[image: image19.png]Device (d)

micro GIP/DA

y micro-dla resource N
N representations A

T N

CoAP

Gateway (G)

assisting GIP

TR 102 966 V0.9.1 (2013-05)
Machine to Machine Communications (M2M);

Interworking between the M2M Architecture and M2M Area Network technologies
<
TECHNICAL REPORT
Reference

DTR/M2M-00014ed111
Keywords

interworking, M2M, service
ETSI

650 Route des Lucioles

F-06921 Sophia Antipolis Cedex - FRANCE
Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la

Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org
The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp
If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp
Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2011.

All rights reserved.

DECTTM, PLUGTESTSTM, UMTSTM and the ETSI logo are Trade Marks of ETSI registered for the benefit of its Members.
3GPPTM and LTE™ are Trade Marks of ETSI registered for the benefit of its Members and
of the 3GPP Organizational Partners.
GSM® and the GSM logo are Trade Marks registered and owned by the GSM Association.
Contents

3Contents

4Intellectual Property Rights

4Foreword

51
Scope

52
References

52.1
Normative references

52.2
Informative references

63
Definitions, symbols and abbreviations

63.1
Definitions

63.2
Symbols

63.3
Abbreviations

64
Introduction

95.
Interworking with legacy devices (d)

95.1.
Implementation profile 1

105.1.1.
Entity-relation representation of the M2M area network

105.1.2.
Mapping principles

155.1.3.
M2M Area Network specific technologies interworking

155.1.3.1.
ZigBee Alliance

165.1.3.1.1.
Implementation profile 1 for ZigBee PAN interworking with ETSI M2M

175.1.3.1.2.
ZigBee Interworking Proxy Application resource structure

175.1.3.1.3.
ZigBee network resource structure

175.1.3.1.4.
ZigBee node resource structure

185.1.3.1.5.
ZigBee application resource structure

185.1.3.1.6.
Use of mirroring or retargeting for ZigBee interfaces (clusters)

195.1.3.2.
UPnP

215.1.3.2.1.
Implementation profile for UPnP interworking with ETSI M2M

215.1.3.2.2.
UPnP Interworking Proxy Application resource structure

215.1.3.2.3.
UPnP network resource structure

215.1.3.2.4.
UPnP node resource structure

225.1.3.2.5.
UPnP service resource structure

235.1.4.
Evaluation

235.2.
Implementation profile 2

236.
Interworking with M2M devices without SCL (D’)

24Annex A (informative): Example of syntax for searchstring Tags

26Annex B: Example 1, Application/XML syntax, oBix 1.1 semantic conventions

39Annex C: Example of Interworking Using Containers and Subscriptions

45Annex D: Example of Interworking using aPoC

50History

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://ipr.etsi.org).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Foreword

This Technical Report (TR) has been produced by ETSI Technical Committee Machine-to-Machine communications (M2M).

1
Scope

This document collects and evaluates implementation profiles for interworking with M2M Area Network technologies.

An implementation profile is defined, for the purpose of this document, as the description on how the ETSI M2M architecture can be used to achieve interworking. Each implementation profile is evaluated against deployment scenarios and applicable technologies in order to identify the most suitable for the specific conditions.
2
References

References are either specific (identified by date of publication and/or edition number or version number) or non‑specific. For specific references,only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at http://docbox.etsi.org/Reference.

NOTE:
While any hyperlinks included in this clause were valid at the time of publication ETSI cannot guarantee their long term validity.
2.1
Normative references

The following referenced documents are necessary for the application of the present document.
Not applicable.

2.2
Informative references
Clause 2.2 shall only contain informative references which are cited in the document itself.

The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.
· Use the EX style, add the letter "i" (for informative) before the number (which shall be in square brackets) and separate this from the title with a tab (you may use sequence fields for automatically numbering references, see clause A.4: "Sequence numbering") (see example).

[i.1]
ETSI TS 102 690: "M2M functional architecture".

[i.2]
ETSI TS 102 921: "M2M mIa, dIa and mId Interfaces".

[i.3]
ZigBee document 053474r17: "ZigBee specification release 17, ZigBee Technical Steering Committee".

[i.4]
ZigBee document 053820r18: "ZigBee Bridge Device Specification, ZigBee Gateway Working Group".

[i.5]
ZigBee document 064699r12: "ZigBee Commissioning Cluster, Application Framework Group".

[i.6]
ZigBee document 075123r02: "ZigBee Cluster Library Specification, Application Framework Group".

3
Definitions, symbols and abbreviations

3.1
Definitions

[TBC]
3.2
Symbols

[TBC]
3.3
Abbreviations

 [TBC]
4
Introduction
DISCLAIMER: THIS DOCUMENT IS WORK IN PROGRESS AND CURRENTLY SHOWS ONLY ONE IMPLEMENTATION PROFILE FOR INTERWORKING. THIS DOCUMENT IS AN INITIAL DRAFT. OTHER WAYS OF INTERWORKING ARE BEING CONSIDERED.
Editor’s note: this document provides initial text to allow for contributions. Several of the concepts developed in this document are still for further study. In particular the following aspects are being discussed:
· How the interworking is done

· Which entity provides interworking

· Which resources are used for the mapping

· How the M2M Area Network network topology is mapped

· Etc.

This document collects and evaluates implementation profiles for interworking with M2M Area Network technologies.

Editors note: The term "profile" may be misleading, it does not really mean a profilation of the implementation solution. it needs to be replaced with an alternative. That change need to be propagated on the overall document.
An implementation profile is defined, for the purpose of this document, as the description on how the ETSI M2M architecture can be used to achieve interworking. Each implementation profile is evaluated against deployment scenarios and applicable technologies in order to identify the most suitable for the specific conditions.

This TR makes full use of the ETSI TC M2M architecture as per the following figure.

[image: image1]
Figure 1: Mapping of reference points to different deployment scenarios
Editors note: The picture before is directly taken from Stage 2 description. As a result of this study it may be need to detail it, in light of the fact that DIP and GIP seems to be mapped on Device an Gateway application based on dIa.
Several scenarios for interworking can be identified, each one applicable to different context. One of the main characteristic is the level of exploitation of the usage of the ETSI M2M solution.

	Scenario 1: transparent retargeting

	Type of device
	d
	Notes

	Application on device (d, non using dIa)
	Specific technology aware
	

	Application on Network
	Specific technology aware
	The application is specific for the interworked technology, A specific adaptation is needed to use mIa

	Mechanism
	Interworking at the G/D with simple retargeting
	

	Leverage on M2M architecture capabilities
	minimum
	GIP/DIP is an application using standard dIa towards the G/DSCL

	Deployment scenario example
	This interworking scenario is using ETSI M2M as a sort of pipe to carry the specific protocols, so the level of interaction with the ETSI M2M resource management capabilities (Access Rights, security, management, etc) is limited by visibility on the objects in the interworked technology is limited, but with the relevant advantage but the interworked protocols are preserved.
One typical scenarios is the deployment of a specific technology on top of a consolidated ETSI M2M deployment, to leverage of already massively installed ETSI M2M D/G.

	Scenario 2: Retargeting with elements interworking

	Type of device
	d
	Notes

	Application on device (d, non using dIa)
	Specific technology aware
	

	Application on Network
	Specific technology aware
	The application is specific for the interworked technology, A specific adaptation is needed to use mIa

	Mechanism
	Interworking at the G/D based on retargeting and use of ETSI compliant resources
	GIP/DIP is an application using standard dIa towards the G/DSCL

	Leverage on M2M architecture capabilities
	Yes, level depends on specific solutions
	

	Example of applicability
	This interworking scenario is similar to scenario 1 but is leveraging on the functionality offered by ETSI M2M by means of a more detailed mapping of elements (sensors. Actuators, etc) on ESI M2M resource. It also allows other applications (e.g. native ETIS M2M application) to interact actively with the elements of the interworked technology that are stored and manipulated by the SCLs. Also in this case the interworked protocols are preserved. At the border of the ETSI M2M system
One typical scenarios is the deployment of a specific technology that leverages on ETSI M2M for the interaction with the communication system.

	Scenario 3: Interworking at the Device/Gateway

	Type of device
	d
	

	Application on device (d, non using dIa)
	Specific technology aware
	

	Application on Network
	Independent from Specific technology
	The application is ETSI M2M native and .independent for the interworked technology,

	Mechanism
	Full Interworking at the G/D
	GIP/DIP is an application using standard dIa towards the G/DSCL

	Leverage on M2M architecture capabilities
	Full
	

	Example of applicability
	This interworking scenario is making the network applications independent from the area network technologies.
One typical scenarios is the case of an application that has to deal with multiple area network technologies (e.g in case of long term deployments when the available technologies are changing), so the interworking is confinated to the new deployments.

	Scenario 4: Native interwoking on dIa

	Type of device
	D'
	

	Application on device
	Independent from Specific technology
	The application is ETSI M2M native and .independent for the interworked technology,

	Application on Network
	Independent from Specific technology technology
	The application is ETSI M2M native and .independent for the interworked technology,

	Mechanism
	dIa transport on binding layer between D' and G
	Natively supported in ETSI M2M

	Leverage on M2M architecture capabilities
	Full
	

	Example of applicability
	This is the case of a technology supporting HPPT/COAP in case of deplyment of ETSI M2M compliant DA and NA.
It allows a complete independence of applications from area network technology. Typical

	Scenario 5: Network based interwoking

	Type of device
	d
	

	Application on device (d, non using dIa)
	Specific technology aware
	

	Application on Network
	Independent from Specific technology technology
	The application is ETSI M2M native and .independent for the interworked technology,

	Mechanism
	NIP interworking
	

	Leverage on M2M architecture capabilities
	low, level depends on specific solutions
	

	Example of applicability
	This is to interwork with completely specific solutions already deployed without touching the G/D
One typical scenario is the introduction of ETSI M2Mcomplina solution for new services reusing already deployed legacy D/G

5.
Interworking with legacy devices (d)
[TBC]

5.1.
Implementation profile 1
[TBC]

5.1.1.
Entity-relation representation of the M2M area network
The following figure provides a resource-entity model that represents an M2M area network as well as its relationship to an Interworking Proxy Application (IPA).

Editor’s note: there is a proposal that suggest that interworking is to be performed by means of multiple applications. If this is agreed the following figure and the other reference to IPU will be changed.

[image: image2]
Figure 2: Generic entity-relation diagram for an IPU and an M2M Area Network running legacy d devices
This entity-relation diagram is applicable to the following M2M Area Networks:

· ZigBee

· DLMS/COSEM

· Zwave

· BACnet

· ANSI C12

· mBus

Editor’s note: other entity-relationship diagrams may be proposed.
5.1.2.
Mapping principles
Editor’s Note: the mapping principles proposed in this document are initial ones. These remain FFS in particular the need to use one application per area network or one per device in the area networks is FFS.
This section describes the mapping principles that are used to map a generic M2M Area Network into a structured tree of ETSI M2M resources in this implementation profile.

More specifically, the IPU is responsible to:

· discover the M2M Area Network structure,

· create an ETSI M2M resource structure representing the M2M Area Network structure in the ETSI M2M Service Capability Layer,

· and manage the ETSI M2M resource structure in case the M2M Area Network structure changes.

In order to facilitate the navigation through the various resources representing the M2M Area Network structure, created by the IPU, a specific format for the searchString attribute of the resources is used. This specific format is referred to as a Tag, and it is specified in Annex I. These tags help locate M2M Area Network elements modeled as ETSI M2M resources.

The rules the IPU follows to create the ETSI M2M resource structure are the following:

· The IPU is modeled with an ETSI M2M <application> resource. The “searchString” attribute of this resource contains an ETSI.ObiectType/ETSI.IP tag which identifies it as an IPU. The URI used to access this <application> resource has the following format:

<sclBase>/applications/< interworking_proxy_application>

The <application> resource contains an ETSI M2M <container> sub resource. The “searchString” attribute of this sub resource contains a tag of category ETSI.ObjectSemantic which indicates the semantic conventions used in the representation of this object. The URI used to access this <container> resource has the following format:

<sclBase>/applications/< interworking_proxy_application>/containers/descriptor

The <container> resource contains one or more <contentInstance> sub resource. The “content” attribute of this sub resource contains the representation of the IPU. In particular, since a single IPU can give access to multiple M2M Area Networks, each of them modeled with an ETSI M2M resource (see next bullet for description), the “content” attribute of the <contentInstance> resource may contain the URIs of the ETSI M2M resources representing these M2M Area Networks. The URI used to access the <contentInstance> resource containing the current representation of the IPU has the following format:

<sclBase>/applications/< interworking_proxy_application>/containers/descriptor/contentInstances/latest

The reason is that a new <contentInstance> resource is created each time the IPU representation changes (e.g. a new M2M Area Network is created, or an old one is deleted). So, in case a new <contentInstance> resource is created and the old ones are kept in order to maintain an history, there can be more than one <contentInstance> resources. But, in any case, the <contentInstance> resource pointed by the “latest” attribute of the contentInstances resource contains always the current representation of the IPU.

· Each M2M Area Network controlled by an IPU is modeled with an ETSI M2M <application> resource. The “searchString” attribute of this resource contains an ETSI.ObiectType/ETSI.AN_NWK tag which identifies it as an M2M Area Network. The URI used to access this <application> resource has the following format:

<sclBase>/applications/<networkX>

The <application> resource contains an ETSI M2M <container> sub resource. The “searchString” attribute of this sub resource contains a tag of category ETSI.ObjectSemantic which indicates the semantic conventions used in the representation of this object. The URI used to access this <container> resource has the following format:

<sclBase>/applications/<networkX>/containers/descriptor

The <container> resource contains one or more <contentInstance> sub resource. The “content” attribute of this sub resource contains the representation of the M2M Area Network. In particular, since a single M2M Area Network can be composed by several Devices (N.B.: they are not ETSI M2M Devices), each of them modeled with an ETSI M2M resource (see next bullet for description), the “content” attribute of the <contentInstance> resource may contain the URIs of the ETSI M2M resources representing these Devices. The URI used to access the <contentInstance> resource containing the current representation of the M2M Area Network has the following format:

<sclBase>/applications/<networkX>/containers/descriptor/contentInstances/latest

The reason is that a new <contentInstance> resource is created each time the M2M Area Network representation changes (e.g. a new Device is created, or an old one is deleted). So, in case a new <contentInstance> resource is created and the old ones are kept in order to maintain an history, there can be more than one <contentInstance> resources. But, in any case, the <contentInstance> resource pointed by the “latest” attribute of the contentInstances resource contains always the current representation of the M2M Area Network.

· Each Device belonging to an M2M Area Network (N.B.: they are not ETSI M2M Devices) is modeled with an ETSI M2M <application> resource. The “searchString” attribute of this resource contains an ETSI.ObiectType/ETSI.AN_NODE tag which identifies it as a Device belonging to an M2M Area Network. The URI used to access this <application> resource has the following format:

<sclBase>/applications/<networkX_deviceY>

The <application> resource contains an ETSI M2M <container> sub resource. The “searchString” attribute of this sub resource contains a tag of category ETSI.ObjectSemantic which indicates the semantic conventions used in the representation of this object. The URI used to access this <container> resource has the following format:

<sclBase>/applications/<networkX_deviceY>/containers/descriptor

The <container> resource contains one or more <contentInstance> sub resource. The “content” attribute of this sub resource contains the representation of the Device. In particular, since a Device can contain several Applications (N.B.: they are not ETSI M2M Applications), each of them modeled with an ETSI M2M resource (see next bullet for description), the “content” attribute of the <contentInstance> resource may contain the URIs of the ETSI M2M resources representing these Applications. The URI used to access the <contentInstance> resource containing the current representation of the Device has the following format:

<sclBase>/applications/<networkX_deviceY>/containers/descriptor/contentInstances/latest

The reason is that a new <contentInstance> resource is created each time the Device representation changes (e.g. a new Application is created, or an old one is deleted). So, in case a new <contentInstance> resource is created and the old ones are kept in order to maintain an history, there can be more than one <contentInstance> resources. But, in any case, the <contentInstance> resource pointed by the “latest” attribute of the contentInstances resource contains always the current representation of the Device.

