client Key Exchange)

· Length of the message (3 bytes, value depending on the message content)

· PSK client parameters:

· Identity length (0x00000f in this example)

· PSK Identity (here binary equivalent of “Client_identity”)

iii. Record layer header fields:

· Content type 0x14 (Change Cipher Spec)

· Version 0x0303 (TLS 1.2)

· Length of the message (0x0001)

iv. Application data (“Change Cipher Spec” message):
· Change Cipher Spec message 0x01 (1 byte)

v. Record layer header fields:

· Same as in step 2.i

vi. Application data (encrypted “Finished” handshake message)
· Handshake type 0x14 (Finished)

· Length of the message 0x00000c (12)

· Verify Data (12 bytes), see RFC 5246, section 7.4.9.

4. The server retrieves Kpsa associated with the PSK Identity, computes the master secret and authenticates the client by validating Verify Data

5. The TLS server responds with New Session Ticket, Change Cipher Spec, Finished messages. For the implementation employed here, each of these messages is encapsulated into a dedicated record layer frame.
i. Record layer header fields:

· Same as in step 2.i

ii. Application data (“New Session Ticket” handshake message):
· Handshake Type 0x04 (New Session Ticket)

· Length of the message (3 bytes: 0x0000b6)

· Session Ticket:

· Lifetime Hint (4 bytes: 0x00001c20, 7200 in this example)

· Session Ticket Length (2 bytes, 0x00b0, 176 in this example)

· Session Ticket (176 bytes), see RFC 4507, server session state enabling session resumption

iii. Record layer header fields:

· Content Type 0x14 (Change Cipher Spec)

· Version 0x0303 (TLS 1.2)

· Length of the message (0x0001)

iv. Encrypted application data (“Change Cipher Spec” message):
· Change Cipher Spec message 0x01 (1 byte)

v. Record layer header fields:

· Same as in step 2.i

vi. Application data (encrypted “Finished” handshake message, to verify that the key exchange and authentication processes were successful):
· Handshake Type 0x14 (Finished)

· Length of the message 0x00000c (12)

· Verify Data (12 bytes), see RFC 5246, section 7.4.9.

6. The client authenticates the server by validating Verify Data

7. Application data encrypted by the TLS record layer is exchanged between ADN-AE1 and MN-CSE

[image: image5.emf]ADN-AE1MN-CSE

7. Application data

1. Client Hello

2. Server Hello, Server Hello Done

3. Client Key Exchange, Change Cipher Spec,

Finished

5. New Session Ticket, Change Cipher Spec,

Finished

4. Server retrieves Kpsa and

authenticates the client

6. Client authenticates the

server

Figure A.2-1: PSK-Based Security Association Establishment
The message flow described above (excluding step 7) can be reproduced with the following commands under Linux OS using localhost IP address and port 443:
TLS server on MN-CSE:

$ sudo openssl s_server -accept 443 -psk 1a2b3c4d5e6f7a8b
TLS Client on ADN-AE1:

$ openssl s_client -connect 0.0.0.0:443 -psk_identity Client_identity \

 -psk 1a2b3c4d5e6f7a8b -cipher PSK-AES128-CBC-SHA256

NOTE:
The OpenSSL s_server utility does not support table lookup of pre-shared keys when using the option

 -psk_identity AE123456789015-Lock@in.provider.com

as required for the example in clause 7.1.2. Therefore, the above command line for the server includes the used PSK itself. The client command line provides the PSK identity “Client_identity” which is expected by the server for this PSK.
Note that in order to enable Wireshark to decrypt application data which has been encrypted by the TLS record layer, it must be configured as follows:

In the Wireshark configuration menu Edit -> Preferences -> Protocols -> SSL,

1) In the “Pre-Shared-Key” field, enter Kpsa, i.e. 1a2b3c4d5e6f7a8b
2) In the (Pre)-Master-Secret log filename field, enter the name of a text file which includes Client Random (32 bytes as 64 hex characters) and the Master Secret (48 bytes as 96 hex characters) as a text line as follows:
 CLIENT_RANDOM <space> 64-characters-random <space> 96-characters-Master-Secret

The master secret is provided as log information in the terminal window, where s_client is started. The value of Client Random can be retrieved from the Wireshark packet capture in the Client Hello handshake message.

First the data captured with Wireshark must be stored into a file. Then, after configuring Wireshark as described above, the messages in the saved data file can be decrypted by Wireshark.

