Doc# SDS-2019-0479R03-Notification_Recording_for_TR0053

	Input Contribution

	Meeting ID*
	SDS#43

	Title:*
	Notification Recording

	Source:*
	Dale Seed, Convida, Seed.Dale@ConvidaWireless.Com
Chonggang Wang, Convida, Wang.Chonggang@ConvidaWireless.Com

	Date:*
	2019-12-05

	Input related to*
	TR-0053-V0.4.0 on Lightweight Services, Clauses 6.3 (Analysis of oneM2M Subscription & Notification and Potential Requirement)

	Intended purpose of

document:*
	 FORMCHECKBOX
 Decision

 FORMCHECKBOX
 Discussion

 Information

 Other <specify>

	Impacted other TS/TR(s)
	N/A

	Decision requested or recommendation:*
	Identifies a new issue and limitation with existing subscription/notification mechanism in oneM2M;

Proposes a few new requirements on subscription/notification; and

Proposes a solution for solving the identified issue.

	Template Version: January 2017 (Do not modify)

oneM2M Notice

The document to which this cover statement is attached is submitted to oneM2M. Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.

Introduction
Figure 1 illustrates a smart healthcare scenario where a patient collects her health data from body sensors. The health data is uploaded to an M2M Server (or alternatively stored locally in her smart phone), referred to as Hosting Node. The patient’s guardian as the subscriber makes a subscription to her health data so that doctors, caregivers, relatives and insurance companies of the patient as notification receivers will receive automatic notifications about any changes on the patient’s health data. For example, if the patient is currently in a treatment at home, the sudden increase of her heartbeat rate will be critical for her doctor to know in time.

In this use case, the subscriber (i.e. the guardian), notification receivers (e.g. the doctor), and the Hosting Node (i.e. M2M Server) have the following requirements (i.e. Req1-Req5) on the resource subscription and notifications.

· Req-01: The guardian wants to make sure a notification is indeed issued by the M2M Server and received by notification receivers whenever an event of interest occurs.

· Req-02: The guardian needs to know how many notifications have been sent to and successfully received by each notification receiver.

[image: image1.emf]Body

Sensors

Smart

Phone

M2M

Server

Doctor

Care-Giver

Relative

Insurance

Company

Notification

Patient

Guardian Guardian

Subscriber

Notification

Target

Patient stores her/his health data in M2M service layer platform (i.e.

M2M server). Guardian is the Subscriber and Notification Targets

could be doctors, care-givers, relatives, and insurance company.

Figure 1: Smart Healthcare Use Case

Unfortunately, the above two requirements are not well supported by current subscripton and notification (SUB) CSF in oneM2M.
This contribution aims to: 1) identifies new issues and limitations of existing SUB CSF; 2) proposes some new requirements; and 3) propose a solution to solve one identified issue/limitation.

R01 includes the following changes and clarification based on the comments received from TP42.

	Comments from TP42
	Responses/Changes in R01

	“Need to define how to detect notification failure”
	Added the following clarification to Table 6.3.4.X.3-1: New Attributes of <notification> Resource.

“The Hosting CSE sends each notification message as a request to a notification receiver and asks the notification receiver to send back an acknowledgement. If the Hosting CSE does not receive an acknowledgement from a notification receiver, this notification receiver will be included in failedNotifReceiverList. ”

	“Concern that this introduces a lot of overhead/complexity to Hosting CSE”
	The introduced overhead/complexity is controllable and manageable via the proposed <subscription> attribute “notifRecordReq” in several ways.
1. When a subscriber requests to create a <subscription>, it may not request to record notifications at all. As such, the Hosting CSE will record any notifications.
2. Even when a subscriber requests to record notifications, the parameter “notifRecordReq” offers several options to lower the overhead on the Hosting CSE. For example, the Hosting CSE does not need to record each and every notification, but particular notifications as defined by “notifRecordType” & “notifRecordTimeDuration”. For one notifRecordType, the Hosting CSE only needs to record notifications when a certain number (i.e. notifReceiverNumThreshold) of notification receivers have failed to receive notifications.
In addition, the following clarification is added in R01 so that the Hosting CSE has the option to not record notifications even though the subscriber has requested.
“The Hosting CSE may reject the subscriber’s request for recording notifications defined within “notifRecordReq” and create a <subscription> resource without a “notifRecordReq” attribute .”

	“In the <notification> resource, prefer to keep notification content optional”
	Made it as optional in R01.

	“Could be a privacy issue since a failure could lead to giving away info about a particular entity. Need to be careful about this. How does this factor in with ACPs?”