· Each Application belonging to a Device (N.B.: they are not ETSI M2M Applications) is modeled with an ETSI M2M <application> resource. The “searchString” attribute of this resource contains an ETSI.ObiectType/ETSI.AN_APP tag which identifies it as an Application belonging to a Device. The URI used to access this <application> resource has the following format:

<sclBase>/applications/<networkX_deviceY_applicationZ>

The <application> resource contains an ETSI M2M <container> sub resource. The “searchString” attribute of this sub resource contains a tag of category ETSI.ObjectSemantic which indicates the semantic conventions used in the representation of this object. The URI used to access this <container> resource has the following format:

<sclBase>/applications/<networkX_deviceY_applicationZ>/containers/descriptor

The <container> resource contains one or more <contentInstance> sub resource. The “content” attribute of this sub resource contains the representation of the Application. In particular, since an Application can implement several Interfaces, each of them modeled with ETSI M2M resources (see next bullet for description), the “content” attribute of the <contentInstance> resource may contain the URIs of the ETSI M2M resources representing these Interfaces. The URI used to access the <contentInstance> resource containing the current representation of the Application has the following format:

<sclBase>/applications/<networkX_deviceY_applicationZ>/containers/descriptor/contentInstances/latest

The reason is that a new <contentInstance> resource is created each time the Application representation changes (e.g. a new Interface is created, or an old one is deleted). So, in case a new <contentInstance> resource is created and the old ones are kept in order to maintain an history, there can be more than one <contentInstance> resources. But, in any case, the <contentInstance> resource pointed by the “latest” attribute of the contentInstances resource contains always the current representation of the Device.

· Each Data Field and each Method belonging to an Interface implemented by an Application can be mirrored or retargeted. Mirroring is defined as the set of mechanism to keep a data field synchronized with its representation in the M2M resource structure. Retargeting is defined as the mechanism that allows fetching the data directly from the device, that is without storing the data in the M2M resource structure.

If the Data Field or the Method is mirrored the ETSI M2M <application> resource modeling the Application contains an ETSI M2M <container> sub resource for each interface element mirrored (either Data Field or Method). The URI used to access this <container> resource has the following format:

<sclBase>/applications/<networkX_deviceY_applicationZ>/containers/<interfaceW_datafieldN>

or

<sclBase>/applications/<networkX_deviceY_applicationZ>/containers/<interfaceW_methodM>

The <container> resource contains one or more <contentInstance> sub resource. The “content” attribute of this sub resource contains the representation of the Data Field or the Method; for the Data Field it is its value, for the Method it is the actual parameters used for a Method invocation or the result of a Method invocation. The URI used to access the <contentInstance> resource containing the current representation of the Data Field or the Method has the following format:

<sclBase>/applications/<networkX_deviceY_applicationZ>/containers/<interfaceW_datafieldN>/contentInstances/latest

or

<sclBase>/applications/<networkX_deviceY_applicationZ>/containers/<interfaceW_methodM>/contentInstances/latest

For the <container> resources representing Data Fields the IPU creates a new <contentInstance> resource each time the value of the Data Field changes in the M2M Area Network, and subscribes for the creation of <contentInstance> resources by M2M Applications; when a new <contentInstance> resource is created the IPU changes the value of the Data Field into the M2M Area Network. For the <container> resources representing Methods the IPU subscribes for the creation of <contentInstance> resources by M2M Applications; when a new <contentInstance> resource is created the IPU invokes the Method into the M2M Area Network with the specified parameters; the result of the Method invocation will be contained in another <contentInstance> resource created by the IPU with the same name but different “creationTime” attribute.

If the Data Field or the Method is retargeted the “content” attribute of the <contentInstance> resource of the <container> sub resource of the <application> resource modeling the Application contains a URI pointing to the IPU in which the path identifies the specific Data Field or Method. In this way the IPU is able to forward the operation to the original Area Network resource acting as a back-to-back proxy.

Figure 3 provides an overview of the resources used to model an example of M2M Area Network:

[image: image3]
Figure 3: Mapping of an M2M Area Network to the ETSI M2M resource architecture
5.1.3.
M2M Area Network specific technologies interworking
In the following sections the interworking between the ETSI M2M Architecture and specific M2M Area Network technologies will be described. The generic mapping principles presented in the previous chapter are applied to specific cases and peculiar guidelines are given.
5.1.3.1.
ZigBee Alliance
ZigBee is a low-power wireless mesh network. Release 1.x of the standard is based on IEEE 802.15.4 which provides physical and MAC layer specifications. ZigBee specifications provide support for the network layer as well as the application framework layer.

ZigBee specifies 3 kinds of devices:

· ZigBee coordinator (ZC): The most capable device, the coordinator forms the root of the network tree and might bridge to other networks. There is exactly one ZigBee coordinator in each network since it is the device that started the network originally.

· ZigBee Router (ZR): As well as running an application function, a router can act as an intermediate router, passing on data from other devices.

· ZigBee End Device (ZED): Contains just enough functionality to talk to the parent node (either the coordinator or a router); it cannot relay data from other devices. This relationship allows the node to be asleep for a significant amount of the time thereby enabling longer battery powered operation.

The ZigBee specifications define multiple types of profiles which represent classes of devices that differ based on the application layer they implement. The following profiles have been specified by the ZigBee Alliance:

· Smart Energy: specifies functionalities of devices that pertain to energy management (e.g. thermostat, meter, etc.)

· Health Care : specifies functionalities of devices that pertain to eHealth devices

· Building Automation : specifies functionalities of devices that pertain to building automation (light, air conditioning, etc.)

· Home Automation : specifies functionalities of devices that pertain to home automation (light, air conditioning, etc)

· ZigBee Telecommunication Services : specifies functionalities pertaining to telecommunications (e.g. advertisement, gaming, social networks, etc.) that can be implemented in devices such as cellular phones, tablets, netbooks, etc.

The ZigBee Cluster Library (ZCL) lists a number of standardized application interfaces, referred to as clusters. Each standardized Zigbee Profile relies on specific set of clusters specified in the ZCL. Vendors can also define their own clusters. A particular ZigBee device typically runs one or more Applications (modeled as ZigBee endpoints) that implement one or more clusters belonging to a particular profile. Each cluster is a collection of attributes (that represent e.g. a value of thermometer), and commands, which together define a communications interface between two ZigBee devices implementing the server and client sides of the interface respectively.
In the remaining of this specification a Cluster (logical grouping of attributes, commands and events) will be referred to as an Interface which is a more generic term that can be used for mapping of other technologies.
A ZigBee network can be represented as follows:

[image: image4]
Figure 4: A typical representation of ZigBee network
The mapping between a ZigBee device, ZigBee Applications and Interfaces (Clusters) is provided in the following figure:

[image: image5]
Figure 5: A ZigBee Device Reference architecture
5.1.3.1.1.
Implementation profile 1 for ZigBee PAN interworking with ETSI M2M
This section specifies a mapping of ZigBee PAN entities to the ETSI M2M SCL resource structure. The generic mapping principles are applied to this specific M2M Area Network technology. The following ZigBee PAN entities (with reference to figure 2) are considered and mapped to the ETSI M2M resource structure:

· ZigBee interworking proxy application (ZigBee IPA): this is the implementation of an IPU for the ZigBee technology
· ZigBee network: this is equivalent to M2M Area Network
· ZigBee node: this is equivalent to M2M Area Network Device
· ZigBee application: this is equivalent to M2M Area Network Application
· ZigBee cluster: this is equivalent to M2M Area Network Interface

· ZigBee cluster attribute: this is equivalent to M2M Area Network Data Field
· ZigBee cluster command: this is equivalent to M2M Area Network Method
5.1.3.1.2.
ZigBee Interworking Proxy Application resource structure
The <application> resource representing a ZigBee IPU has a searchString containing the tag ETSI.ObjectType/ETSI.IP.

It contains one <container> sub-resource which has a searchString containing the tag ETSI.ObjectType/ETSI.IP, and a tag of category ETSI.ObjectSemantic. The ZigBee IPU may update its representation (e.g. add or remove a network) by creating newer <contentInstance> resources.

This implementation profile does not limit the representations of a ZigBee IPU resource. Published representations are listed in annex II. An example of the content of the contentInstance with the list of ZigBee networks is shown here:
...

<list name="networks"/>

<ref href="/<sclBase>/applications/<networkX>/">

</list>

...

Figure 6: Example of ZigBee Interworking Proxy Application
5.1.3.1.3.
ZigBee network resource structure
The <application> resource representing a ZigBee network has a searchString containing the tag ETSI.ObjectType/ETSI.AN_NWK.

It contains one <container> sub-resource which has a searchString containing the tag ETSI.ObjectType/ETSI.AN_NWK, and a tag of category ETSI.ObjectSemantic. The network representation may be updated (e.g. add or remove a node) by creating newer <contentInstance> resources.

This implementation profile does not limit the representations of a ZigBee network resource. Published representations are listed in annex II. An example of the content of the contentInstance with the list of ZigBee nodes is shown here:
...

<str name="extendedPanID" val"0x685B3C34"/>

<list name="nodes">

<ref href="/<sclBase>/applications/<networkX_nodeY>/"/>

</list>

...

Figure 7: Example of ZigBee Network
5.1.3.1.4.
ZigBee node resource structure
The <application> resource representing a ZigBee node has a searchString containing the tag ETSI.ObjectType/ETSI.AN_NODE.

It contains one <container> sub-resource which has a searchString containing the tag ETSI.ObjectType/ETSI.AN_NODE, and a tag of category ETSI.ObjectSemantic. The node representation may be updated (e.g. add or remove an application) by creating newer <contentInstance> resources.

This implementation profile does not limit the representations of a ZigBee node resource. Published representations are listed in annex II. An example of the content of the contentInstance with the list of ZigBee applications is shown here:
...

<str name="ieeeAddress" val="0x685B3C88"/>

<enum name="type" val="endDevice"/>

<list name="applications">

<ref href="/<sclBase/applications/<networkX_nodeY_applicationZ>/"/>

</list>

...

Figure 8: Example of ZigBee Node
5.1.3.1.5.
ZigBee application resource structure
The <application> resource representing a ZigBee application has a searchString containing the tag ETSI.ObjectType/ETSI.AN_APP.

It contains at least one <container> sub-resource which has a searchString containing the tag ETSI.ObjectType/ETSI.AN_APP, and a tag of category ETSI.ObjectSemantic. The application representation may be updated (e.g. add or remove an interface) by creating newer <contentInstance> resources.

The ZigBee application resource may have a ZigBee.ApplicationProfile tag and a ZigBee.DeviceIdentifier tag, with values matching those of the node ZigBee Simple Descriptor.

This implementation profile does not limit the representations of a ZigBee application resource. Published representations are listed in annex II. An example of the content of the contentInstance with the description of an application is shown below, which illustrates the representation of a ZigBee on/off light application.
...

<int name="endpoint" val="1"/>

<int name="applicationProfileID" val="0x0104"/>

<int name="applicationDeviceID" val="0x0100"/>

<list name="Interfaces">

<obj>

<str name="clusterID" val="0x0006"/>

<enum name="clusterType" val="input"/>

<list name="attributes">

<ref name="0x0000"

href="/<sclBase>/applications/<networkX_nodeY_applicationZ>/containers/0x0006_OnOff"/>

</list>

<list name="operations">

<op name="0x00" href="/<sclBase>/applications/<interworking_proxy_application>/0x0006_off"/>

<op name="0x01" href="/<sclBase>/applications/<interworking_proxy_application>/0x0006_on"/>

<op name="0x02" href="/<sclBase>/applications/<interworking_proxy_application>/0x0006_toggle"/>

</list>

</obj>

</list>

...

Figure 9: Example of ZigBee Application
5.1.3.1.6.
Use of mirroring or retargeting for ZigBee interfaces (clusters)
The representation of a ZigBee application includes elements which are dynamic in nature, e.g. the on/off status of a lamp or the execution of commands. The ETSI M2M model offers several alternatives to interface with such elements:

· Retargeting : retargeting enables the issuer application to interact directly with the ZigBee IPU in order to execute commands or to retrieve parameters. In the example of Figure 9, the implementation chose to retarget each command. This method presents performance advantages for dynamic or infrequently accessed elements or operations. On the other hand, this method requires the ZigBee IPU to have server capabilities, and does not leverage the SCL caching and logging capabilities. If many applications are interested in a given attribute, the burden of responding to read commands may be offloaded from the ZigBee IPU to the SCL by using mirroring.

· Mirroring : The ZigBee IPU may leverage the mirroring capabilities of the SCL by referring to a container which mirrors the element value in the application representation. In the example of Figure 9, the implementation chose to mirror each cluster attribute in a separate application container. This method makes it easier for applications to subscribe to individual attribute values. If the attribute values change in a non-correlated way and if the implementation keeps a history of changes, using separate containers for each attribute will reduce the size of history datasets. Mirroring may provide an advantage in terms of delay and M2M area network bandwidth usage for data that is sent upstream. For data sent downstream, the use of the retargeting mechanism may be more optimal.

The content of a container representing a cluster attribute will contain its value formatted as per the selected semantic, and the Access Rights resource associated reflects the access defined in the ZigBee specification of the cluster (Read only or Read/Write). These constraints cannot be enforced by the ETSI M2M SCL, since it is content agnostic, so the correctness of the content and of the Access Rights is a contract between the IPU creating the M2M resources to represent the ZigBee PAN entities and the ETSI M2M Application using them.
The content of a container representing a cluster command will contain the payload formatted as per the ZigBee specification of the cluster (list of parameters and type/format of parameters). These constraints cannot be enforced by the ETSI M2M SCL, since it is content agnostic, so the correctness of the content is a contract between the IPU creating the M2M resources to represent the ZigBee PAN entities and the ETSI M2M Application using them.
Handling of asynchronous commands will use the general mechanisms defined in TS 102 690.
5.1.3.2.
UPnP
UPnP is an IP based network technology for pervasive network. It define an architecture for peer to peer network connectivity of intelligent appliances, wireless devices, and PCs of all form factors. It is designed to bring easy-to-use, flexible, standards-based connectivity to ad-hoc or unmanaged networks whether in the home, in a small business, public spaces, or attached to the Internet.
The UPnP architecture defines the protocols for communication between controllers, control points, and devices.

The UPnP Architecture uses the following protocol stack for discovery, description, control, eventing, and presentation.
[image: image6.png]UPNP vendor [purple-italic]
UPDP Forum [red-italic]
UPnP Device Architecture [green-bold]

SOAP [blue] || GENA [navy-bold]
SSDP [blue] Multicast events [navy-bold] | s0s@ ol |

HTTP [black] | HTTP [black]
UDP [black] TCP [black]

IP [black]

Fig. 10: UPnP Protocol Stack

There are three major classes of UPnP device .

· UCP (User/Universal Control Point): this is a device, such as a PC or PDA, which allows for control of other UPnP devices through the presentation page and rich display.
· Controlled Device: any UPnP device that allows control or provides some sort of UPnP service to the rest of the home network (such as IGDs, A/V devices, security cameras, etc.)

· Bridge: connects non-UPnP devices to the home network; in essence it speaks UPnP on one end and some proprietary language on the other end (some examples include proprietary lighting control, bluetooth, HAVi, etc…)

The following figure shows the UPnP networking .

[image: image7.png]

Fig 11: UPnP Networking

· Addressing

IP addressing is the foundation of UPnP networking. Each device must support DHCP mechanism when the device is first connected to the network. If during the DHCP transaction, the device obtains a domain name, for example, through a DNS server or via DNS forwarding, the device should use that name in subsequent network operations; otherwise, the device should use its IP address.

· Discovery

When a device is added to the network, the UPnP discovery protocol allows that device to advertise its services to control points on the network. Similarly, when a control point is added to the network, the UPnP discovery protocol allows that control point to search for devices of interest on the network. The fundamental exchange in both cases is a discovery message containing a few essential specifics about the device or one of its services, .g., its type, identifier, and a pointer to more detailed information.

· Description

After a control point has discovered a device, the control point still knows very little about the device. For the control point to learn more about the device and its capabilities, or to interact with the device, the control point must retrieve the device's description from the URL provided by the device in the discovery message. The UPnP description for a device is expressed in XML and includes vendor-specific, manufacturer information like the model name and number, serial number, manufacturer name, URLs to vendor-specific web sites, etc. The description also includes a list of any embedded devices or services, as well as URLs for control, eventing, and presentation. For each service, the description includes a list of the commands, or actions, to which the service responds, and parameters, or arguments, for each action; the description for a service also includes a list of variables; these variables model the state of the service at run time, and are described in terms of their data type, range, and event characteristics.
· Control
Having retrieved a description of the device, the control point can send actions to a device's service. To do this, a control point sends a suitable control message to the control URL for the service (provided in the device description). Control messages are also expressed in XML using the Simple Object Access Protocol (SOAP). Much like function calls, the service returns any action-specific values in response to the control message. The effects of the action, if any, are modeled by changes in the variables that describe the run-time state of the service
· Eventing

An additional capability of UPnP networking is event notification, or eventing. The event notification protocol defined in the UPnP Device Architecture is known as General Event Notification Architecture (GENA). A UPnP description for a service includes a list of actions the service responds to and a list of variables that model the state of the service at run time. The service publishes updates when these variables change, and a control point may subscribe to receive this information. The service publishes updates by sending event messages. Event messages contain the names of one or more state variables and the current value of those variables. These messages are also expressed in XML. A special initial event message is sent when a control point first subscribes; this event message contains the names and values for all evented variables and allows the subscriber to initialize its model of the state of the service. To support scenarios with multiple control points, eventing is designed to keep all control points equally informed about the effects of any action. Therefore, all subscribers are sent all event messages, subscribers receive event messages for all "evented" variables that have changed, and event messages are sent no matter why the state variable changed (either in response to a requested action or because the state the service is modeling changed).
· Presentation

The final step in UPnP networking is presentation. If a device has a URL for presentation, then the control point can retrieve a page from this URL, load the page into a web browser, and depending on the capabilities of the page, allow a user to control the device and/or view device status. The degree to which each of these can be accomplished depends on the specific capabilities of the presentation page and device.