Editor’s note: relation between credential identifiers, entity identifiers and service subscription information needs to be clarified
A.3 Certificate-Based Security Association Establishment
Figure A.3-1 shows a typical flow of messages and actions for a successful certificate-based Security Association Establishment. The message content, i.e. the names of certificate files, private key files and CSE identifiers, described in the steps of the message flow, corresponds to the example described in clause 7.1.3.

Subsequent to TCP connection establishment (not shown in the Figure), the following messages are exchanged between ADN-AE1 and the MN-CSE:

1. The TLS client on MN-CSE sends a Client Hello Handshake message which is encapsulated in a TLS Record layer frame. The record layer message includes the following fields:
i. Record layer header fields:
· Content type 0x16 (Handshake)
· Version 0x0301 (indicating TLS 1.0)
· Length of the message (2 bytes, value depending on the message content)
ii. Application data (handshake message):
· Handshake Type 0x01 (Client Hello)
· Length of the message (3 bytes, value depending on the message content)

· Client Version 0x0303 (TLS 1.2)
· (Client) Random (32 bytes, generated by the TLS client’s pseudo random number generator (PRNG))
· Length of cipher suites field
· List of cipher suites supported by the client. This list must include TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 (0xc023)
· Extension length and Extensions (includes ec_point_formats, eliptic_curves, SessionTicket TLS, signature_algorithms)
2. The TLS server handshake protocol responds with Server Hello, Certificate, Server Key Exchange, Certificate Request and Server Hello Done messages. For the implementation employed here, each of these messages is encapsulated into a dedicated record layer frame.
i. Record layer header fields:

· Content type 0x16 (Handshake)

· Version 0x0303 (indicating TLS 1.2)

· Length of the application data field (2 bytes, value depending on the message content)

ii. Application data (“Server Hello” handshake message):
· Handshake Type 0x02 (Server Hello)

· Length of the message (3 bytes, value depending on the message content)

· Server version 0x0303 (indicating TLS 1.2)

· (Server) Random (32 bytes, generated by the TLS server’s PRNG)

· Session-Id length (0x00, no session ID supplied)

· Cipher suite selected by the server, should be TLS_PSK_WITH_AES_128_CBC_SHA256 (0x00ae)
· Compression method (null, no compression)
· Extension length and Extensions (only extension types included, irrelevant for this example)
iii. Record layer header fields:

· Same as in step 2.i

iv. Application Data (“Certificate” handshake message): includes IN-CSE certificate and the Certificate

· Handshake type 0x11 (Certificate)

· Length of the message (3 bytes, value is 1224, for the given certificates)

· Certificate length (3 bytes)

· Certificate (601 bytes): MN-CSE certificate

· Certificate length 3 bytes

· Certificate 614 bytes: IN-CSE certificate

v. Record layer header fields:

· Same as in step 2.i

vi. Application Data (“Server Key Exchange” handshake message):

· Handshake type 0x0c (Server Key Exchange)

· Length of the message (3 bytes)

· EC Diffie-Hellman Server Parameters

vii. Record layer header fields:

· Same as in step 2.i

viii. Application Data (“Certificate Request” handshake message):

· Handshake type 0x0d (Certificate Request)

· Length of the message (3 bytes)

· Certificate Types, Signature Hash Algorithms

· Distinguished Names, includes the issuer of the certificate

ix. Record layer header fields:

· Same as in step 2.i

x. Application data (“Server Hello Done” handshake message):
· Handshake type 0x0e (Server Hello Done)

· Length of the message (0x0000, message has no content)

3. The TLS client validates the certificate (chain) received from the TLS server.

The client validates the signature(s) of the certificate(s) and checks if it can trust the root certificate.

4. The TLS client responds with Certificate, Client Key exchange, Certificate Verify, Change Cipher Spec, Finished messages. For the implementation employed here, each of these messages is encapsulated into a dedicated record layer frame.
i. Record layer header fields:

· Same as in step 2.i

ii. Application data (“Certificate” handshake message):
· Handshake Type 0x0b (Certificate)

· Length of the message (3 bytes, value depending on the message content, 608 bytes in this example)

· Certificates length (3 bytes, length of certificate chain, value is 605 bytes for the given certificate 02.pem)

· Certificate length (3 bytes, value is 602 bytes for the certificate given in 02.pem)

· Certificate (ASN.1 DER encoded binary representation of the certificate included in 02.pem)

iii. Record layer header fields:

· Same as in step 2.i

iv. Application data (“Client Key Exchange” handshake message):
· Handshake Type 0x10 (Client Key Exchange)