	All notifications are generated by the Hosting CSE. To let the Hosting CSE record its generated notifications does not really impact privacy. In addition, the Hosting CSE can enforce appropriate ACPs on any recorded “<notification>” so that only priviledged users (such as subscriber or a designed notification receiver) would be able to access the recorded <notification>. In summary, there is not much privacy concern as it is controllable by the Hosting CSE.

	“How do you manage notification overhead (e.g. collection)”
	In the proposed solution, all recorded <notification> can be placed under a <subscription> resource. In this way, each <subscription> essentially groups all its <notification> resourcces.
In addition, a new maxNrOfRecordedNotifications element of the notifRecordReq attribute of <subscriptoin> is introduced to indicate the maximum number of <notification> child resources that a <subscription> Hosting CSE will record and store for this <subscription> resource. When this limit is reached, the Hosting CSE will remove the oldest <notification> resource before creating a new <notification> resource. A <subscription> Hosting CSE may limit the maximum value of this element based on local CSE policy.

	“oneM2M already has event config and stats collection to perform logging. Should this be used instead of this proposed approach?”
	To record “notification” is specific to subscription and notification CSF. As the use case in the introduction of this contribution show, subscription needs to support recording notification in the way the Hosting CSE is able to handle (i.e. the overhead to the Hosting CSE should be managed as other people commented above). As such, flexible and special notification recording requirements as indicated by notifRecordReq is proposed, which is not supported by oneM2M even config and stats collection.

	We have related functionality in subscription to detect failures. Need to look at that
	The existing sub/not functionality was analysed and there is no functionality defined yet to allow an entity (e.g. subscriber) to detect whether a notification is issued and successfully received (or not) by notification receiver(s). Nor is there any functionality that allows an entity (e.g. subscriber) to access information (e.g. statistics information) regarding issued notifications.

R03 includes the following changes to achieve a lightweight solution for recording notifications (i.e. statistical information about notification messages):

· Maintain a single <notification> resource per notification receiver.

· The <notification> resource itself for each notification receiver can store notification statistical information (notifStatInfo) accumulated for a given notification receiver.
-----------------------Start of change 1---
6.3.2 Limitations of oneM2M Subscription & Notification
The <subscription> resource includes sub-resources and attributes, the mandatory attribute notificationURI includes all the notification receivers the Hosting CSE will send notifications to.
Table 6.3.2-1: Attributes of <subscription> resource

	Attributes of <subscription>
	Multiplicity
	RW/

RO/

WO
	Description

	resourceType
	1
	RO
	See clause 9.6.1.3.

	resourceID
	1
	RO
	See clause 9.6.1.3.

	resourceName
	1
	WO
	See clause 9.6.1.3.

	parentID
	1
	RO
	See clause 9.6.1.3.

	expirationTime
	1
	RW
	See clause 9.6.1.3.

	creationTime
	1
	RO
	See clause 9.6.1.3.

	lastModifiedTime
	1
	RO
	See clause 9.6.1.3.

	labels
	0..1 (L)
	RW
	See clause 9.6.1.3.

	accessControlPolicyIDs
	0..1 (L)
	RW
	See clause 9.6.1.3.

	dynamicAuthorizationConsultationIDs
	0..1 (L)
	RW
	See clause 9.6.1.3.

	creator
	0..1
	WO
	See clause 9.6.1.3.

	eventNotificationCriteria
	0..1
	RW
	This attribute (notification policy) indicates the event criteria for which a notification is to be generated. When no eventNotificationCriteria attribute is present in a <subscription> resource, the Hosting CSE will trigger notifications for this subscription when any of the attributes of the subscribed-to resource is modified.

	expirationCounter
	0..1
	RW
	This attribute (notification policy) indicates that the subscriber wants to set the life of this subscription to a limit of a maximum number of notifications. When the number of notifications sent reaches the count of this counter, the <subscription> resource will be deleted, regardless of any other policy.

	notificationURI
	1 (L)
	RW
	This attribute will be configured as a list consisting of one or more Receivers that the Hosting CSE will send notifications to. A Receiver will be formatted as a oneM2M compliant Resource-ID as defined in clause 7.2 or as an identifier compliant with a oneM2M supported protocol binding (e.g. http, coap, mqtt).