5.1.3.2.1.
Implementation profile for UPnP interworking with ETSI M2M
This section specifies a mapping of UPnP entities to the ETSI M2M SCL resource structure. The generic mapping principles are applied to this specific M2M Area Network technology. The following 6LoWPAN PAN entities (with reference to figure 2) are considered and mapped to the ETSI M2M resource structure:
UPnP interworking proxy application (UPnP IPA): this is the implementation of an IPU for the UPnP technology.
UPnP network: this is equivalent to M2M Area Network

UPnP node: this is equivalent to M2M Area Network Device

The UPnP interworking proxy application uses the following standards.

	Area network standard
	ANStandard extension

	UPnP v1.1
	<obj name="UPnP_1.1"/>

5.1.3.2.2.
UPnP Interworking Proxy Application resource structure
An UPnP InterworkingDescriptor contract is defined for interworking proxies supporting the UPnP standard. This contract overloads the M2M InterworkingDescriptor contract and contains no additional mandatory sub-elements
<obj href="upnp:InterworkingDescriptor" is="m2m:InterworkingDescriptor"

xmlns="http://obix.org/ns/wsdl/1.1"

xmlns:m2m="http://uri.etsi.org/m2m/obix"

xmlns:upnp="http://uri.etsi.org/m2m/upnp/obix">

</obj>

5.1.3.2.3.
UPnP network resource structure
A UPnP NetworkDescriptor contract is defined for interworking proxies supporting the UPnP standard. This contract overloads the M2M NetworkDescriptor contract and contains the following additional mandatory sub-elements:

· “domainName” : The domain name of UPnP network for supporting Dynamic Domain Name System (DDNS).

xmlns="http://obix.org/ns/wsdl/1.1"

xmlns:m2m="http://uri.etsi.org/m2m/obix"

xmlns:upnp="http://uri.etsi.org/m2m/upnp/obix">

<str name=”domainName”/>

5.1.3.2.4.
UPnP node resource structure
An UPnP NodeDescriptor contract is defined for interworking proxies supporting the UPnP standard. This contract overloads the M2M NodeDescriptor contract and contains the following additional mandatory sub-elements:
· “configID” : configuration identifier to which the device description
· “specVersion” : defines the architecture version on which the device is implemented
· “deviceType” : UPnP device type
· “friendlyName” : Short description for end user. Specified by UPnP vendor.

· “manufacturer” : Manufacturer’s name
· “modelName” : Model name
· “modelnumber” : Model number
· “serialNumber”: Serial number
· “UDN”: Unique device name
<obj href=":UPnP NodeDescriptor" is="m2m:NodeDescriptor"

xmlns="http://obix.org/ns/wsdl/1.1"

xmlns:m2m="http://uri.etsi.org/m2m/obix"

xmlns:upnp="http://uri.etsi.org/m2m/upnp/obix">

<str name=”configID”/>

<str name=”specVersion”/>

<str name=”devieType”/>

<str name=”friendlyName”/>

<str name=”manufacturer”/>

<str name=”modelName”/>

<str name=”modelNumber”/>

<str name=”serialNumber”/>

<str name=”UDN”/>

5.1.3.2.5.
UPnP service resource structure
A UPnP AppplicationDescriptor contract is defined for interworking proxies supporting the UPnP standard. This contract overloads the M2M ApplicationDescriptor contract and contains the following additional mandatory sub-elements:

· “configID” : configuration identifier to which the service description
· “specVersion” : defines the architecture version on which the service is implemented
· “action” : action defined by a UPnP Forum working committee. It contains the following sub-elements
· “name ” : action name
· “argument” : parameter defined for action
· “direction” : defines whether argument is an input or output
· “serviceState” : service state variable defined by a UPnP Forum working committee. . It contains the following sub-elements
· “name” : name of state variable
· “datatype” : datatype for state variable
· “defaultValue” : Expected, initial value. Defined by a UPnP Forum working committee

· “allowedValuelist” : Enumerates legal string values.

· “allowedvalueRange” : Defines bounds for legal numeric values

<obj href=":UPnP ApplecationDescriptor" is="m2m:ApplicationDescriptor"

xmlns=""

xmlns:m2m="http://uri.etsi.org/m2m/obix"

xmlns:upnp="http://uri.etsi.org/m2m/upnp/obix">

<str name=”configID”/>

 <str name=”specVersion”/>

<list name=”action”/>

 <obj>

 <str name=”name”/>

 <str name=”argument”/>

 <str name=”direction”/>

</obj>

<list name=”serviceState”/>

<obj>

 <str name=”name”/>

 <str name=”datatype”/>

 <str name=”defaultValue”/>

<str name=”allowedValuelist”/>

<str name=”allowedValueRange”/>

</obj>

5.1.4.
Evaluation

[TBC]

5.2.
Implementation profile 2

[TBC]

6.
Interworking with M2M devices without SCL (D’)
[TBC]
Annex A (informative):
Example of syntax for searchstring Tags
This example uses the searchString attribute of ETSI M2M resources to implement resource tagging and facilitate discovery and navigation within the resources used for ZigBee interworking.

The searchString value is defined in [2] and is formatted as follows:

searchString= ”Tag category/Tag value”

This example defines the following categories and values:
A.1
Category : PROFILE1.ObjectType
Reserved values :

PROFILE1.IWG : Interworking gateway object

PROFILE1.AN_NWK : Network object

PROFILE1.AN_DEV : Device object

PROFILE1.AN_APP : Application object
PROFILE1.AN_POINT : Data point (any measurement, or value)
Example : " PROFILE1.ObjectType/ PROFILE1.AN_NWK"
A.2
Category : PROFILE1.ObjectSemantic
The syntax of an object representation is usually indicated by its Content-Type, for instance application/xml. However multiple semantic conventions may leverage the same syntactic rules. In the present use case of interworking with control and sensor networks, an example of such semantic convention leveraging application/xml syntax is OASIS oBix (www.oasis-open.org) or ZigBee Gateway Device REST binding. ASHRAE BACnet (ASHRAE 135 annex am) also leverages XML syntax (IETF RFC5023 ATOM syntax with specific media types application/atomsvc+xml and application/atom+xml) to carry the Control System Modelling Language (CSML) semantic.

This example implements a REST design model which allows multiple representations of the objects manipulated through the ETSI M2M SCL. In order to complement the indication related to syntax carried by the Content type of the representation, it defines the ObjectSemantic tag category.

Reserved values:

OASIS.OBIX_1_1 : OASIS oBix semantic conventions, version 1.1.

ASHRAE.CSML_1_0 : ASHRAE 135 annex am Control System Modelling Language (CSML) semantic conventions.

A.3
Category : PROFILE1.ApplicationProfile

Reserved for future use. The intent is to be able to facilitate search of specific devices e.g. “lamps”. Nomenclatures have been created by ZigBee, KNX and LONworks, and one is being worked on by BACnet. Future work would lead to a harmonized nomenclature which would use this category.

A.4
Category : ZIGBEE.ApplicationProfile

This tag facilitates search of devices implemented according to a given ZigBee application profile. The value is the hexadecimal value of the application profile, represented as a 6 character string “ZIGBEE.ApplicationProfile/0x0104”
A.5
Category : ZIGBEE.DeviceIdentifier

This tag facilitates search of devices implemented according to a given ZigBee device profile. The ZigBee.ApplicationProfile tag is mandatory if the ZigBee.DeviceIdentifier tag is used.

The value is the hexadecimal value of the DeviceIdentifier, represented as a 6 character string “ZIGBEE.DeviceIdentifier/0x0100”
Annex B:
Example 1, Application/XML syntax, oBix 1.1 semantic conventions
This profile targets the field of automation and sensor networks, for applications that seek to maximize the independence with the underlying area network hardware and technology.

B.1
Generic Area Network object representations
B.1.1 Generic Interworking Proxy Application resource content structure

oBix contracts:

An M2M InterworkingDescriptor contract is defined, which contains following mandatory

· elements:“interworkingProxyID” : An identifier for the interworking proxy

· "supportedTechnologies": A list of supported Access Network technologies defined as a triplet {AN standard, AN profile, AN physical layer}

· “networks” : A list of network descriptor references to network objects

The M2M InterworkingDescriptor contract uses the http://uri.etsi.org/m2m/obix namespace.

<obj href="m2m:InterworkingDescriptor"

xmlns="http://obix.org/ns/wsdl/1.1" xmlns:m2m="http://uri.etsi.org/m2m/obix">

<str name=”interworkingProxyID”>

<list name=”supportedTechnologies” of=”#ANTechnology”>

<obj href="#ANTechnology">

<enum name=”anStandard” range=”#ANStandard”>

<list href="#ANStandard" is="obix:Range"/>

</enum>

<enum name=”anProfile” range=”#ANProfile”>

<list href="#ANProfile” is="obix:Range"/>

</enum>

<enum name=”anPhysical” range=”#ANPhysical”>

<list href="#ANPhysical” is="obix:Range"/>

</enum>

</obj>

</list>

<list name="networks" of="obix:ref m2m:NetworkDescriptor"/>

(tbd - add standard <op> toward an interworking proxy)
</obj>

Area network standards (#ANStandard), area network profiles (#ANProfile) and area network physical layers (#ANPhysical) are defined on a per protocol basis.

B.1.2 Generic Network resource content structure

oBix contracts :

An M2M NetworkDescriptor contract is defined, which contains following mandatory elements:

· “networkID” :A network identifier

· “nodes” : A list of node descriptor references to node objects on this network

The M2M NetworkDescriptor contract uses the http://uri.etsi.org/m2m/obix namespace.

<obj href="m2m:NetworkDescriptor"

xmlns="http://obix.org/ns/wsdl/1.1" xmlns:m2m="http://uri.etsi.org/m2m/obix">

<str name="networkID"/>

<list name="nodes" of="obix:ref m2m:NodeDescriptor"/>

<op name="openAssociation" in="m2m:OpenAssociationInput" out="obix:nil"/>

</obj>

The contract defines the following operation:

· “openAssociation” : When supported by the M2M area network, this operation permits or prohibits association of new devices with the Network. This operation defines the following IN and OUT parameters

	IN
	<?xml version="1.0" encoding="UTF-8"?>

<obix:obj href="m2m:OpenAssociationInput"

 xmlns:obix="http://obix.org/ns/schema/1.1"

 xmlns:zb="http://uri.etsi.org/m2m/zigbee/obix">

 <obix:reltime name="duration"/>

</obix:obj>

When the operation is invoked with a non-null duration, the IPU authorizes the association of new devices. This authorization is granted for the given duration, and is automatically canceled by the IPU when the duration expires.

A granted authorization can also be canceled by invoking the operator with a null duration (PT0S).

	OUT
	obix:nil

B.1.3 Generic Device resource content structure

oBix contracts :

An M2M NodeDescriptor contract is defined, which contains the following mandatory elements:

· “nodeID” : The node identifier

· "modelID": The model identifier

· “applications” : A list of area network application descriptor references to such application objects hosted by this node

The M2M NodeDescriptor contract uses the http://uri.etsi.org/m2m/obix namespace.

<obj href="m2m:NodeDescriptor"

xmlns="http://obix.org/ns/wsdl/1.1" xmlns:m2m="http://uri.etsi.org/m2m/obix">

<str name="nodeID"/>

<str name="modelID"/>

<list name="applications" of="obix:ref m2m:ApplicationDescriptor"/>

(tbd - add standard <op> toward a node)
</obj>

B.1.4 Generic Application resource content structure

oBix contracts :

An M2M ApplicationDescriptor contract is defined, which contains following mandatory elements:

· “applicationID” : the application identifier

· "applicationTypeID": the application type identifier

· “interfaces” : A list of area network interface descriptor (or reference) to such interface objects implemented by this application

The M2M ApplicationDescriptor contract uses the http://uri.etsi.org/m2m/obix namespace.

<obj href="m2m:ApplicationDescriptor"

xmlns="http://obix.org/ns/wsdl/1.1" xmlns:m2m="http://uri.etsi.org/m2m/obix">

<str name="applicationID"/>

<str name="applicationTypeID"/>

<list name="Interfaces" of="obix:ref m2m:InterfaceDescriptor"/>

(tbd - add standard <op> toward an application)
</obj>

B.1.5 GenericInterface resource content structure

An M2M InterfaceDescriptor contract is defined, which contains following mandatory elements:

· “interfaceID” : the interface identifier

· “interfaceTypeID” : the interface type identifier

· “points” : Zero, one or several area network interface Point object (or reference) published by this interface

· “operations” : Zero, one or several area network operation reference implemented by this interface

· “feeds” : Zero, one or several area network feed reference of event objects published by this interface

· “sub-interfaces” : A list of sub-interfaces, if any

The M2M InterfaceDescriptor contract uses the http://uri.etsi.org/m2m/obix namespace.

<obj href="m2m:InterfaceDescriptor"

xmlns="http://obix.org/ns/wsdl/1.1" xmlns:m2m="http://uri.etsi.org/m2m/obix">

<str name="InterfaceID"/>

<str name="InterfaceTypeID"/>

zero, one or several points (or point references)

zero, one or several operation references

zero, one or several feed references

<list name="sub-interfaces" of=”obix:InterfaceDescriptor/>

(tbd - add standard <op> toward an interface)
</obj>

B.1.6 Generic Point resource content structure

oBix contracts :

A Point is a specific data field which contains a value in one of the primitive types, and optional qualifiers e.g. a measurement unit or status. It is a common concept used in most automation and fieldbus protocols. A generic M2M Point contract is defined, simply as an oBix point; so far it contains no additional mandatory elements.

The M2M Point contract uses the http://uri.etsi.org/m2m/obix namespace.

<obj href="m2m:Point" is=”obix:Point"

xmlns="http://obix.org/ns/wsdl/1.1" xmlns:m2m="http://uri.etsi.org/m2m/obix"

</obj>

B.2 ZigBee Area Network object representations

B.2.1 Mapping of native ZigBee primitive types to oBix types

	ZigBee class/type
	oBIX type

	Null
	For future study

	General data
	obix:str (hexadecimal encoded)

	Logical/Boolean
	obix:bool

	Bitmap
	obix:str (hexadecimal encoded)

	Unsigned integer
	obix:int
Note: A value greater than 2^63-1 is represented as a negative value.

	Signed integer
	obix:int

	Enumeration
	obix:enum (hexadecimal encoded)

	Floating point
	obix:real

	String
	Octet string
	obix:str (hexadecimal encoded)

	
	Character string
	obix:str (UTF8-encoding)

	
	Long octet string
	obix:str (hexadecimal encoded)

	
	Long character string
	obix:str (UTF8-encoding)

	Ordered sequence
	For future study

	Collection
	For future study

	Time
	Time of day
	obix:reltime

	
	Date
	obix:abstime

	
	UTC Time
	obix:abstime

	Identifier
	obix:str (hexadecimal encoded)

	Miscellaneous
	IEEE address
	obix:str (hexadecimal encoded)

	
	128-bit security -key
	obix:str (hexadecimal encoded)

B.2.2 ZigBee Interworking Proxy Application resource content structure

Constants:

The ZigBee interworking gateway uses the following AN standard.

	Area network standard
	ANStandard extension

	ZigBee 1.0
	<obj name="ZigBee_1_0"/>

The ZigBee interworking gateway uses the following AN profile

	Area network profile
	ANProfile extension

	ZigBee Home automation profile
	<obj name="ZigBee_HA"/>

	ZigBee Smart Energy profile
	<obj name="ZigBee_SE1"/>

The ZigBee interworking gateway uses the following AN physical layer.

	Area network profile
	ANProfile extension

	IEEE 802.15.4-2003 (2. 4GHz)
	<obj name="IEEE_802_15_4_2003_2_4GHz”/>

oBix contracts:

A ZigBee InterworkingDescriptor contract is defined for interworking proxies supporting the ZigBee standard. This contract overloads the M2M InterworkingDescriptor contract and contains no additional mandatory sub-elements, but may contain oBix operations referring to ZGD operations.

The ZigBee InterworkingDescriptor contract uses the http://uri.etsi.org/m2m/zigbee/obix namespace.