· Length of the message (3 bytes, value depending on the message content)

· PSK client parameters:

· Identity length (0x00000f in this example)

· PSK Identity (here binary equivalent of “Client_identity”)

vii. Record layer header fields:

· Same as in step 2.i

viii. Application data (“Certificate Verify” handshake message):
· Handshake Type 0x0f (Certificate Verify)

· Length of the message (3 bytes, value depending on the message content)

· Signature hash algorithm (ECDSA with SHA256, Signature Length (72 bytes) and Signature of all sent or received handshake messages of the current TLS handshake, see Section 7.4.8 of RFC5246
v. Record layer header fields:

· Same as in step 2.
vi. Application data (“Change Cipher Spec” message):
· Change Cipher Spec message 0x01 (1 byte)

vii. Record layer header fields:

· Same as in step 2.i

viii. Application data (encrypted “Finished” handshake message)
· Handshake type 0x14 (Finished)

· Length of the message 0x00000c (12)

· Verify Data (12 bytes), see RFC 5246, section 7.4.9.

5. The server validates the certificate (chain) received from the client.

6. The TLS server responds with New Session Ticket, Change Cipher Spec, Finished messages. For the implementation employed here, each of these messages is encapsulated into a dedicated record layer frame.
i. Record layer header fields:

· Same as in step 2.i

ii. Application data (“New Session Ticket” handshake message):
· Handshake Type 0x04 (New Session Ticket)

· Length of the message (3 bytes: 0x0000b6)

· Session Ticket:

· Lifetime Hint (4 bytes: 0x00001c20, 7200 in this example)

· Session Ticket Length (2 bytes, 0x00b0, 176 in this example)

· Session Ticket (176 bytes), see RFC 4507, server session state enabling session resumption

iii. Record layer header fields:

· Content Type 0x14 (Change Cipher Spec)

· Version 0x0303 (TLS 1.2)

· Length of the message (0x0001)

iv. Encrypted application data (“Change Cipher Spec” message):
· Change Cipher Spec message 0x01 (1 byte)

v. Record layer header fields:

· Same as in step 2.i

vi. Application data (encrypted “Finished” handshake message, to verify that the key exchange and

 authentication processes were successful):
· Handshake Type 0x14 (Finished)

· Length of the message 0x00000c (12)

· Verify Data (12 bytes), see RFC 5246, section 7.4.9.

7. The client authenticates the server by validating the Verify Data field and by matching of the CSE-ID in the subjectAltName field with its preconfigured registrar CSE-ID. Also, the server may check if the client’s MN-CSE-ID given in the subjectAltName field of the client certificate is already registered or is allowed to register to the IN-CSE (e.g. by checking if there is a <serviceSubscribedNode> resource instance which includes this MN-CSE ID.
8. Service Layer data encrypted by the TLS record layer is exchanged between MN-CSE and IN-CSE

[image: image6.emf]MN-CSEIN-CSE

8. Service Layer data

1. Client Hello

2. Server Hello, Certificate, Server Key Exchange,

Certificate Request, Server Hello Done

4. Certificate, Client Key Exchange,

Certificate Verify, Change Cipher Spec, Finished

6. New Session Ticket, Change Cipher Spec,

Finished

5. Server validatesthe client ’s

certificate (chain)

3. Client validatesthe server’s

certificate (chain)

7. Client authenticates the

server

7. Serverauthenticates the

client

Figure A.3-1: Certificate-Based Security Association Establishment
The message flow described above (excluding step 7) can be reproduced with the following commands under Linux OS using localhost IP address and port 443 (it is assumed that path names apply and CSE-certificates are available in the directory from where this command is issued):

TLS server on IN-CSE:

$ sudo openssl s_server -accept 443 -Verify 1 -key in_cse_key.pem \

 -cert 01.pem -CApath ./demoCA -CAfile ./demoCA/cacert.pem

TLS client on MN-CSE:

$ openssl s_client -connect 0.0.0.0:443 -key mn_cse_key.pem -cert 02.pem \

 -verify 1 –cipher ECDHE-ECDSA-AES128-SHA256 \

 -CApath ./demoCA -CAfile ./demoCA/cacert.pem

NOTE:
CipherSuite TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 = {0xC0,0x23} as defined in RFC5989 is denoted ECDHE-ECDSA-AES128-SHA256 in openssl [i.9]

Note that in order to enable Wireshark to decrypt application data which has been encrypted by the TLS record layer, it must be configured as follows:

In the Wireshark configuration menu Edit -> Preferences -> Protocols -> SSL,

· In the (Pre)-Master-Secret log filename field, enter the name of a text file which includes Client Random (32 bytes as 64 hex characters) and the Master Secret (48 bytes as 96 hex characters) as a text line as follows:
 CLIENT_RANDOM <space> 64-characters-random <space> 96-characters-Master-Secret

The master secret is provided as log information in the terminal window, where s_client is started. The value of Client Random (comprised of GMT Time (4 bytes/8 hex chars) plus Random (28 bytes/56 hex chars)) can be retrieved from the Wireshark packet capture in the Client Hello handshake message.

A.4
MAF-Based Security Association Establishment

In MAF-based Security Association Establishment between two oneM2M entities (i.e. AEs and CSEs) symmetric key credentials are employed which have been established with a preceding procedure on a MAF. This key establishment procedure corresponds to steps 1 to 6 in the example described in clause 7.1.4.

Step 1 of the procedure in clause 7.1.4 represents a certificate-based TLS-handshake between MAF client and MAF where in addition the keying material exporter function as defined in RFC 5705 (RFC 65705) is enabled.

The handshake message flow of this step can be produced with the following commands under Linux OS using a DNS-resolvable MAF-FQDN myMAF.provider.org and port 443 (it is assumed that path names apply and certificates are available in the directory from where this command is issued):

TLS server on MAF with example FQDN myMAF.provider.org:

$ sudo openssl s_server -accept 443 -Verify 1 -key maf_key.pem \

 -cert maf_cert.pem -CApath ./demoCA -CAfile ./demoCA/cacert.pem \

 -keymatexport EXPORTER-oneM2M-Connection -keymatexportlen 48
TLS client on MAF client associated with AE3:

$ openssl s_client -connect myMAF.provider.org:443 -key maf_client_key.pem \

 -cert maf_client_cert.pem -verify 1 –cipher ECDHE-ECDSA-AES128-SHA256\

 -keymatexport EXPORTER-oneM2M-Connection -keymatexportlen 48
At both TLS endpoints, openssl produces an output such as the following (example):
Keying material exporter:

 Label: 'EXPORTER-oneM2M-Connection'

 Length: 48 bytes

 Keying material: FF15D84E3E38D6974B0EB3E5606C85FE
 37F61D5A7FEA1E9CFD8DB76D2F8B6230
 130EF8A84F9F9F967DA385867984EED0

The value of Keying material is a 48 byte array represented as a 96-character hexadecimal string which is divided into two parts:

· upper 16 bytes (32 hex characters), denoted as Connection Key Identifier (KcID):

· FF15D84E3E38D6974B0EB3E5606C85FE
· lower 32 bytes (64 hex characters), denoted as M2M Secure Connection Key (Kc):

· 37F61D5A7FEA1E9CFD8DB76D2F8B6230130EF8A84F9F9F967DA385867984EED0
From KcID, the Key Identifier is derived as follows (see clause 10.3.5 of TS-0003 [i.4]):

Key Identifier = RelativeKeyID@MAF-FQDN

where RelativeKeyID = hexBinary(KcID) and MAF-FQDN is the domain name of the MAF on which the key Kc which is associated with the Key Identifier is registered. For the above example of MAF-FQDN and KcID, the Key Identifier is derived as:

hexBinary(0xFF15D84E3E38D6974B0EB3E5606C85FE) = 'FF15D84E3E38D6974B0EB3E5606C85FE'

Key Identifier: 'FF15D84E3E38D6974B0EB3E5606C85FE@myMAF.provider.org'
Note that the value of the resourceID attribute of <symmKeyReg> resources instances hosted on the MAF identified by MAF-FQDN is set to the RelativeKeyID.

The hexadecimal representation of the key Kc associated with this Key Identifier will be stored in the keyValue attribute of a <symmKeyReg> resource instance, which is created in step 4 of the message sequence given in Figure 7.1.4-1.

Annex B: Generation of Certificates

B.1 Introduction

This Annex describes how to generate certificates which are compliant with the requirements defined in TS-0003 [i.4].

Generation of certificates requires setting up a simple Public Key Infrastructure (PKI). It is outlined here how this can be accomplished using OpenSSL. For simplicity a root CA is setup which employs a self-signed root certificate to sign all end user’s certificates. The end users of the certificates in the present context refer to AEs or CSEs.