If a Receiver is formatted as a oneM2M compliant Resource-ID, then the Receiver will be formatted as a structured or unstructured CSE-Relative-Resource-ID, SP-Relative-Resource-ID, and/or Absolute-Resource-ID of an <AE> or <CSEBase> resource. A Hosting CSE will use this information to determine proper pointOfAccess, requestReqchability and/or pollingChannel information needed to send a notification to the Receiver. The following is an example.

/CSE0001/AE0001

For a Receiver that is formatted as an identifier compliant with a oneM2M supported protocol binding, the details of this format are defined by the respective oneM2M protocol specification. The following is an example of an HTTP URI compliant with oneM2M HTTP protocol binding.

https://172.25.30.25:7000/notification/handler
For a subscription to a <fanoutpoint> resource, if <subscription> resource in request contains a notificationForwardingURI, then the group hosting CSE will configure the notificationURI of the fanout subscription request with an address specified by the Group Hosting CSE that can be used by the Group Hosting CSE to receive aggregated notifications.
A notification serialization type may be appended to each notification Receiver configured in this list. The Hosting CSE will serialize notifications and send it to a notification Receiver based on this serialization type indicator. Possible serialization types are defined in the TS-0004 [3] (e.g. XML, JSON or CBOR). If a notification serialization type is not appended to a notification Receiver, a default will apply based on the Hosting CSE local policy. The syntax for appending a serializatino type to a notification Receiver will use the “?” delimiter character as shown in the below examples.

http://mydomain/notificationHandler?ct=json
CSE02/base/ae2?ct=xml

When an event occurs, the hosting CSE will generate the notifications and send these notifications to all the notification receivers specified in the notificationURI attribute of the <subscription>.

[image: image2.emf]Notification

Receiver 1

event1

event2

event

N

… …

Notification

Receiver 2

Notification

Receiver N

… …

Figure 6.3.2-1: General flow of Event Notification
In addition, in oneM2M, a subscriber such as an AE has no way to know whether a notification is issued and successfully received by a notification receiver. This is a problem since the subscriber may need to know if an urgent notification has been indeed issued and successfully received by designated notification receivers. Furthermore, notification receivers in oneM2M passively receive notifications from a Hosting CSE, no matter which subscriber the subscription has been made by.

The following limitations of oneM2M subscription & notification are identified.
· The notification receivers listed in the notificationURI may have some relationship, for example, some are first class receiver, the others are the second class receiver. When an event occurs, the notification should be firstly sent to all first class notification receivers.
· Existing SUB CSF does not provide the subscriber any access to information (e.g. statistics information) about notifications being issued in the past.
-----------------------End of change 1---
-----------------------Start of change 2---
6.3.3 Potential Requirements
1. The oneM2M system shall support deferred notification for some or all of the notification receivers.
2. The oneM2M system shall support sending deferred notifications with a subsequent check that the event notification criteria are still met after the deferral period is complete.(e.g. is met after the specified time frame).
3. The oneM2M system shall support the exposure of information on generated notifications to the subscriber and other enities as needed.
4. The oneM2M system shall support that notification receivers are aware of the subscriber.
-----------------------End of change 2---
-----------------------Start of change 3---
6.3.4.X Solution 2: Notification Recording
6.3.4.X.1 Introduction

In this solution, a Hosting CSE records information regarding issued notifications by creating new notification resources actively or under the request of the subscriber. Then, both the subscriber and notification receivers can access the created notification resources to obtain the information about past notifications. The subscriber may also instruct the Hosting CSE to stop or change notification recording.
6.3.4.X.2 Notification Recording Procedures

When a subscriber makes a subscription to a subscribed-to resource at a Hosting CSE, the subscriber can request the Hosting CSE to record certain types of selected notifications (e.g. to record the statistical information about all notification messages to a specific notification receiver, to record a list of notification receivers that have successfully received a notification message) for a notification receiver, when any notification is generated due to the status change on the subscribed-to resource. Such notification recording works as follows:

· First, the subscriber indicates its requirements for recording notifications in the subscription request being sent to the Hosting CSE;
· Second, based on the requirements from the subscriber or its local policies, the Hosting CSE creates a <notification> resource for any designated notification receiver, which is used to record statistical information of notifications being sent to a notification receiver. For this purpose, a <notification> resource has an attribute notifStatInfo for storing statistical information of all notifications being generated and sent to a notification receiver.
· Third, whenever a notification is issued by the Hosting CSE, the Hosting CSE determines whether it needs to be recorded according to the requirements from the subscriber. If the answer is YES, the Hosting CSE will recalculate notification statistical information and update notifStatInfo of each created <notification> resource.
· Fourth, the subscriber or notification receivers can access such <notification> resources created by and maintained at the Hosting CSE. The Hosting CSE may employ certain access control policies to authorize if the subscriber and/or other entities have access to these <notification> resources. For the subscriber, the access to such <notification> resources allows it to know how many notifications have been issued and successfully received by notification receivers. In addition, after retrieving and knowing information about past notifications, the subscriber can send a request to the Hosting CSE to remove a notification receiver (i.e. update the notificationURI attribute) if it does not receive any notifications at all in the past so that the Hosting CSE will not send it more notifications in the future. This can avoid or reduce unnecessary notifications. Futhermore, the subscriber can send a request message to the Hosting CSE to stop recording notifications or change how notifications should be recorded.