<obj href="zigbee:InterworkingDescriptor" is="m2m:InterworkingDescriptor"

xmlns="http://obix.org/ns/wsdl/1.1"

 xmlns:m2m="http://uri.etsi.org/m2m/obix"

 xmlns:zigbee="http://uri.etsi.org/m2m/zigbee/obix">

(tbd - add <op> toward retargeted ZGD resources – e.g. /version, /ib, /request, /energy, /reset, /startup, /networks...)
</obj>

Note : All XML elements belonging to the generic m2m:InterworkingDescriptor contract are not reproduced in this ZigBee derived contract.
Representation example

GET /gsc/applications/ipu0/containers/descriptor/contentInstances/last/content

<obj is="zigBee:InterworkingDescriptor">

<str name=”interworkingProxyID” val="Text for correlation purpose"/>

<list name="supportedTechnologies">

<obj>

<enum name="anPhysical" val="IEEE_802_15_4_2003_2_4GHz"/>

<enum name="anStandard" val="ZigBee_1_0"/>

<enum name="anProfile" val="ZigBee_HA"/>

</obj>

</list>

<list name="networks" of="obix:ref m2m:NetworkDescriptor"/>

<ref href="/gsc/applications/nwk0/containers/descriptor/contentInstances/last/content/"/>

</list>

</obj>
B.2.3 ZigBee Network resource content structure

oBix contracts :

A ZigBee NetworkDescriptor contract is defined for interworking proxies supporting the ZigBee standard. This contract overloads the M2M NetworkDescriptor contract and contains the following additional mandatory sub-elements:

· “extendedPanID” : The 802.15.4 extended PAN ID of the ZigBee network represented.

The ZigBee NetworkDescriptor may also contain oBix operations referring to ZGD operations.

The ZigBee NetworkDescriptor contract uses the http://uri.etsi.org/m2m/zigbee/obix namespace.

<obj href="zigbee:NetworkDescriptor" is="m2m:NetworkDescriptor"

xmlns="http://obix.org/ns/wsdl/1.1"

xmlns:m2m="http://uri.etsi.org/m2m/obix"

xmlns:zigbee="http://uri.etsi.org/m2m/zigbee/obix">

<str name="extendedPanID"/>

(tbd - add <op> toward retargeted ZGD resources – e.g. /ib, /callbacks, /aliases, /discovery, /wsnnodes...)

(tbd - add <op> toward retargeted ZDO resources – e.g. /zdoMgntPermitJoin...)
</obj>

Representation example

GET /gsc/applications/nwk0/containers/descriptor/contentInstances/last/content

<obj is="zigbee:NetworkDescriptor">

<str name="networkID" val="Text for correlation purpose"/>

<str name="extendedPanID" val"0x685B3C34"/>

<list name="nodes" of="obix:ref m2m:NodeDescriptor">

<ref href="/gsc/applications/dev0/containers/descriptor/contentInstances/last/content"/>

<ref href="/gsc/applications/dev1/containers/descriptor/contentInstances/last/content"/>

</list>

<ope name="zdoMgmtPermitJoin" in="zigbee:ZdoMgmtPermitJoinInput" out="obix:nil"

href="/gsc/applications/nwk0/appCommands/cmd0"/>

</obj>

B.2.4 ZigBee Device resource content structure

oBix contracts :

An oZigBee NodeDescriptor contract is defined for interworking proxies supporting the ZigBee standard. This contract overloads the M2M NodeDescriptor contract and contains the following additional mandatory sub-elements:

· “ieeeAddress” : the 802.15.4 64 bit address of the node

· “type” : the ZigBee device type, of values endpoint or router

It may also contain oBix operations referring to ZGD operations.

The ZigBee NodeDescriptor contract uses the http://uri.etsi.org/m2m/zigbee/obix namespace.

<obj href="zigbee:NodeDescriptor" is="m2m:NodeDescriptor"

xmlns="http://obix.org/ns/wsdl/1.1" xmlns:m2m="http://uri.etsi.org/m2m/obix"

xmlns:zigbee="http://uri.etsi.org/m2m/zigbee/obix">

<str name="ieeeAddress"/>

<enum name="type" range="#NodeType">

<list href="#NodeType" is="obix:Range">

<obj name="endDevice"/>

<obj name="router"/>

<obj name="coordinator"/>

</list>

</enum>

(tbd - add <op> toward retargeted ZGD resources)

 (tbd - add specific ZDO resources – e.g. "/zdoMgmtBind" /zdoMgmtLeave"...)
</obj>

Representation example

GET /gsc/applications/node0/containers/descriptor/contentInstances/last/content

<obj is="zigbee:NodeDescriptor">

<str name="nodeID" val="Text for correlation purpose"/>

<str name="ieeeAddress" val="0x685B3C8812345678"/>

<enum name="type" val="endDevice"/>

<list name="applications" of="obix:ref m2m:ApplicationDescriptor">

<ref href="/gsc/applications/app0/containers/descriptor/contentInstances/last/content/"/>

</list>

<ope name="zdoMgmtBind" in="obix:nil" out="zigbee:ZdoMgmtBindOutput"/

href="/gsc/applications/node0/appCommands/cmd0"/>

<ope name="zdoMgmtLeave" in="zigbee:ZdoMgmtLeaveInput" out="obix:nil"

href="/gsc/applications/node0/appCommands/cmd1"/>

</obj>

B.2.5 ZigBee Application resource content structure

oBix contracts :

A ZigBee AppplicationDescriptor contract is defined for interworking proxies supporting the ZigBee standard. This contract overloads the M2M ApplicationDescriptor contract and contains the following additional mandatory sub-elements:

· “endpoint” : the ZigBee endpoint ID.

· " applicationProfileID": the ZigBee application profile ID

· " applicationDeviceID": the ZigBee application device ID

· " applicationDeviceVersion": the ZigBee application device version

It may also contain oBix operations referring to ZGD operations.

The ZigBee ApplicationDescriptor contract uses the http://uri.etsi.org/m2m/zigbee/obix namespace.

<obj href="zigbee:ApplicationDescriptor" is="m2m:ApplicationDescriptor"

xmlns="http://obix.org/ns/wsdl/1.1" xmlns:m2m="http://uri.etsi.org/m2m/obix"

xmlns:zigbee="http://uri.etsi.org/m2m/zigbee/obix">

<int name="endpoint"/>

 <int name="applicationProfileID"/>

 <int name="applicationDeviceID"/>

 <int name="applicationDeviceVersion"/>

(tbd - add <op> toward retargeted ZGD resources – e.g. "/ SendZDPCommand"...)

(tbd - add <op> toward retargeted ZDO resources – e.g. "/zdoBind", "/zdoUnbind"...)
 </obj>

B.2.6 ZigBee cluster (Interface) resource content structure

A ZigBee InterfaceDescriptor contract is defined for interworking proxies supporting the ZigBee standard. This contract overloads the M2M InterfaceDescriptor contract and contains the following additional mandatory sub-elements:

· “clusterID” : the ZigBee cluster identifier, value contains hexadecimal cluster ID represented as string.

· “clusterType” : server or client cluster, as defined by the ZigBee cluster library

It may also contain oBix operations referring to ZGD operations.

The ZigBee InterfaceDescriptor contract uses the http://uri.etsi.org/m2m/zigbee/obix namespace.

<obj href="zigbee:InterfaceDescriptor" is="m2m:InterfaceDescriptor"

xmlns="http://obix.org/ns/wsdl/1.1" xmlns:m2m="http://uri.etsi.org/m2m/obix"

xmlns:zigbee="http://uri.etsi.org/m2m/zigbee/obix">

<str name="clusterID"/>

<enum name="clusterType" range="#ClusterType">

<list href="#ClusterType" is="obix:Range">

<obj name="server"/>

<obj name="client"/>

</list>

</enum>

(tbd - add <op> toward retargeted ZDO resources – e.g. /zdoBind, /zdoUnbind, /zclXXX...)

</obj>

B.2.7 ZigBee Point resource content structure

A ZigBee Point contract is defined for interworking proxies supporting the ZigBee standard. This contract overloads the M2M Point contract and contains the following optional sub-elements:

· “nativeAttributes” : the list of zigBee native attributes (or reference). The rationale for having a list is that in some cases, typically for measurement points, a single “Point”, which includes e.g. a unit facet, maps to multiple native ZigBee attributes, as ZigBee clusters model values and units as separate attributes.

The ZigBee Point contract uses the http://uri.etsi.org/m2m/zigbee/obix namespace.

<obj href="zigbee:Point" is="m2m:Point"

xmlns="http://obix.org/ns/wsdl/1.1" xmlns:m2m="http://uri.etsi.org/m2m/obix">

xmlns:zigbee="http://uri.etsi.org/m2m/zigbee/obix">

<list name="nativeAttributes" of="obix:ref obix:obj"/>

</obj>

B.2.8 ZigBee Application representation examples

Representation example (an on/off light)

This sample shows an application where mirroring and retargeting have been mixed. In this sample, the GIP has been configured to report the on/off light state of this application in a M2M container.

GET /gsc/applications/app0/containers/descriptor/contentInstances/last/content

<obj is="zigBee:ApplicationDescriptor">

<str name="applicationID" val="Text for correlation purpose"/>

<str name="applicationProfileID" val="0x104"/>

<str name="applicationDeviceID" val="0x0103"/>

<int name="endpoint" val="1"/>

<list name="interfaces" of="m2m:InterfaceDescriptor">

<obj is="zigbee:OnOffLightCluster zigbee:InterfaceDescriptor">

<str name="interfaceID" val="Text for correlation purpose"/>

<str name="clusterID" val="0x0006"/>

<enum name="clusterType" val="server"/>

<ref name="onOffState"

href="/gsc/application/app0/containers/point0/contentInstances/last/content is="zigbee:Point"/>

(tbd - Other attribute can be added here)

<op name="zclToggle" in="obix:nil" out="obix:nil"

href="/gsc/applications/app0/appCommands/cmd0"/>

<op name="zclOn" in="obix:nil" out="obix:nil"

href="/gsc/applications/app0/appCommands/cmd1"/>

<op name="zclOff" in="obix:nil" out="obix:nil"

href="/gsc/applications/app0/appCommands/cmd2"/>

</obj>

</list>

</obj>

GET /gsc/application/app0/containers/point0/contentInstances/last/content

<bool name="zclOnOffState" val="off" is="zigbee:Point"/>

Representation example (an on/off switch)

This sample shows an application where mirroring and retargeting have been mixed. In this sample, the GIP has been configured to report the on/off switch event of this application in a M2M container.

GET /gsc/applications/app0/containers/descriptor/contentInstances/last/content

<obj is="zigBee:ApplicationDescriptor">

<str name="applicationID" val="Text for correlation purpose"/>

<str name="applicationProfileID" val="0x104"/>

<str name="applicationDeviceID" val="0x0103"/>

<int name="endpoint" val="1"/>

<list name="interfaces of="m2m:InterfaceDescriptor">

<obj is="zigbee:OnOffSwitchCluster zigbee:InterfaceDescriptor">

<str name="interfaceID" val="Text for correlation purpose"/>

<str name="clusterID" val="0x0006"/>

<enum name="clusterType" val="client"/>

<feed name="onOffEvent" of="m2m:ZigBeeOnOffEvent" href="/gsc/application/app1/containers/feed0/contentInstances/subscription"/>

<op name="zdoBind" in="zigbee:ZdoBindInput" out="obix:nil"

href="/gsc/applications/app1/appCommands/cmd0"/>

<op name="zdoUnbind" in="zigbee:ZdoUnbindInput" out="obix:nil"

href="/gsc/applications/app1/appCommands/cmd1"/>

</obj>

</list>

</obj>

B.3 wM-Bus Area Network object representations

B.3.1 Mapping of native wM-Bus primitive types and units to oBix types and units

	wM-Bus data type
	oBIX type

	8 Bit Integer/Binary
	obix:int

	16 Bit Integer/Binary
	obix:int

	24 Bit Integer/Binary
	obix:int

	32 Bit Integer/Binary
	obix:int

	32 Bit Real
	obix:real

	48 Bit Integer/Binary
	obix:int

	64 Bit Integer/Binary
	obix:int

	wM-Bus unit
	oBIX unit

	Energy (Wh)
	obix:units/watt_hour

obix:units/kilowatt_hour

obix:units/megawatt_hour

	Energy (J)
	obix:units/joule

obix:units/kilojoule

obix:units/megajoule

	Volume (m3)
	obix:units/milliliter

obix:units/liter

obix:units/cubic_millimeter

obix:units/cubic_centimeter

obix:units/cubic_meter

	Mass (kg)
	obix:units/milligram

obix:units/gram

obix:units/kilogram

obix:units/metric_ton

	Power (W)
	obix:units/milliwatt

obix:units/watt

obix:units/kilowatt

obix:units/megawatt

units/gigawatt

	Power (J/h)
	not available

	Volume Flow (m3/h, m3/min, m3/s)
	obix:units/milliliters_per_second

obix:units/liters_per_second

obix:units/liters_per_minute

obix:units/liters_per_hour

obix:units/cubic_meters_per_hour

obix:units/cubic_meters_per_minute

obix:units/cubic_meters_per_second

	Mass flow (kg/h)
	obix:units/kilograms_per_second

obix:units/kilograms_per_minute

obix:units/kilograms_per_hour

obix:units/grams_per_second

obix:units/grams_per_minute

	Temperature (K)
	obix:units/kelvin

	Temperature (°C)
	obix:units/celsius

	Pressure (bar)
	obix:units/millibar

obix:units/bar

B.3.2 wM-Bus Interworking Proxy Application resource content structure

Constants:

The wM-Bus interworking gateway uses the following AN standard.

	Area network standard
	ANStandard extension

	EN 13757 2004
	<obj name="EN_13757_2004"/>

The wM-Bus interworking gateway uses the following AN physical layer.

	Area network profile
	ANProfile extension

	TBD
	<obj name="TBD”/>

oBix contracts:

A wM-Bus InterworkingDescriptor contract is defined for interworking proxies supporting the WM-Bus standard. This contract overloads the M2M InterworkingDescriptor contract and contains no additional mandatory sub-elements.

The wM-Bus InterworkingDescriptor contract uses the http://uri.etsi.org/m2m/wmbus/obix namespace.

<obj href="wmbus:InterworkingDescriptor" is="m2m:InterworkingDescriptor"

xmlns="http://obix.org/ns/wsdl/1.1"

 xmlns:m2m="http://uri.etsi.org/m2m/obix"

xmlns:wmbus="http://uri.etsi.org/m2m/wmbus/obix">

</obj>

Representation example

GET /gsc/applications/ipu0/containers/descriptor/contentInstances/last/content

<obj is="wmbus:InterworkingDescriptor">

<str name=”interworkingProxyID” val="Text for correlation purpose"/>

<list name="supportedTechnologies">

<obj>

<enum name="anStandard" val="EN_13757_2004"/>

</obj>

</list>

<list name="networks" of="obix:ref m2m:NetworkDescriptor"/>

<ref href="/gsc/applications/nwk0/containers/descriptor/contentInstances/last/content/"/>

</list>

</obj>
B.3.3 WM-Bus Network resource content structure

oBix contracts :

A WM-Bus NetworkDescriptor contract is defined for interworking proxies supporting the WM-Bus standard. This contract overloads the M2M NetworkDescriptor contract and contains the following additional mandatory sub-elements:

· “rfcChannel” : The RF channel (between 1 and 12) used by the wM-Bus master.

· "rfPower": The RF transmission power (-5;0;+5;7;10) used by the wM-Bus master.
· “operatingModel” : The operating model (R2 ; S1 ; S1-m ; S2 ; T1 ; T2) used by the wM-Bus master.

· "manufacturerID": Manufacturer ID of the master (provided as a 3 digits string).

· " identificationNumber": Identification number of the master (provided as a 4 bytes hexadecimal code).
· "version": Version of the master (between 0 and 255).
The WM-Bus NetworkDescriptor contract uses the http://uri.etsi.org/m2m/wmbus/obix namespace.