The private keys and certificates need to be deployed in AEs and CSEs in a secure way. Private keys require special protection on devices. They should be stored and be employed for security procedures in a secure environment. Note that these aspects are not addressed in this Annex. A simple way to protect keys is to store them in password protected files. However, for simplicity, in the following procedures this feature is not used.

Furthermore, the following conditions and conventions apply:

· all generated keys support elliptic curve Diffie-Hellman encryption (ECDHE) and elliptic curve digital signature Algorithm (ECDSA),
· all keys and certificates are generated in Privacy-Enhanced Mail (PEM) format and are stored in files with extension .pem,

· the described examples have been tested using OpenSSL v1.1.1-dev under a Ubuntu 14.04 LTS operating system.
Note that any addresses used in the examples shown in the present annex, e.g. in the issuer and subject fields of the generated certificates, are just arbitrary examples not applicable for real implementations.
B.2 Setting up a root CA

When installing OpenSSL on a Linux computer, a configuration file openssl.cnf is created by default in the directory /etc/ssl.

The information in openssl.cnf defines sets of parameters which are applied by default by the openssl command line utility functions. Additional information on OpenSSL PKI and certificate generation can be found in [i.7] and [i.8].
The following section should be included into the default version of openssl.cnf to get the commands shown below and in clause B.3 to work properly:

##

[ca]

default_ca
= CA_default

 # The default ca section

##

[CA_default]

dir = ./demoCA

 # Where everything is kept

certs
 = $dir/certs

 # Where the issued certs are kept

crl_dir
= $dir/crl

 # Where the issued crl are kept

database = $dir/index.txt

 # database index file.

unique_subject = no

 # Set to 'no' to allow creation of

 # several certificates with same subject.
new_certs_dir
 = $dir/newcerts
 # default place for new certs.

certificate
= $dir/cacert.pem
 # The CA certificate

serial = $dir/serial

 # The current serial number

crlnumber
= $dir/crlnumber

 # the current crl number

 # must be commented out to leave a V1 CRL

crl = $dir/crl.pem

 # The current CRL

private_key = $dir/private/cakey.pem # private key of the root cert
RANDFILE = $dir/private/.rand
 # private random number file

 # (not used in the present example)
x509_extensions
= usr_cert

 # The extensions to add to the cert

[signing_policy]

countryName = optional

stateOrProvinceName = optional

localityName = optional

organizationName = optional

organizationalUnitName = optional

commonName = supplied

emailAddress = optional
subjectAltName = supplied
Create or change to some existing directory, where the tree containing private keys and certificates should originate. From this directory, execute the following commands:

$ mkdir demoCA

$ mkdir demoCA/newcerts

$ mkdir demoCA/private

$ sh -c "echo '01' > ./demoCA/serial"

$ touch ./demoCA/index.txt

These commands create the directory structure and the files which control the generation of the serial number of the certificates. The serial number of the end user certificates created by the CA will be incremented starting from 01.

B.3 Generation of CA private key and root certificate
The command given below generates a CA key in a file cakey.pem with implicit elliptic curve parameters from the curve named secp256r1 (note that OpenSSL uses curve prime256v1 which is the same as secp256r1):
$ openssl ecparam -name secp256r1 -genkey -out cakey.pem

The command below generates a self-signed root certificate with the name cacert.pem:
$ openssl req -new -x509 -extensions v3_ca -key cakey.pem -subj "/C=US/ST=California/O=Trusted Certificate Authority/CN=mtrusted_ca.com/emailAddress=service@trusted_ca.com" -out cacert.pem -days 3650

The private key and certificate files need be moved into the directories as configured in openssl.cnf:

$ mv cakey.pem demoCA/private/.

$ mv cacert.pem demoCA/.

B.4 Generation of end user private key and certificates
This clause shows commands which generate the end user certificates which are signed by the root CA. These certificates are employed in the example described in Annex A.3 by the IN-CSE and MN-CSE. The Subject Alternative Name of these certificates include the CSE-IDs of the IN-CSE and MN-CSE, respectively.