Figure 6.3.4.X.2-1 illustrates the procedure for recording and accessing information about past notifications.
· Step 1: The Subscriber sends a Subscription Request message to the Hosting CSE. In addition to information like event notification criteria, this message contains a notification statistical requirement “notifStatReq”, which will be created as an attribute of <subscription> resource to be created by the Hosting CSE. This attribute indicates to the Hosting CSE which statistical information about notifications should be calculated and maintained. Table 6.3.4.X.2-1 defines “notifStatReq”.

· Note that if the Subscriber does not provide enough information on notification recording requirements, the Hosting CSE may decide to record notifications based on its local policies.
· Step 2: The Hosting CSE accepts the request and accordingly creates a <subscription> resource with a “notifStatReq” attribute. Note that the Hosting CSE may reject the subscriber’s request for recording notifications as incidated in “notifStatReq”, and create a <subscription> resource without a “notifStatReq” attribute.
· Step 3: The Hosting CSE sends a response to the Subscriber to inform it of the created subscription resource. In addition, the Hosting CSE creates a <notification> resource for each designated notification receiver, for which notification statistical information needs to be recorded, as indicated in Step 1 by the notifStatReq attribute.
· Step 4: An event occurs, which meets the event notification criteria defined in Step 1.

· Step 5: The Hosting CSE issues a notification message and sends it to a notification receiver.

· Step 6: The notification receiver sends back a response.

· Step 7: According to the notifStatReq attribute contained in Step 1, the Hosting CSE determines whether to (re)calculate the notification statistical information to capture the notification message being sent in Step 6. For example, if notifStatReq requires to record the statistical information of all notification messages, the Hosting CSE will simply (re)calculate the notification statistical information and update <notification> resource’s notifStatInfo attribute to reflect the latest notification message sent in Step 6.
·
· Step 8: The Subscriber itself sends a request to actively retrieve (or delete) any notification resources which have been created by the Hosting CSE.

·
· Step 9: The Hosting CSE sends a response to the Subscriber.

· If the request in Step 8 is to retrieve <notification> resources, the response could contain the value of notifStatInfo.

· If the request in Step 8 is to delete <notification> resources, the response will simply inform the result of deletion request (either approved or rejected).

[image: image4.emf]Subscriber

(e.g. An AE)

Hosting CSE

Notification

Receiver

1. Subscription Request (notifStatReq)

2. Create a <subscription> resource

3. Response

4. An event occurs

5. Notification

6. Response

7. (Re)Calculate Notification Statistical Information

(i.e. notifStatInfo)

8. Retrieve or Delete <notification>

resources

9. Response

Figure 6.3.4.X.2-1: Record Notifications at a Hosting CSE
Table 6.3.4.X.2-1: Definition of notifStatReq Attribute of <subscription> Resource
	Name
	Description

	notifStatTimeWindowLength
	Indicates the length of the time window for calculating the notification statistical information. This time window is a peroidical time window. It may be first initiated by the request from the Subscriber. Alternatively, this parameter may just indicate an integer number (e.g. N), which means that the statistical information will be calculated for every N notification messages.

	listOfNotifStatTypes
	Indicates a list of notification statistical types. Each item in this list stands for a type of statistical information (referred to as notifStatType), for example:

· notifStatType=1: The average number of issued notifications in the time window.

· notifStatType=2: The number of successfully received notifications by a Notification Receiver in the time window.

· notifStatType=3: The maximum number of continuously unsuccessful notifications to a Notification Receiver in the time window.

· notifStatType=4: The minimum time interval between two consecutive notifications issued within the time window.

· notifStatType=5: The maximum time interval between two consecutive notifications issued within the time window.