<obj href="wmbus:NetworkDescriptor" is="m2m:NetworkDescriptor"

xmlns="http://obix.org/ns/wsdl/1.1" xmlns:m2m="http://uri.etsi.org/m2m/obix"

xmlns:wmbus="http://uri.etsi.org/m2m/wmbus/obix">

<int name="rfcChannel"/>

<str name="rfPower"/>

<str name="operatingModel"/>

<str name="manufacturerID"/>

<str name="identificationNumber"/>

<int name="version"/>

(tbd - add <op> toward retargeted wM-Bus resources – e.g. /wJoin...)
</obj>

Representation example

GET /gsc/applications/nwk0/containers/descriptor/contentInstances/last/content

<obj is="wmbus:NetworkDescriptor">

<str name="networkID" val="Text for correlation purpose"/>

<int name="rfcChannel" val="1"/>

<str name="rfPower" val="+5"/>

<str name="operatingModel" val="R2"/>

<str name="manufacturerID" val="AMB"/>

<str name="identificationNumber" val="0x12131415"/>

<int name="version" val="2"/>

<list name="nodes" of="obix:ref m2m:NodeDescriptor">

<ref href="/gsc/applications/dev0/containers/descriptor/contentInstances/last/content"/>

</list>

<ope name="wmbusJoin" in="wmbus:JoinInput" out="obix:nil"

href="/gsc/applications/nwk0/appCommands/cmd0"/>

</obj>

B.3.4 WM-Bus Device resource content structure

oBix contracts :

An oWM-Bus NodeDescriptor contract is defined for interworking proxies supporting the WM-Bus standard. This contract overloads the M2M NodeDescriptor contract and contains the following additional mandatory sub-elements:

· “type”: wM-Bus type (e.g. Oil, Gas, Water, Other…)

· “aesEnable”: Enable or disable the AES 128 bits encryption

· "aesKey": Value of AES 128 bits encryption (only mandatory when the AES is enable)

· "manufacturerID": Manufacturer ID of the device

· "identificationNumber": Identification number of the device

· "version": Version of the device

· "type" Type of the device (provided as a 1 byte hexadecimal code).

· "status": Last status byte received from the device. The status byte in a bitmap (see EN 13757-3, section 5.9).

The WM-Bus NodeDescriptor contract uses the http://uri.etsi.org/m2m/wmbus/obix namespace.

<obj href="wmbus:NodeDescriptor" is="m2m:NodeDescriptor"

xmlns="http://obix.org/ns/wsdl/1.1" xmlns:m2m="http://uri.etsi.org/m2m/obix">

xmlns:wmbus="http://uri.etsi.org/m2m/wmbus/obix">

<int name="type"/>

<bool name="aesEnable"/>

<str name="aesKey"/>

<str name="manufacturerID"/>

<str name="identificationNumber"/>

<int name="version"/>

<str name="type"/>

<str name="status"/>

(tbd - add <op> toward retargeted wM-Bus resources – e.g. /wReset...)
</obj>

Representation example

GET /gsc/applications/node0/containers/descriptor/contentInstances/last/content

<obj is="wmbus:NodeDescriptor">

<str name="nodeID" val="Text for correlation purpose"/>

<int name="type" value="2"/>

<bool name="aesEnable" value="true"/>

<str name="aesKey" value="0xabcdef0123456789"/>

<str name="manufacturerID" value="AMB"/>

<str name="identificationNumber" value="0x01020304"/>

<int name="version" value="1"/>

<int name="type" value="0x01"/>

<int name="status" value="0x01"/>

<list name="applications" of="obix:ref m2m:ApplicationDescriptor">

<ref href="/gsc/applications/app0/containers/descriptor/contentInstances/last/content/"/>

</list>

<ope name="wmReset" in="wmbus:ResetInput" out="obix:nil"/

href="/gsc/applications/node0/appCommands/cmd0"/>

</obj>

B.3.5 WM-Bus Application resource content structure

oBix contracts:

A WM-Bus AppplicationDescriptor contract is defined for interworking proxies supporting the WM-Bus standard. This contract overloads the M2M ApplicationDescriptor contract and contains no additional mandatory sub-elements.

The WM-Bus ApplicationDescriptor contract uses the http://uri.etsi.org/m2m/wmbus/obix namespace.

<obj href="wmbus:AppDescriptor" is="m2m:ApplicationDescriptor"

xmlns="http://obix.org/ns/wsdl/1.1" xmlns:m2m="http://uri.etsi.org/m2m/obix">

xmlns:wmbus="http://uri.etsi.org/m2m/wmbus/obix">

 </obj>

B.3.6 WM-Bus profile (Interface) resource content structure

A WM-Bus InterfaceDescriptor contract is defined for interworking proxies supporting the WM-Bus standard. This contract overloads the M2M InterfaceDescriptor contract and contains no additional mandatory sub-elements
A WM-Bus application has always only one interface.

The WM-Bus InterfaceDescriptor contract uses the http://uri.etsi.org/m2m/wmbus/obix namespace.

<obj href="wmbus:InterfaceDescriptor" is="m2m:InterfaceDescriptor"

xmlns="http://obix.org/ns/wsdl/1.1" xmlns:m2m="http://uri.etsi.org/m2m/obix">

xmlns:wM-Bus="http://uri.etsi.org/m2m/wmbus/obix">

</obj>

B.3.7 WM-Bus Point resource content structure

A WM-Bus Point contract is defined for interworking proxies supporting the WM-Bus standard. This contract overloads the M2M Point contract and contains the following optional sub-elements:

· “dif” : wM-Bus native Data Information Field (DIF). The DIF contents the Function Field and the Data Field. The Function Field gives the type of data (e.g. Instantaneous, Minimum…). The data field shows how the data shall be interpreted (e.g. 8 Bit Integer/Binary, 16 Bit Integer/Binary…).

· “vif” : wM-Bus Value Information Block (VIF). The VIF contents the Unit and multiplier Field. The Unit and multiplier Filed gives the type of the data (e.g. Energy, Power…) and the coding range (e.g. kwh, mwh…)

· “data” : wM-Bus native DATA value (hexadecimal encoding).

The WM-Bus Point contract uses the http://uri.etsi.org/m2m/wmbus/obix namespace.

<obj href="wmbus:Point" is="m2m:Point"

xmlns="http://obix.org/ns/wsdl/1.1" xmlns:m2m="http://uri.etsi.org/m2m/obix">

xmlns:wM-Bus="http://uri.etsi.org/m2m/wmbus/obix">

<int name="dif"/>

<int name="vif"/>

<str name="data"/>

</obj>

B.3.8 WM-Bus Application representation examples

Representation example (an electric meter)

This sample shows an application where mirroring and retargeting have been mixed. In this sample, the GIP has been configured to report the current summation (kwh) of this application in a M2M container.

GET /gsc/applications/app0/containers/descriptor/contentInstances/last/content

<obj is="wmbus:ApplicationDescriptor">

<str name="applicationID" val="Text for correlation purpose"/>

<list name="interfaces" of="m2m:InterfaceDescriptor">

<obj is="wmbus:Meter wmbus:InterfaceDescriptor">

<str name="interfaceID" val="Text for correlation purpose"/>

<ref name="indexSummation" href="/gsc/application/app0/containers/point0/contentInstances/last/content is="wmbus:Point"/>

</obj>

</list>

</obj>

GET /gsc/application/app0/containers/point0/contentInstances/last/content

<real name="indexSummation" val="7" unit="obix:units/kilowatt_hour" is="wmbus:Point"/>

B.4 XXX Area Network object representations

Annex C:
Example of Interworking Using Containers and Subscriptions
The following call flows illustrate interworking a SEP2 device application and SEP2 network application to one another via ETSI M2M NSCL, DSCL and the interworking proxy (xIP).

In this example, the SEP2 device application hosts its own SEP2 compliant resource structure. The SEP2 device application is interworked with an ETSI M2M DSCL using an ETSI M2M device interworking proxy (DIP). The high level procedures / steps involved in interworking with a SEP2 Device and Application are outlined below:

1. The DIP first discovers the SEP2 device application and its resources and then performs an ETSI M2M registration to the DSCL on behalf of the SEP2 device application.

2. The DSCL in turn performs a SCL registration to the NSCL.

3. The SEP2 NA supports ETSI M2M functionality that it uses to perform ETSI M2M registration to the NSCL.

4. The SEP2 NA creates a M2M container resource in the NSCL which is then announced to the DSCL. This container is used by the NA to post SEP2 commands for the SEP2 device application.

5. The DIP discovers the announced container in the DSCL and creates a subscription to the corresponding container residing in the NSCL.

6. The DIP configures the ‘contact’ attribute of this subscription with a URI of a resource residing in the interworking function (which the interworking function maps to a corresponding SEP2 device application resource).

7. Whenever the NA posts a new SEP2 command to the container, the NSCL generates a notification directly to the interworking function.

8. The interworking function forwards the SEP2 command to the SEP2 device application resource.

9. The SEP2 device application processes the SEP2 command.

The following ETSI M2M services are captured in the call flows below:

1. DIP registers to DSCL on behalf of SEP2 application

2. M2M/SEP2 NA registers to NSCL

3. NSCL announces NA to DSCL

4. DIP discovers announced NA via DSCL

5. NA creates container in NSCL

6. NSCL announces container to DSCL

7. DIP discovers announced container in DSCL

8. DIP subscribes to remote container in NSCL on behalf of SEP2 device application and configures contact attribute with address of a DIP resource (which it maps internally to a SEP2 resource)

9. NA updates NSCL container with SEP2 command

10. NSCL sends notification to DIP resource

11. DIP extracts SEP2 command from M2M notification

12. DIP forwards SEP2 command to corresponding SE2 resource

13. SEP2 device application receives SEP2 command and processes it

C.1
NA/DA Registration to NSCL/DSCL

The following is summary of the steps illustrated in Figure 1:

· DSCL registers with NSCL

· DIP registers to DSCL on behalf of SEP2 application

· M2M/SEP2 NA registers to NSCL and NA is announced to DSCL

[image: image8.emf]POST /dscl/applications

HOST: <DSCL’s IP Address>:<Port>

RESPONSE -Created

RESPONSE -Created

POST /nscl/applications

HOST: <NSCL’s IP Addr>:<Port>

announceTo=TRUE

Create se2svr resource Create se2clnt resource

Build proxy

registration request

Wait for CoAP

Response

Check CoAP Response

Code to verify se2clnt

resource was created in

DSCL successfully

Configuration of Application

Defined CoAP Header Fields

Wait for CoAP

Response

Check CoAP Response Code to

verify se2srvr resource was created

in NSCL successfully

Configuration of Application

Defined M2M Registration

Request Fields

NA & DA

M2M

Registration

DSCL

M2M Device

Interworking

Proxy

NSCL

M2M/

SEP2 NA

DSCL Registers to NSCL

POST /dscl/scls/nscl/applications

HOST: <DSCL’s IP Address>:<Port>

Create

Announced

se2svr resource

RESPONSE -Created

SEP2 DA

Discover SEP2 DA

Figure 1 – NA and DA Application Registration to NSCL and DSCL

C.2
Discovery of Announced NA Resource
The following is summary of the steps illustrated in Figure 2:

· DIP does a retrieve on the DSCL’s scls collection to discover the NSCL

· DIP does a retrieve on the DSCL’s scls/nscl/applications collection to discover the announced NA (se2svr) application

Note, the DIP does not use the DSCL’s discovery resource since it was not yet supported in this version of the DSCL.

[image: image9.emf]Discover scl list

Discover ‘link’ attribute of ‘se2svr’

announced application resource

Configuration of Application

Defined CoAP Header

Fields

Wait for CoAP

Response

Check CoAP Response Code

to verify GET was successful

and decode CoAP Payload

Configuration of Application Defined

M2M Retrieve Requestt Fields

Start to poll DSCL scls collection

resource to detect announced nscl’s

se2svr resource

Parse discovery response payload’s list of

URIs to detect if <dscl>/scls/<nscl> is

present. If so, then do discovery on

<dscl>/scls/<nscl>/applications collection

Configuration of Application

Defined M2M Retrieve

Requestt Fields

Configuration of Application

Defined CoAP Header Fields

Wait for CoAP

Response

Parse discovery response’s list of

URIs to detect if announced <se2svr>

application resource URI is present. .

Do a discovery on scls collection

GET <dscl>/scls

HOST: <DSCL’s IP Addr>:<Port>

RESPONSE -Valid

list of registeredTo SCLs

RESPONSE -Valid

List of URI of applications

DSCL

M2M Device

Interworking

Proxy

NSCL

M2M /SEP2

NA

Do a discovery on <dscl>/scls/<nscl>/

applications collection

GET <dscl>/scls/<nscl>/applications

HOST: <DSCL’s IP Addr>:<Port>

SEP2 DA

Figure 2 –DIP Discovers Announced NA (se2svr) DSCL Application Resource

C.3
NA Creates M2M Container Resource & Announces it to DSCL
The following is summary of the steps illustrated in Figure 3:

· NA creates a container resource in the NSCL named ‘socket1’

· NA requests that the NSCL announce the ‘socket1’ container resource to the DSCL

[image: image10.emf]POST /nscl/applications/se2srvr/containers

HOST: <NSCL’s IP Addr>:<Port>

RESPONSE -Created

DSCL

SEP2 DA

NSCL

M2M/SEP2

NA

Configuration of Application

Defined CoAP Header Fields

Wait for CoAP

Response

Check CoAP Response Code to verify

CoAP POST Request was successful

Configuration of Application Defined

M2M Create Request Fields

POST /dscl/scls/nscl/

applications/se2srvr/

containers/socket1

HOST: <DSCL’s IP

Address>:<Port>

RESPONSE -Created

PUT /nscl/applications/se2srvr/

containers/socket1

HOST: <NSCL’s IP Addr>:<Port>

announceTo.active = TRUE

RESPONSE -Updated

Configuration of

Application Defined

CoAP Header Fields

Wait for CoAP

Response

Check CoAP Response Code

to verify CoAP PUT Request

was successful

Configuration of

Application Defined M2M

Create Request Fields

NA Create ‘socket1’ container resource in NSCL

NA Requests NSCL to Announce ‘socket1’ container resource to DSCL

NA initiates creation of

SEP2 container resouce

called ‘socket1’

Create ‘socket1’

Resource

Create Announced

socket1 Resource

M2M Device

Interworking

Proxy

Figure 3 – NA Creates M2M Container Resource & Announces it to DSCL

C.4
Subscription to ‘socket1’ NSCL Container Resource
The following is summary of the steps illustrated in Figure 4:

· DIP subscribes to the ‘socket1’ container resource hosted on the NSCL

· The DIP configures the contact attribute of the subscription to an absolute URI of a resource hosted in the interworking function (which it internally maps to a SEP2 resource).

[image: image11.emf]DSCL

M2M Device

Interworking

Proxy

NSCL

M2M/SEP2

NA

Subscribe to NSCL ‘socket1/contentInstances’ Container Resource Collection

Configuration of Application

Defined CoAP Header Fields

Wait for CoAP

Response

Check CoAP Response Code

to verify CREATE was

successful

Configuration of Application Defined

M2M Subscription Request Fields

Type : Async

Contact : Absolute URI of SEP2 DA

POST <NSCL’s IP Addr>:<Port>/

nscl/applications/se2svr/containers/

socket1/contentInstances/

subscriptions

HOST: <DSCL’s IP Addr>:<Port>

RESPONSE -Created

CoAP Proxy

POST nscl/applications/se2svr/

containers/socket1/

contentInstances/subscriptions

HOST: <NSCL’s IP Addr>:<Port>

Create Subscription Resource

RESPONSE -Created

CoAP Proxy

SEP2 DA

Figure 4 – DIP Subscribes to ‘socket1’ NSCL Container Resource

C.5
NSCL Sends Notification to SEP2 DA
The following is summary of the steps illustrated in Figure 5:

· NA creates the SEP2 command

· NA encapsulates the SEP2 command in a ETSI M2M contentInstance and posts it to the ‘socket1’ container resource

· NSCL generates a notification to the subscribed DIP URI

· The notification is coap proxied by DSCL to the DIP

· The DIP extracts the SEP2 command from the M2M notification

· The DIP forwards the SEP2 command to the SEP2 device application

· SEP2 device application processes SEP2 command

[image: image12.emf]DSCL

M2M Device

Interworking

Proxy

NSCL

M2M/

SEP2 NA

Receive CoAP

Request

POST /nscl/applications/se2srvr/

containers/socket1/contentInstances/1

HOST: <NSCL’s IP Addr>:<Port>

RESPONSE -Created

Configuration of

Application Defined

CoAP Header Fields

Wait for CoAP

Response

Check CoAP Response Code to verify

CoAP POST Request was successful

Configuration of Application

Defined M2M Create

Request Fields

NA Creates ‘dr/contentInstances/1’ container resource in NSCL

NSCL Sends Notification of ‘socket1/contentInstances/1’ container resource update

POST <DA IP Addr>:<Port>/<Path>

HOST: <DSCL’s IP Addr>:<Port>

CoAP Proxy

POST <Path>

HOST: <DA’s IP Addr>:<Port>

RESPONSE -Created

RESPONSE -Created

CoAP Proxy

Process

SEP2

Command

Form

SEP2

Command

SEP2 DA

SEP2 Command

Extract SEP2

Command from

M2M Notification

Figure 5 – NSCL Sends Notification to SEP2 DA

Annex D:
Example of Interworking using aPoC
The following call flows illustrate interworking SEP2 area network devices with an ETSI M2M GSCL via aPoC functionality.