The following commands generate the key files:

$ openssl ecparam -name secp256r1 -genkey -out in_cse_key.pem

$ openssl ecparam -name secp256r1 -genkey -out mn_cse_key.pem
The following commands generate signing requests (CSRs) for the IN-CSE and MN-CSE certificates:

$ openssl req -new -extensions SAN -key in_cse_key.pem -subj "/C=US/ST=California/O=MY_M2M_PROVIDER, Inc./CN=my.m2mprovider.org" -reqexts SAN -config <(cat /etc/ssl/openssl.cnf <(printf "[SAN]\nsubjectAltName=DNS:my.m2mprovider.org/in-cse")) -out in_cse_cert.csr -days 365

$ openssl req -new -extensions SAN -key mn_cse_key.pem -subj "/C=US/ST=California/O=MY_M2M_PROVIDER, Inc./CN=my.m2mprovider.org"
 -reqexts SAN -config <(cat /etc/ssl/openssl.cnf <(printf "[SAN]\nsubjectAltName=DNS:my.m2mprovider.org/mn-cse")) -out mn_cse_cert.csr -days 365

The following command generate the signed IN-CSE certificate from the CSR. This produces a certificate ./demoCA/newcerts/01.pem:
$ openssl ca -in in_cse_cert.csr -policy signing_policy -config /etc/ssl/openssl.cnf -extensions SAN -config <(cat /etc/ssl/openssl.cnf <(printf "[SAN]\nsubjectAltName=DNS:my.m2mprovider.org/in-cse")) -verbose

The following command generate the signed MN-CSE certificate from the CSR. This produces a certificate ./demoCA/newcerts/02.pem:

$ openssl ca -in mn_cse_cert.csr -policy signing_policy -config /etc/ssl/openssl.cnf -extensions SAN -config <(cat /etc/ssl/openssl.cnf <(printf "[SAN]\nsubjectAltName=DNS:my.m2mprovider.org/mn-cse-123456")) -verbose

The private keys and certificates would need to be deployed on the end entities (i.e. IN-CSE with CSE-ID = in-cse and MN-CSE with CSE-ID = mn-cse-123456).

For testing of certificate-based TLS-handshake as described in Annex A.3, these certificates and private keys may be copied into the directory from where the opennssl s_server and s_client commands given in Annex A.3 are executed.

<PAGE BREAK>

Annex :
Title of annex (style H9)
<Text>

B.1
First clause of the annex (style H1)
<Text>

B.1.1
First subdivided clause of the annex (style H2)
<Text>

<PAGE BREAK>
Annex <y>:
Bibliography

The annex entitled "Bibliography" is optional.

It shall contain a list of standards, books, articles, or other sources on a particular subject which are not mentioned in the document itself.

It shall not include references mentioned in the document.

Use the Heading 9 style for the title and B1+ or Normal for the text.

· <Publication>: "<Title>".

OR

<Publication>: "<Title>".

<PAGE BREAK>

History

This clause shall be the last one in the document and list the main phases (all additional information will be removed at the publication stage).
	Publication history

	V.1.1.1
	<dd Mmm yyyy>
	<Milestone>

	
	
	

	
	
	

	
	
	

	
	
	

	Draft history (to be removed on publication)

	V.0.0.1
	05 December 2016
	Initial skeleton

	V0.1.0
	21 February 2017
	Integration of contributions agreed during TP 27:
SEC-2017-0009R02

SEC-2017-0020R02

SEC-2017-0021R02

	V0.2.0
	05 April 2017
	Integration of contributions agreed during TP 28:

TST-2017-0097R01

	V0.2.1
	09 October 2017
	Integration of contributions agreed during TP 28:

SEC-2017-0138R01

	V0.3.0
	04 December 2017
	Integration of contributions agreed during TP 32:

TST-2017-0259R02

© oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC)
Page 4 of 30
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Cloud Service Platform
Smartphone with embedded application acting as a remote door lock controller
Mcc
ADN-AE3
Mca
Front Door Lock
Back Door Lock
Home Gateway
MN-AE
ADN-AE-1
MN-CSE
Mca
Mca
Home Domain
ADN-AE-2
MAF
IN-CSE
Mmaf
Mmaf
MAF client
MAF client
M2M Authentication Function

_1573886518.vsd
�

ADN-AE1

MN-CSE

7. Application data

_1573886519.vsd
�

MN-CSE

IN-CSE

8. Service Layer data

_1573886517.vsd
�

AE3

IN-CSE

1) Certificate-based SAE

2) MAF Client
Registration Request

3) MAF Client
Registration Response

8) MAF Key Retrieval

MAF
Client

MAF

MAF
Client

4) MAF Key
Registration Request

5) MAF Key
Registration Response

ADN on Smartphone

Cloud Service Platform
Smartphone with embedded application acting as remote door lock controller
Back Door Lock
Front Door Lock
Home Gateway

M2M Authentication Function