· notifStatType=6: The number of unsuccessful notifications to a particular Notification Receiver within the time window.

	statCalcRepeat
	Indicates the number of notification statistical informaton calulcations. This information basically tells the Hosting CSE if the request for calculating notification statistical information is one-time operation (e.g. when this number is equal to one) or will be repeated multiple times (i.e. if this number is larger than 1). If this number is not included in notifStatReq, the Hosting CSE will keep calculating notification statistical information.

	listOfNotifReceiversForStat
	Indicates a list of Notification Targets. When this information appears, the Service Layer only needs to calculate statistical information about notifications transmitted to Notification Receivers in this list.

	
	

	
	

	
	
·
·
·
·
·
·

	
	

	
	

	
	

	
	

6.3.4.X.3 <notification> Resource Definition and Procedures
<notification> resource has several new attributes as described in Table 6.3.4.X.3-1. <notification> resource is created as a child resource of a <subscription> resource. Each <notification> resource is used to record statistical information about all notification messages being sent to a notification receiver. In other words, a <subscription> resource could have multiple <notification> child resource, one for each notification receiver.

·
·
Table 6.3.4.X.3-1: New Attributes of <notification> Resource

	Attributes of <notification>
	Multiplicity
	RW/

RO/

WO
	Description

	notifReceiverID
	1
	RO
	Indicates the identifier of a notification receiver.

	notifStatInfo
	1
	RO
	Indicates the statistical information about notification messages being generated/sent to the notification receiver as indicated by notifReceiverID.

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

Create a <notification> -
According to the requirements from the Subscriber (i.e. notifStatReq parameter being submitted during subscription request), the Hosting CSE automatically determines to create a new <notification> message for a notification receiver associated with a <subscription> resource. When a <notification> resource is created, all its attributes as listed in Table 6.3.4.X.3-1 will be generated by the Hosting CSE.

Retrieve <notification> -
This procedure in Table 6.3.4.X.3-2 is to retrieve attributes of a <notification> resource (e.g. by the subscriber).

Table 6.3.4.X.3-2: <notification> RETRIEVE
	<notification> RETRIEVE

	Associated Reference Point
	Mca, Mcc and Mcc'

	Information in Request message
	All parameters defined in table 8.1.2-3 in [1]. apply with the specific details for:

Content: void

	Processing at Originator before sending Request
	According to clause 10.1.2 in [1].

	Processing at Receiver
	According to clause 10.1.2 in [1].

	Information in Response message
	All parameters defined in table 8.1.3-1 in [1] apply with the specific details for:

· Content: attributes of the <notification> resource

	Processing at Originator after receiving Response
	According to clause 10.1.2 in [1].

	Exceptions
	According to clause 10.1.2 in [1].

Delete <notification> -
This procedure in Table 6.3.4.X.3-3 is used by the subscriber to remove a <notification> resource.

Table 6.3.4.X.3-3: <notification> DELETE
	<notification> DELETE

	Associated Reference Point
	Mca, Mcc and Mcc'.

	Information in Request message
	All parameters defined in table 8.1.2-3 in [1] apply.

	Processing at Originator before sending Request
	According to clause 10.1.4.1 in [1].

	Processing at Receiver
	According to clause 10.1.4.1 in [1].

	Information in Response message
	According to clause 10.1.4.1 in [1].

	Processing at Originator after receiving Response
	According to clause 10.1.4.1 in [1].

	Exceptions
	According to clause 10.1.4.1 in [1].

-----------------------End of change 3---
© 2015 oneM2M Partners

Page 1 (of 2)

Subscriber
(e.g. An AE)
Hosting CSE
Notification Receiver
1. Subscription Request (notifRecordReq)
2. Create a <subscription> resource
3. Response
4. An event occurs
5. Notification
6. Response
7. Determine to create a new <notification> resource according to the requirements indicated by “notifRecordReq” in Step 1
8. Retrieve or Delete <notification> resources
9. Response

Subscriber
(e.g. An AE)
Hosting CSE
Notification Receiver
1. Subscription Request (notifStatReq)
2. Create a <subscription> resource
3. Response
4. An event occurs
5. Notification
6. Response
7. (Re)Calculate Notification Statistical Information
(i.e. notifStatInfo)
8. Retrieve or Delete <notification> resources
9. Response

Body Sensors
Smart Phone
M2M Server
Doctor
Care-Giver
Relative
Insurance Company
Subscription
Notification
Notification
Notification
Notification
Patient
Guardian
Guardian
Subscriber

Notification Target
Patient stores her/his health data in M2M service layer platform (i.e. M2M server). Guardian is the Subscriber and Notification Targets could be doctors, care-givers, relatives, and insurance company.