In this example, each ZigBee SEP2 device hosts its own SEP2 application having its own locally hosted SEP2 resource structure. In addition, a M2M DA is used to discover and register each SEP2 application to the GSCL. Note that this functionality could reside within the ZigBee Coordinator or the ETSI Gateway as GIP. The high level procedures / steps involved in interworking with a SEP2 area network are outlined below:

1. During registration with the GSCL, the M2M DA configures the ETSI M2M aPoC attribute with the base address of the SEP2 resource structure.
a. By doing this, the M2M DA makes the SEP2 resource structure discoverable and accessible (by GA and NA) via the ETSI M2M GSCL.

2. To assist with discovery, the GSCL announces the registered SEP2 application to the NSCL so that it can be discovered by the remote NA.
3. In this example, the NA and GA are SEP2 aware applications having intelligence of the structure of the SEP2 resource tree hosted on the devices.

a. In addition, the NA and GA are ETSI M2M aware applications that can register and communicate with the NSCL and GSCL, respectively.
4. Using the aPoC functionality of the GSCL, the NA and GA are able to access the SEP2 resource structure of the ZigBee SEP2 applications.
In this example, the following use-cases are shown:

1. GA communicates locally with DA via GSCL aPoC

2. NA communicates remotely with DA via NSCL CoAP Proxying and GSCL aPoC

Through the above use-cases, the following ETSI M2M services were demonstrated:

· DA registration to GSCL

· GSCL aPoC functionality

· GSCL announcement of DA to NSCL

· GA discovery of DA via GSCL

· NA discovery of DA via NSCL

· GA communicating with DA via GSCL aPoC

· NA communicating with DA via GSCL aPoC

D.1
GA and DA Registration and Discovery
The following is summary of the steps illustrated in Figure 1:

· M2M DA discover SEP2 DA

· M2M DA registers to the GSCL on behalf of SEP2 DA

· GA registers to the GSCL

· GA discovers DA by doing a retrieve on the gscl/applications collection

Note, GA does not use the GSCL discovery resource to perform discovery since it was not supported in this version of the GSCL

[image: image13.emf]SEP2

DA

GSCL

SEP2/M2M

GA

Step 2: POST gscl/applications/pwrNodeDA1

HOST: <GSCL IP Address>:<Port>

aPoC = coap://<SEP2 Node IP Address>:<Port>

aPoCPath = /

Step 1: GSCL Registers to

NSCL; NSCL configures GSCL

aPoCHandling as DEEP

Step 4: RESPONSE -Created

Step 7: RESPONSE -Created

Step 3: Create SEP2DA1 application resource

Step 9: Retrieve applications resource

GET gscl/applications

HOST: <GSCL IP Addr>:<Port>

Step 10: RESPONSE -Valid

applications representation containing

list of applications

Step 5: POST gscl/applications/SEP2GA

HOST: <GSCL IP Addr>:<Port>

Step 6: Create SEP2GA application resource

Step 8: Initiate Discovery of SEP2DA resources

Step 12: Retrieve SEP2DA1 resource

GET gscl/applications/SEP2DA1

HOST: <GSCL IP Addr>:<Port>

Step 13: RESPONSE -Valid

SEP2DA1 representation

Step 11: Search and find instance of

SEP2DA1 application

M2M

DA

Discover SEP2 DA

Figure 1 –GA and DA Register to GSCL, GA Discovers DA

D.2
GA and DA Communication via aPoC

The following is summary of the steps illustrated in Figure 2:

· GA reads SEP2 DA resource named ‘ubiami’ by doing a GET using the GSCL aPoC functionality

· GA writes to the SEP2 DA resource named ‘a/relay’ by doing a POST using the GSCL aPoC functionality

[image: image14.emf]SEP2

DA

GSCL

SEP2/M2M

GA

Step 16: M2M aPoC Proxy Request to SEP2DA1

Step 17: GET ubiami

Host:

<SEP2 IP Address>:<Port>

Step 18: RESPONSE -Valid

ubiami resource representation

Step 19: RESPONSE -Valid

ubiami resource representation

Step 15: GET gscl/applications/SEP2DA1/ubiami

HOST: <GSCL IP Addr>:<Port>

Step 14: Build ETSI M2M request to

retrieve representation of SEP2

resource named ‘ubiami’ hosted by

SEP2DA1 using GSCL aPoC

functionality

Step 22: M2M aPoC Proxy Request to SEP2DA1

Step 23: POST a/relay

Host:

<SEP2 IP Address>:<Port>

Step 24: RESPONSE -Created

Step 25: RESPONSE -Created

Step 21: POST gscl/applications/SEP2DA1/a/relay

HOST: <GSCL IP Addr>:<Port>

Step 20: Build ETSI M2M request to

send command to SEP2 resource

named ‘a/relay’ on SEP2DA1 using

GSCL aPoC functionality

aPoC Retrieve Request

aPoC Create Request

M2M

DA

Figure 2 – GA communicates with SEP2 Resources via aPoC
D.3
NA and DA Registration and Discovery
The following is summary of the steps illustrated in Figure 3:

· GSCL registers with the NSCL

· M2M DA discovers SEP2 DA

· M2M DA registers to the GSCL on behalf of SEP2 DA.

· aPoC is configured with absolute URI of topmost resource in SEP2 DA’s resource structure

· GSCL is instructed to announce DA to NSCL

· NA registers to NSCL

· NA discovers announced DA by first doing a retrieve on nscl/scls collection and then another retrieve on nscl/scls/gscl/applications collection

Note, NA does not use the NSCL discovery resource to perform discovery since it was not supported in this version of the NSCL

[image: image15.emf]SEP2

DA

GSCL

SEP2/M2M

GA

Step 2: POST gscl/applications/pwrNodeDA1

HOST: <GSCL IP Address>:<Port>

aPoC = coap://<SEP2 Node IP Address>:<Port>

aPoCPath = /

Step 1: GSCL Registers to

NSCL; NSCL configures GSCL

aPoCHandling as DEEP

Step 4: RESPONSE -Created

Step 7: RESPONSE -Created

Step 3: Create SEP2DA1 application resource

Step 9: Retrieve applications resource

GET gscl/applications

HOST: <GSCL IP Addr>:<Port>

Step 10: RESPONSE -Valid

applications representation containing

list of applications

Step 5: POST gscl/applications/SEP2GA

HOST: <GSCL IP Addr>:<Port>

Step 6: Create SEP2GA application resource

Step 8: Initiate Discovery of SEP2DA resources

Step 12: Retrieve SEP2DA1 resource

GET gscl/applications/SEP2DA1

HOST: <GSCL IP Addr>:<Port>

Step 13: RESPONSE -Valid

SEP2DA1 representation

Step 11: Search and find instance of

SEP2DA1 application

M2M

DA

Discover SEP2 DA

Figure 3 – NA/DA Registration and Discovery
D.4
NA to DA Communication via aPoC
The following is summary of the steps illustrated in Figure 4:

· NA reads SEP2 DA resource named ‘ubiami’ by doing a GET which is CoAP proxied by NSCL and aPoC proxied by GSCL to DA.

· NA writes to the SEP2 DA resource named ‘a/relay’ by doing a POST which is CoAP proxied by NSCL and aPoC proxied by GSCL to SEP2 DA.

[image: image16.emf]SEP2 DA GSCL NSCL

SEP2/M2M

NA

Step 24: M2M proxy request to DA via ‘aPoC’

Step 25: GET ubiami

Host:

<SEP2 IP Address>:<Port>

Step 26: RESPONSE -Valid

Contents of ubiami resource

Step 27: RESPONSE -Valid

Contents of uabiami resource

Step 28: RESPONSE -Valid

Contents of ubiami resource

Step 21: GET <M2M GW IP Address>:<Port>/gscl/

applications/SEP2DA1/ubiami

HOST: <NSCL IP Addr>:<Port>

Step 23: GET gscl/applications/SEP2DA1/ubiami

Host: <GSCL IP Address>:<Port>

Step 20: Build ETSI M2M request

to retrieve SEP2 ‘ubiami’ resource

representation hosted by

SEP2DA1 using GSCL aPoC

functionality

Step 22: CoAP proxy request to GSCL

aPoC Retrieve Request

Step 33: M2M proxy request to DA via ‘aPoC’

Step 34: POST a/relay

Host:

<SEP2 IP Address>:<Port>

Step 35: RESPONSE -Created

Step 36: RESPONSE -Created

Step 37: RESPONSE -Created

Step 30: POST <M2M GW IP Address>:<Port>/gscl/

applications/SEP2DA1/a/relay

HOST: <NSCL IP Addr>:<Port>

Step 32: POST gscl/applications/SEP2Da1/a/relay

Host: <GSCL IP Address>:<Port>

Step 29: Build ETSI M2M request

to send SEP2 command to a/relay

resource on SEP2DA1 using

GSCL aPoC functionality

Step 31: CoAP proxy request to GSCL

aPoC Create Request

M2M

DA

Figure 4 – NA to DA Communication via aPoC

Annex E: dId interface for limited resource devices

E.1.Scope

This annex defines a dId interface for external devices with limited resources. The dId interface applies between a micro GIP (or a micro DA hosted on an external device with limited resources), and an assisting GIP, hosted on a M2M Gateway.

[image: image17]
Figure 1 – dId binding for limited resource devices

The dId interface uses the M2M Area Network modeling defined clause 5.1, with the OASIS.OBIX_1_1 ObjectSemantic defined clause A.2 and detailed in annex B for various HAN technologies.
E.2.dId interface

Query parameters

The dId interface defines a set of query parameters used when a M2M <application> resource is addressed over the assisting GIP. These parameters are defined in subsections E.2.1 to E.2.4. Through these query parameters, the micro GIP or micro DA addresses M2M Area Network objects defined in clause 5.1, through the assisting GIP. The micro GIP/micro DA:

· does not need to know the exact location of the associated M2M resources (which are under control of the M2M Operator)

· does not need to define the exact configuration of the associated M2M resources (this information is provided to the M2M Operator by means of description templates that are out of scope of this specification)

· does not need to fully understand the ETSI M2M resource tree, as the assisting GIP will assist in building the resource tree as defined in TR 102 966.

The intended effect is to obtain a decoupling between the software running on the micro GIP/micro DA (typically a dongle manufactured and sold independently of any specific M2M Operator), and the REST resources that an M2M Operator expects to be published on SCLs of his network. The adaptation is performed by the assisting GIP, under control of the M2M Operator.

Contracts

The dId interface uses the notion of "contract" defined in oBIX. A contract is a template model for an M2M Area Network object. A contract is defined through a <contract-uuid> which is a globally unique identifier, and is referenced in oBIX document through the XML "is" attribute. For instance:

<obj is="nw.manufacturer1.com"/>

M2M Area Network objects (IPU, Network, Device…) can be associated with a contract, by the micro GIP, to instruct the assisting GIP to apply a particular template of ETSI M2M resource tree.

The dId interface does not define the mechanism used by the assisting GIP to apply a particular template associated to a contract on a M2M Area Network object and does not define the format of the template itself. The dId binding only defines the existence of such contracts exchanged between the micro GIP and the assisting GIP and the way of representing contracts in M2M Area Network objects.

E.2.1.Interworking Proxy Unit

An "ipu" query parameter is defined to address an Interworking Proxy Unit: ipu=<ipu-uuid>. A <ipu-uuid> is a globally unique identifier allocated to the IPU by the micro GIP (e.g. zigbee.manufacture1.com).

E.2.1.1.CREATE

An Interworking Proxy Unit is created by triggering a M2M CREATE request to the assisting GIP. The Request URI contains the <ipu-uuid> of the Interworking Proxy Unit and, the request body contains the descriptor of the IPU. The descriptor document is associated with an oBIX contract that identifies the type of IPU (e.g. ipu.manufacturer1.com). According to the level of definition of the contract, the oBIX attributes associated to the descriptor document provided in the request can be partially provided in the request or completely defined by the contract.

The <contact-uuid> provided in the request allows the assisting GIP to derive the ETSI M2M resource tree associated to the IPU in the SCL.

CREATE /applications?ipu=<ipu-uuid>

<obj is="<contract-uuid>">

Interworking Proxy Unit descriptor as defined in annex B

</obj>

Example

CREATE /applications?ipu=zigbee.manufacturer1.com

<obj is="ipu.manufacturer1.com"/>

Upon receiving this request, the assisting GIP derives the ETSI M2M resource tree, by fetching resource description templates associated to the ipu.manufacturer1.com contract. This leads to the creation of the following ETSI M2M resource tree:

· /applications/zigbee.manufacturer1.com

· /applications/zigbee.manufacturer1.com/containers/descriptor

· /applications/zigbee.manufacturer1.com/containers/descriptor/contentInstances/latest

E.2.1.2.RETRIEVE

An Interworking Proxy Unit is retrieved by triggering a M2M RETRIEVE request to the assisting GIP. The Request URI contains the <ipu-uuid>. The request returns the descriptor associated to the IPU as stored in the SCL.

RETRIEVE /applications?ipu=<ipu-uuid>

E.2.1.3.UPDATE

Not applicable.

E.2.1.4.DELETE

An Interworking Proxy Unit is deleted by triggering a M2M DELETE request to the assisting GIP. The Request URI contains the <ipu-uuid>. The request deletes the entire Interworking Proxy Unit representation in the SCL.

DELETE /applications?ipu=<ipu-uuid>

E.2.2.Network

An "nw" query parameter is defined to address an Network: nw=<network-id>. A <network-id> is a unique identifier allocated to a Network by the micro GIP (e.g nw1). A <network-id> is relative to an IPU.

E.2.2.1.CREATE

A Network is created by triggering a M2M CREATE request to the assisting GIP. The Request URI contains the <network-id> of the Network and the <ipu-uuid> of the associated Interworking Proxy Unit. The request body contains the descriptor of the Network. The descriptor document is associated with an oBIX contract that identifies the type of Network (e.g. nw.manufacturer1.com). According to the level of definition of the contract, the oBIX attributes associated to the descriptor document can be partially provided in the request or completed defined by the contract.

The <contact-uuid> provided in the request allows the assisting GIP to derive the ETSI M2M resource tree associated to the Network in the SCL.

CREATE /applications?ipu=<ipu-uuid>&nw=<network-id>

<obj is="<contract-uuid>">

Network descriptor as defined in annex B

</obj>

As defined annex B, the Interworking Proxy Unit descriptor includes the list of networks. If the list of networks ("networks" attribute) is provided by the micro GIP, when the Interworking Proxy Unit is created, the list of networks is updated by the micro GIP. If the list of networks is not provided, the list of networks is updated by the assisting GIP.

Example

CREATE /applications?ipu=zigbee.manufacturer1.com&nw=nw1

<obj is="nw.manufacturer1.com"/>

Upon receiving this request, the assisting GIP derives the ETSI M2M resource tree, by fetching resource description templates associated to the nw.manufacturer1.com contract. This leads to the creation of the following ETSI M2M resource tree:

· /applications/nw1.zigbee.manufacturer1.com

· /applications/nw1.zigbee.manufacturer1.com/containers/descriptor

· /applications/nw1.zigbee.manufacturer1.com/containers/descriptor/contentInstances/latest

Additionally, if the list of networks is maintained by the assisting GIP, this also leads to the update of the following ETSI M2M resource:

· /applications/zigbee.manufacturer1.com/containers/DESCRIPTOR/contentInstances/latest

E.2.2.1.RETRIEVE

A Network is retrieved by triggering a M2M RETRIEVE request to the assisting GIP. The Request URI contains the <network-id> of the Network and the <ipu-uuid> of the associated Interworking Proxy Unit. The request returns the descriptor associated to the Network as stored in the SCL.

RETRIEVE /applications?ipu=<ipu-uuid>&nw=<network-id>

E.2.2.1.UPDATE

Not applicable.

E.2.2.1.DELETE

An Interworking Proxy Unit is deleted by triggering a M2M DELETE request to the assisting GIP. The Request URI contains the <network-id> of the Network and the <ipu-uuid> of the associated Interworking Proxy Unit. The request deletes the entire Network representation in the SCL.

DELETE /applications?ipu=<ipu-uuid>&nw=<network-id>

E.2.3.Device, Application and Interface

A "node" query parameter is defined to address a Device: node=<node-id>. A <node-id> is a unique identifier allocated to a Device by the micro GIP (e.g mac1). A <node-id> is relative to a Network. An "app" query parameter is defined to address an Application: app=<application-id>. A <application-id> is a unique identifier allocated to an Application by the micro GIP (e.g mainspoweroutlet). A <application-id> is relative to a node. An "itf" query parameter is defined to address an Interface: itf=<interface-id>. A <interface-id> is a unique identifier allocated to an Interface by the micro GIP (e.g simplemetering). A <interface-id> is relative to an Application.

E.2.3.1.CREATE

E.2.3.1.1. Case 1: Define an area network device through a well-known device profile

When the micro GIP is able to associate to the Device a triplet { manufacturer, product, version }, the Device is created by triggering a M2M CREATE request to the assisting GIP. The Request URI contains the <node-id> of the Device, the <network-id> of the associated Network and the <ipu-uuid> of the associated Interworking Proxy Unit. The request body contains the descriptor of the Device. The descriptor document is associated with an oBIX contract that identifies the exact type of the Device (e.g. partnum1.manufacturer1.com). According to the level of definition of the contract, the oBIX attributes associated to the description document can be partially provided in the request or completed defined by the contract.

The <contract-uuid> provided in the request allows the assisting GIP to derive the ETSI M2M resource tree associated to the Device and associated to each Application of the Device in the SCL.

CREATE /applications?ipu=<ipu-uuid>&nw=<network-id>&node=<node-id>

<obj is="<contract-uuid>">

Device descriptor as defined in annex B

</obj>

As defined annex B:

· The Network descriptor includes the list of nodes. If the list of nodes ("nodes" attribute) is provided by the micro GIP, when the Network is created, the list of nodes is updated by the micro GIP. If the list of nodes is not provided, the list of nodes is updated by the assisting GIP.

· The same consideration applies for the list of applications in the Device descriptor, and the list of interfaces in the Application descriptor. Typically in this case 1 the list of applications and the list of interface are not provided by the micro GIP.

Example

CREATE /applications?ipu=zigbee.manufacturer1.com&nw=nw1&node=mac1

<obj is="partnum1.manufacturer1.com"/>

Upon receiving this request, the assisting GIP derives the ETSI M2M resource tree of the Device, and the ETSI M2M resource tree of each Application hosted by the Device, by fetching resource description templates associated to the partnum1.manufacturer1.com contract. This leads to the creation of the following ETSI M2M resource tree (in this example we assume that Interface descriptors are embedded in the Application descriptor):

· /applications/mac1.nw1.zigbee.manufacturer1.com

· /applications/mac1.nw1.zigbee.manufacturer1.com/containers/descriptor

· /applications/mac1.nw1.zigbee.manufacturer1.com/containers/descriptor/contentInstances/latest

· /applications/mainspoweroutlet.mac1.nw1.zigbee.manufacturer1.com

· /applications/mainspoweroutlet.mac1.nw1.zigbee.manufacturer1.com/containers/descriptor

· /applications/mainspoweroutlet.mac1.nw1.zigbee.manufacturer1.com/containers/descriptor/contentInstances/latest

Additionally, if the list of nodes is maintained by the assisting GIP, this also leads to the update of the following ETSI M2M resource:

· /applications/nw1.zigbee.manufacturer1.com/containers/DESCRIPTOR/contentInstances/latest

E.2.3.1.2. Case 2: Define an area network device through a set of well-known device application profiles

When the micro GIP is not able to determine the exact type of the Device, but it able to associate to each Application hosted by the Device an exact Application type, the Device is created by triggering a M2M CREATE request to the assisting GIP. The Request URI contains the <node-id> of the Device, the <network-id> of the associated Network and the <ipu-uuid> of the associated Interworking Proxy Unit. The request body contains the descriptor of the Device. The descriptor document is associated with an oBIX contract that identifies the generic type of the Device (e.g. dev.manufacturer1.com). The descriptor document also contains the list of Applications hosted by the Device, where each Application is associated with an oBIX contract that identifies the exact type of the Application (e.g. mainspoweroutlet.manufacturer1.com). According to the level of definition of the contract, another oBIX attributes associated to the description document can be partially provided in the request or completely defined by the contract.

The Device Type <contract-uuid> provided in the request allows the assisting GIP to derive the ETSI M2M resource trees associated to the Device, and the Application Type <contract-uuid> provided in the request allows the assisting GIP to derive the ETSI M2M resource trees associated to each Application hosted by the Device.

CREATE /applications?ipu=<ipu-uuid>&nw=<network-id>&node=<node-id>

<obj is="<contract-uuid>">

Device descriptor as defined in annex B (where the "applications" attribute is always provided)

<list name="applications">

<ref href="<application-id>" is="<contract-uuid>"/>

</list>

</obj>

As defined annex B:

· The Network descriptor includes the list of nodes. If the list of nodes ("nodes" attribute) is provided by the micro GIP, when the Network is created, the list of nodes is updated by the micro GIP. If the list of nodes is not provided, the list of nodes is updated by the assisting GIP.

· The same consideration applies for the list of applications in the Device descriptor, and the list of interfaces in the Application descriptor. Typically in this case 2 the list of applications is provided by the micro GIP and the list of interfaces is not provided by the micro GIP.
Example

CREATE /applications?ipu=zigbee.manufacturer1.com&nw=nw1&node=mac1

<obj is="dev.manufacturer1.com">

<list name="applications">

<ref href="mainspoweroutlet" is="mainspoweroutlet.manufacturer1.com"/>

</list>

</obj>

Upon receiving this request, the assisting GIP derives the ETSI M2M resource tree of the Device, and the ETSI M2M resource tree of each Application hosted by the Device, by fetching resource description templates associated to the dev.manufacturer1.com contract and the mainspoweroutlet.manufacturer1.com contract. This leads to the creation of the following ETSI M2M resource tree (in this example we assume that Interface descriptors are embedded in the Application descriptor):

· /applications/mac1.nw1.zigbee.manufacturer1.com

· /applications/mac1.nw1.zigbee.manufacturer1.com/containers/descriptor

· /applications/mac1.nw1.zigbee.manufacturer1.com/containers/descriptor/contentInstances/latest

· /applications/mainspoweroutlet.mac1.nw1.zigbee.manufacturer1.com

· /applications/mainspoweroutlet.mac1.nw1.zigbee.manufacturer1.com/containers/descriptor

· /applications/mainspoweroutlet.mac1.nw1.zigbee.manufacturer1.com/containers/descriptor/contentInstances/latest

Additionally, if the list of nodes is maintained by the assisting GIP, this also leads to the update of the following ETSI M2M resource:

· /applications/nw1.zigbee.manufacturer1.com/containers/DESCRIPTOR/contentInstances/latest

E.2.3.1.3. Case 2 (variant)

As described in the previous section, the case 2 allows the micro GIP to provide the descriptor of the Device but does not allow providing the descriptor of each Application. If the micro GIP needs to provide such descriptors, the following variation can be used.

When the Device is created, the request body still contains the descriptor of the Device but the list of Applications is not provided and therefore will be maintained by the assisting GIP. Each Application hosted by the Device is created by triggering a M2M CREATE request to the assisting GIP. The Request URI contains the <application-id> of the Application, the <node-id> of the associated Device, the <network-id> of the associated Network and the <ipu-uuid> of the associated Interworking Proxy Unit. The request body contains the descriptor of the Application. The descriptor document is associated with an oBIX contract that identifies the exact type of the Application (e.g. mainspoweroutlet.manufacturer1.com).

CREATE /applications?ipu=<ipu-uuid>&nw=<network-id>&node=<node-id>&app=<application-id>

<obj is="<contract-uuid>">

Application descriptor as defined in annex B

</obj>

E.2.3.1.3. Case 3: Define an area network device through a set of well-known interface profiles

When the micro GIP is not able to determine the exact type of the Device and the exact type of Applications, but it able to associate to each Interface of each Application hosted by the Device an exact Interface type, the Device is created by triggering a M2M CREATE request to the assisting GIP. The Request URI contains the <node-id> of the Device, the <network-id> of the associated Network and the <ipu-uuid> of the associated Interworking Proxy Unit. The request body contains the descriptor of the Device. The descriptor document is associated with an oBIX contract that identifies the generic type of the Device (e.g. dev.manufacturer1.com). The descriptor document does not contain the list of Applications hosted by the Device. According to the level of definition of the contract, another oBIX attributes associated to the description document can be partially provided in the request or completely defined by the contract.

The Device Type <contract-uuid> provided in the request allows the assisting GIP to derive the ETSI M2M resource trees associated to the Device.

CREATE /applications?ipu=<ipu-uuid>&nw=<network-id>&node=<node-id>

<obj is="<contract-uuid>">

Device descriptor as defined in annex B (where the "applications" attribute is not provided)

</obj>

Each Application hosted by the Device is created by triggering a M2M CREATE request to the assisting GIP. The Request URI contains the <application-id> of the Application, the <node-id> of the associated Device, the <network-id> of the associated Network and the <ipu-uuid> of the associated Interworking Proxy Unit. The request body contains the descriptor of the Application. The descriptor document is associated with an oBIX contract that identifies the generic type of the Application (e.g. app.manufacturer1.com). The descriptor document also contains the list of Interfaces hosted by the Application, where each Interface is associated with an oBIX contract that identifies the exact type of the Interface (e.g. simplemetering.manufacturer1.com). According to the level of definition of the contract, another oBIX attributes associated to the description document can be partially provided in the request or completely defined by the contract.

The Application Type <contract-uuid> provided in the request allows the assisting GIP to derive the ETSI M2M resource trees associated to the Application, and the Interface Type <contract-uuid> provided in the request allows the assisting GIP to derive the ETSI M2M resource trees associated to each Interface hosted by the Application.

CREATE /applications?ipu=<ipu-uuid>&nw=<network-id>&node=<node-id>&app=<application-id>

<obj is="<contract-uuid>">

Application descriptor as defined in annex B (where the "interfaces" attribute is always provided)

<list name="interfaces">

<ref href="<interface-id>" is="<contract-uuid>"/>

</list>

</obj>

As defined annex B:

· The Network descriptor includes the list of nodes. If the list of nodes ("nodes" attribute) is provided by the micro GIP, when the Network is created, the list of nodes is updated by the micro GIP. If the list of nodes is not provided, the list of nodes is updated by the assisting GIP.

· The same consideration applies for the list of applications in the Device descriptor, and the list of interfaces in the Application descriptor. Typically in this case 4 the list of applications is not provided by the micro GIP and the list of interfaces is provided by the micro GIP.

Example

CREATE /applications?ipu=zigbee.manufacturer1.com&nw=nw1&node=mac1

<obj is="dev.manufacturer1.com"/>

Upon receiving this request, the assisting GIP derives the ETSI M2M resource tree of the Device, by fetching resource description templates associated to the dev.manufacturer1.com contract. This leads to the creation of the following ETSI M2M resource tree:

· /applications/mac1.nw1.zigbee.manufacturer1.com

· /applications/mac1.nw1.zigbee.manufacturer1.com/containers/descriptor

· /applications/mac1.nw1.zigbee.manufacturer1.com/containers/descriptor/contentInstances/latest

Additionally, if the list of nodes is maintained by the assisting GIP, this also leads to the update of the following ETSI M2M resource:

· /applications/nw1.zigbee.manufacturer1.com/containers/DESCRIPTOR/contentInstances/latest

CREATE /applications?ipu=zigbee.manufacturer1.com&nw=nw1&node=mac1&app=app1

<obj is="app.manufacturer1.com">

<list name="interfaces">

<ref href="simplemetering" is="simplemetering.manufacturer1.com"/>

</list>

</obj>

Upon receiving this request, the assisting GIP derives the ETSI M2M resource tree of the Application, and the ETSI M2M resource tree of each Interface hosted by the Application, by fetching resource description templates associated to the the app.manufacturer1.com contract and the simplemetering.manufacturer1.com contract. This leads to the creation of the following ETSI M2M resource tree (in this example we assume that Interface descriptors are embedded in the Application descriptor):

· /applications/app1.mac1.nw1.zigbee.manufacturer1.com

· /applications/app1.mac1.nw1.zigbee.manufacturer1.com/containers/descriptor

· /applications/app1.mac1.nw1.zigbee.manufacturer1.com/containers/descriptor/contentInstances/latest

Additionally, because the list of applications is maintained by the assisting GIP, this also leads to the update of the following ETSI M2M resource:

· /applications/mac1.nw1.zigbee.manufacturer1.com/containers/DESCRIPTOR/contentInstances/latest

E.2.3.1.3. Case 3 (variant)

As described in the previous sections, the case 3 allows the micro GIP to provide the descriptor of the Device, the descriptor of each Application but does not allow providing the descriptor of each Interface. If the micro GIP needs to provide such descriptors, the following variation can be used.

When the Application is created, the request body still contains the descriptor of the Application but the list of Interfaces is not provided and therefore will be maintained by the assisting GIP. Each Interface hosted by the Application is created by triggering a M2M CREATE request to the assisting GIP. The Request URI contains the <interface-id> of the Interface, the <application-id> of the associated Application, the <node-id> of the associated Device, the <network-id> of the associated Network and the <ipu-uuid> of the associated Interworking Proxy Unit. The request body contains the descriptor of the Interface. The descriptor document is associated with an oBIX contract that identifies the exact type of the Interface (e.g. simplemetering.manufacturer1.com).

CREATE /applications?ipu=<ipu-uuid>&nw=<network-id>&node=<node-id>&app=<application-id>&itf=<interface-id>

<obj is="<contract-uuid>">

Interface descriptor as defined in annex B

</obj>

E.2.3.1.RETRIEVE

A Device is retrieved by triggering a M2M RETRIEVE request to the assisting GIP. The Request URI contains the <node-id> of the Device, the <network-id> of the associated Network and the <ipu-uuid> of the associated Interworking Proxy Unit. The request returns the descriptor associated to the Device as stored in the SCL.

RETRIEVE /applications?ipu=<ipu-uuid>&nw=<network-id>&node=<noted-id>

An Application is retrieved by triggering a M2M RETRIEVE request to the assisting GIP. The Request URI contains the <application-id> of the Application, the <node-id> of the associated Device, the <network-id> of the associated Network and the <ipu-uuid> of the associated Interworking Proxy Unit. The request returns the descriptor associated to the Application as stored in the SCL.

RETRIEVE /applications?ipu=<ipu-uuid>&nw=<network-id>&node=<noted-id>&app=<application-id>

An Interface is retrieved by triggering a M2M RETRIEVE request to the assisting GIP. The Request URI contains the <interface-id> of the Interface, the <application-id> of the associated Application, the <node-id> of the associated Device, the <network-id> of the associated Network and the <ipu-uuid> of the associated Interworking Proxy Unit. The request returns the descriptor associated to the Interface as stored in the SCL.

RETRIEVE /applications?ipu=<ipu-uuid>&nw=<network-id>&node=<noted-id>&app=<application-id>&itf=<interface-id>

E.2.3.1.UPDATE

Not applicable.

E.2.3.1.DELETE

A Device is deleted by triggering a M2M DELETE request to the assisting GIP. The Request URI contains the <node-id> of the Device, the <network-id> of the associated Network and the <ipu-uuid> of the associated Interworking Proxy Unit. The request deletes the entire Device representation in the SCL.

DELETE /applications?ipu=<ipu-uuid>&nw=<network-id>&node=<noted-id>

An Application is deleted by triggering a M2M DELETE request to the assisting GIP. The Request URI contains the <application-id> of the Application, the <node-id> of the associated Device, the <network-id> of the associated Network and the <ipu-uuid> of the associated Interworking Proxy. The request deletes the entire Application representation in the SCL.

DELETE /applications?ipu=<ipu-uuid>&nw=<network-id>&node=<noted-id>&app=<application-id>

An Interface is deleted by triggering a M2M DELETE request to the assisting GIP. The Request URI contains the <interface-id> of the Interface, the <application-id> of the associated Application, the <node-id> of the associated Device, the <network-id> of the associated Network and the <ipu-uuid> of the associated Interworking Proxy Unit. The request deletes the entire Interface representation in the SCL.

DELETE /applications?ipu=<ipu-uuid>&nw=<network-id>&node=<noted-id>&app=<application-id>&itf=<interface-id>

E.2.4.Data Field reporting

A "data" query parameter is defined to address a Data Field: data=<data-id>. A <data-id> is a unique identifier allocated to a Data Field by the micro GIP (e.g data1). A <data-id> is relative to an Interface.

E.2.4.1.CREATE

A change of value (CoV) associated to a Data Field is reported by triggering a M2M CREATE request to the assisting GIP. The Request URI contains the <data-id> of the Data Field, the <interface-id> of the associated Interface, the <application-id> of the associated Application, the <node-id> of the associated Device, the <network-id> of the associated Network and the <ipu-uuid> of the associated Interworking Proxy Unit. The request body contains the value associated to the Data Field. Data field value documents are not changed by the assisting GIP, leaving all flexibility to the interworking device designer to represent any protocol specificity or innovation.
CREATE /applications?ipu=<ipu-uuid>&nw=<network-id>&node=<noted-id>&app=<application-id>&itf=<interface-id>&data=<date-id>

Data field value

Example

CREATE /applications?ipu=zip.manufacturer1.com&nw=nw1&node=mac1;app=app1;itf=simplemetering;data=data1

<real val="12"/>

Upon receiving this request, the assisting GIP must select an ETSI M2M <container> resource where the Data Field value must be saved. This is typically done through templates of ETSI M2M resource tree associated to oBIX contract of related M2M Area Network objects (Device, Application, Interface…). The way used by the assisting GIP to create and to configure the ETSI M2M <container> resource when the related M2M Area Network object is created, and the way used by the assisting GIP to select the ETSI M2M <container> resource when the Data Field value is reported is out of scope of this document.

For instance (in this example we assume that Interface descriptors are embedded in the Application descriptor), the selected ETSI M2M <container> resource can be a dedicated container:

· /applications/app1.mac1.nw1.zigbee.manufacturer1.com/containers/data1.simplemetering /contentInstances/latest

Or can be the Interface descriptor of the related M2M Area Network object:

· /applications/app1.mac1.nw1.zigbee.manufacturer1.com/containers/descriptor/contentInstances/latest

E.2.4.1.RETRIEVE

Not applicable.

E.2.4.1.UPDATE

Not applicable.

E.2.4.1.DELETE

Not applicable.

E.2.5.Method retargeting

Methods use the applicative retargeting mechanism defined in TR 102 690. Therefore the micro GIP must expose a resource, accessible to assisting GIP, to enable Methods retargeting from the assisting GIP to the micro GIP. When the micro GIP supports Methods processing, the micro GIP exposes an "apoc" resource: /apoc.

In addition, a "meth" query parameter is defined to address a Method: meth=<meth-id>. A <meth-id> is a unique identifier allocated to a Method by the micro GIP (e.g toggle). A <meth-id> is relative to an Interface.

E.2.5.1.CREATE

A Method is invoked by triggering a M2M CREATE request to the micro GIP. The Request URI contains the <meth-id> of the Method, the <interface-id> of the associated Interface, the <application-id> of the associated Application, the <node-id> of the associated Device, the <network-id> of the associated Network and the <ipu-uuid> of the associated Interworking Proxy Unit. The request body contains the value of IN parameters. The response body contains the value of OUT parameters. Method IN/OU parameter documents are not changed by the assisting GIP, leaving all flexibility to the interworking device designer to represent any protocol specificity or innovation.

The processing of the Method is assumed synchronous and therefore associated to a single transaction of the underlying bearer (for instance a single CoAP request/response transaction).
CREATE /apoc?ipu=<ipu-uuid>&nw=<network-id>&node=<node-id>&app=<application-id>&itf=<interface-id>&meth=<method-id>

Optional IN parameter

Response

Optional OUT parameter

Example

CREATE /apoc?ipu=zip.manufacturer1.com&nw=nw1&node=mac1;app=app1;itf=onff;meth=toggle

Upon receiving this request, the micro GIP processes the Method. The way used by the micro GIP to correlate the Method with a M2M Area Network object is out of scope of this document.

E.2.3.1.1. IPU, Network, Device and Application level Methods

In some cases, the micro GIP can also support Methods addressing the IPU, the Network, a Device or an Application. In this case, the Method processing described in the previous clause is re-used. However some query parameters are not provided according to the targeted scope.

Application Methods: The Request URI contains the <meth-id> of the Method, the <application-id> of the associated Application, the <node-id> of the associated Device, the <network-id> of the associated Network and the <ipu-uuid> of the associated Interworking Proxy Unit.

Device Methods: The Request URI contains the <meth-id> of the Method, the <node-id> of the associated Device, the <network-id> of the associated Network and the <ipu-uuid> of the associated Interworking Proxy Unit.

Network Methods: The Request URI contains the <meth-id> of the Method, the <network-id> of the associated Network and the <ipu-uuid> of the associated Interworking Proxy Unit.

IPU Methods: The Request URI contains the <meth-id> of the Method and the <ipu-uuid> of the associated Interworking Proxy Unit.

E.2.4.1.RETRIEVE

Not applicable.

E.2.4.1.UPDATE

Not applicable.

E.2.4.1.DELETE

Not applicable.

E.2.6.Data Field retargeting

When supported by the micro GIP, the Data Field retargeting uses the same mechanism as defined for Methods retargeting.

E.2.6.1.CREATE

Not applicable.

E.2.5.1.RETRIEVE

A Data Field retrieval is invoked by triggering a M2M RETRIEVE request to the micro GIP. The Request URI contains the <data-id> of the Data Field, the <interface-id> of the associated Interface, the <application-id> of the associated Application, the <node-id> of the associated Device, the <network-id> of the associated Network and the <ipu-uuid> of the associated Interworking Proxy Unit. The request body is empty. The response body contains the Data field value. Data field value documents are not changed by the assisting GIP, leaving all flexibility to the interworking device designer to represent any protocol specificity or innovation.

RETRIEVE /apoc?ipu=<ipu-uuid>&nw=<network-id>&node=<node-id>&app=<application-id>&itf=<interface-id>&data=<data-id>

Response

Data field value

E.2.4.1.UPDATE

A Data Field update is invoked by triggering a M2M UPDATE request to the micro GIP. The Request URI contains the <data-id> of the Data Field, the <interface-id> of the associated Interface, the <application-id> of the associated Application, the <node-id> of the associated Device, the <network-id> of the associated Network and the <ipu-uuid> of the associated Interworking Proxy Unit. The request body contains the Data field value (the content specification is out of scope of this document). The response body may also contain a body.

UPDATE /apoc?ipu=<ipu-uuid>&nw=<network-id>&node=<node-id>&app=<application-id>&itf=<interface-id>&data=<data-id>

Data field value

Response

Optional body

E.2.4.1.DELETE

Not applicable.

E.3.CoV configuration

M2M Area Network appliances need to be configured to properly set the change of value reporting settings. This is especially required to minimize battery consumption and network traffic for wireless sensors by indirectly setting the wakeup frequency of the wireless sensor. This is also required to save disk space on the SCL. When the micro GIP supports configuration of change of value reporting, the micro GIP exposes a "conf" resource: /conf.

This resource, exposed by the micro GIP, is used by the assisting GIP to configure the micro GIP, by sending a XML configuration document: <conf>.
The assisting GIP will attempt to UPDATE the <conf> document to this URI. Due to the limited resources, not all micro GIP are expected to support such reporting configuration file. In this case the micro GIP rejects the attempt of the assisting GIP to UPDATE the reporting configuration document with error code 404 (Not Found). Such simple micro GIP may have their own internal logic to configure reporting. The assisting GIP must therefore be prepared to receive unsolicited reports from the micro GIP.
E.3.1.XML <conf> element

The <conf> element is the root element, sent by the assisting GIP, to configure the micro GIP. The element is associated to a <ipu-uuid> IPU (i.e. a given micro GIP can handle several IPU):

<conf ipu="<ipu-uuid>">

...

</conf>

E.3.2.XML <itf> element

The <conf> element contains a list of Interfaces for which a CoV reporting is configured. Each Interface is associated with a <itf> element and is identified through a <filter>. A <filter> allows identifying a particular type of Interface. The type of Interface expressed through a <filter>, can apply to the entire M2M Area Network (e.g. */itf/simplemetering), can apply to a given type of Application on the M2M Area Network (e.g. */app/mainspoweroutlet/itf/simplemetering), can apply to a given type of Device on the M2M Area Network (e.g. dev/partnum1/*/itf/simplemetering), or can apply to any other combination supported by the micro GIP. The exact syntax used to express a <filter> is not defined by this document and is implementer dependent:

<itf filter="<filter>">

...

</itf>

E.3.3XML <data> element

The <itf> element contains a list of Data Fields for which a CoV reporting is configured. Each Data Field is associated with a <data> element and is identified through a <data-id>:

<data id="<data-id>" .../>

E.3.3.1.CoV configuration

When the Data Field is associated with a static value (e.g. an identifier, a serial number, a software version…), the <data> element does not define additional attribute, and the Data Field value is reported only once by the micro GIP:

<data id="<data-id>"/>

When the Data Field is associated with a dynamic value (e.g. a sensor binary output, a sensor analog output…), the <data> element is associated with the following attributes: minInt (optional), maxInt (mandatory), minCOV (mandatory for analog/continous data type):

<data id="<data-id>" [minInt="<duration>"] maxInt="<duration>" [minCOV="<integer or real>"]/>

The time interval between two reports must always be greater than minInt, and smaller than maxInt. <duration> are typically expressed as ISO 8601 durations. When minInt is not specified, no constraint applies to the minimal interval. A minimal COV is mandatory for attribute with an analog/continuous data type (e.g. an analog output). The exact format to express a minCoV is out of scope of this document.

E.3.4 CoV configuration XML schema

<?xml version="1.0" encoding="UTF-8"?>

<schema xmlns="http://www.w3.org/2001/XMLSchema" targetNamespace="http://uri.etsi.org/m2m" xmlns:tns="http://uri.etsi.org/m2m">

 <element name="conf" type="tns:ConfigurationType" />

 <complexType name="ConfigurationType">

 <sequence>

 <element name="itf" type="tns:InterfaceType" minOccurs="1" maxOccurs="unbounded"/>

 </sequence>

 <attribute name="ipu" type="string" use="required"/>

 </complexType>

 <complexType name="InterfaceType">

 <sequence>

 <element name="data" type="tns:DataType" minOccurs="1" maxOccurs="unbounded"/>

 </sequence>

 <attribute name="filter" type="string" use="required"/>

 </complexType>

 <complexType name="DataType">

 <attribute name="id" type="string" use="required"/>

 <attribute name="minInt" type="duration" use="optional"/>

 <attribute name="maxInt" type="duration" use="optional"/>

 <attribute name="minCOV" type="integer" use="optional"/>

 </complexType>

</schema>

E.3.5.Example

Example of configuration, sent to a micro GIP, for a given type of Interface (simplemetering.manufacturer1.com) and a given IPU (zigbee.manufacturer1.com) without constraint on the type of the Application or the type of the Device:

UPDATE /conf

<?xml version="1.0" encoding="UTF-8"?>

<m:conf ipu="zigbee.manufacturer1.com" xmlns:m="http://uri.etsi.org/m2m">

 <itf filter="itf/simplemetering">

 <data id="0x0000" maxInt="PT5M"/>

 <data id="0x0400" maxInt="PT5M"/>

 </itf>

</m:conf>

Example of configuration for a given type of Interface (simplemetering.manufacturer1.com) and a given IPU (zigbee.manufacturer1.com) limited to a given type of Device (partnum1.manufacturer1.com):

UPDATE /conf

<?xml version="1.0" encoding="UTF-8"?>

<m:conf ipu="zigbee.manufacturer1.com" xmlns:m="http://uri.etsi.org/m2m">

 <itf filter="dev/partnum1/*/itf/simplemetering">

 <data id="0x0000" maxInt="PT10S"/>

 <data id="0x0400" maxInt="PT10S"/>

 </itf>

</m:conf>

Example of configuration that defines a default configuration for a given type of Interface (simplemetering.manufacturer1.com), except for a given type of Device (partnum1.manufacturer1.com) which has a specific configuration:

UPDATE /conf

<?xml version="1.0" encoding="UTF-8"?>

<m:conf ipu="zigbee.manufacturer1.com" xmlns:m="http://uri.etsi.org/m2m">

 <itf filter="itf/simplemetering">

 <data id="0x0000" maxInt="PT5M"/>

 <data id="0x0400" maxInt="PT5M"/>

 </itf>

 <itf filter="dev/partnum1/*/itf/simplemetering">

 <data id="0x0000" maxInt="PT10S"/>

 <data id="0x0400" maxInt="PT10S"/>

 </itf>

</m:conf>

E.4.dId over USB

The dId over USB uses mechanisms defined in Annex D (CoAP Binding for M2M REST Resources). However, as defined in the following sub-sections, the USB binding is constrained to take into account specificities introduced by the USB bearer.

E.4.1.Base URI

The USB interface implies a point to point interface between the micro GIP and the assisting GIP (no DNS resolution or IP routing is requested). Therefore URI authorities, representing the micro GIP and the assisting GIP, can be associated to well-known aliases.

Two URI authority aliases are defined, to be used in CoAP requests:

· Micro GIP authority: gip.lan

· Assisting GIP authoriry: proxy.lan

Sample

Sample of CoAP request sent by the micro GIP to the assisting GIP:

POST coap://proxy.lan/applications?ipu=zigbee.manufacturer1.com

<obj is="ipu.manufacturer1.com"/>

Sample of CoAP request sent by the assisting GIP to the micro GIP:

POST coap://gip.lan/apoc?ipu=zip.manufacturer1.com&nw=nw1&node=mac1;app=app1;itf=onff;meth=toggle

E.4.2.Transport over serial link

The serial link is typically provided by USB dongles, which presents at least an interface descriptor advertising one IN data bulk endpoint and one OUT data bulk endpoint.

Sample of USB Descriptor

The following set of descriptors is advertised by FTDI chips commonly used by dongle manufacturers.

	Device Descriptor
	bLength
18
bDescriptorType
1

bcdUSB
2.00

bDeviceClass
0 (DefinedatInterfacelevel)

bDeviceSubClass
0

bDeviceProtocol
0

bMaxPacketSize0
8

idVendor
0x0403(FutureTechnologyDevicesInternational,Ltd)

idProduct
0x6001 (FT232USB-Serial(UART)IC)

bcdDevice
6.00

iManufacturer
1

iProduct
2

iSerial
3

bNumConfigurations
1

	Configuration Descriptor
	bLength
9
bDescriptorType
2

wTotalLength
32

bNumInterfaces
1

bConfigurationValue
1

iConfiguration
0

bmAttributes
0xa0 (BusPowered)

RemoteWakeup

MaxPower
90mA

	Interface Descriptor
	bLength
9
bDescriptorType
4

bInterfaceNumber
0

bAlternateSetting
0

bNumEndpoints
2

bInterfaceClass
255 (VendorSpecificClass)

bInterfaceSubClass
255 (VendorSpecificSubclass)

bInterfaceProtocol
255 (VendorSpecificProtocol)

iInterface
2

	Endpoint Descriptor
	bLength
7
bDescriptorType
5

bEndpointAddress
0x81
Endpoint Number
EP1

Direction

IN

bmAttributes
2

TransferType

Bulk

SynchType

None

UsageType

Data

wMaxPacketSize
0x0040 (1x 64bytes)

bInterval
0

	Endpoint Descriptor
	bLength
7
bDescriptorType
5

bEndpointAddress
0x02
Endpoint Number
EP2

Direction

OUT

bmAttributes
2

TransferType

Bulk

SynchType

None

UsageType

Data

wMaxPacketSize
0x0040 (1x 64bytes)

bInterval
0

Table 1 – Sample of USB descriptor

Serial data transported over USB bulk transfer endpoints are already protected by a CRC16, therefore only a framing and a multiplexing mechanisms are required to transport CoAP data units:

· The framing mechanism allows detecting CoAP data units on the asynchronous link,

· The multiplexing mechanism allows transporting data units associated to other protocols over the asynchronous link (these protocols are out of scope of this document).

Framing and multiplexing:

· SLIP (RFC 1006) is used to frame CoAP data units over USB (UDP/IP headers are not included). A 1-byte header is added in front of the CoAP data unit for multiplexing. The 0x00 header value is defined for CoAP data units. Any other values are reserved for future use.

The protocol stack is illustrated on Figure 2.

[image: image18]
Figure 2: Protocol stack for dId over USB
E.5.dId over IP

The dId binding over IP uses mechanism defined in TS 102 921 Annex D (CoAP Binding for M2M REST Resources).

History

	Document history

	V0.1.1
	September 2011
	First Draft

	V0.1.2
	October 2011
	Added scenarios definition in introduction and Appendix B

	V0.1.3
	March 2012
	Added appendixes C and D and chapter 5.1.3.2 with the implementation profile for UPnP. Modified the definition “Interworking Proxy Unit” into “Interworking Proxy Application”

	V0.2.0
	March 2012
	Added enhancements to Annex B

	V.0.9.0
	May 2013
	Include M2M(13)25_035r2, M2M(13)25_036

	
	
	

	
	
	

	
	
	

2012-03-22
Network�Domain

NA

D

DA

DSCL

dIa

mIa

d

D‘

DA

d

G

GA

dIa

�GSCL

dIa

mId

mId

Legacy case 1

Case 1

Case 2

Legacy case 2

d

D

DA

dIa

�DSCL

Legacy case 3

mId

NSCL

NIP

DIP

GIP

M2M Area Network

M2M Area Network

M2M Area Network

M2M Area Network

IPU

M2M Area Network

1

n

d device

Application

Interface

Data Field

Method

1

1

1

1

1

n

n

n

n

n

<sclBase>

applications

containers

<interworking_application>

<current_status>

descriptor

contentInstances

containers

<networkX>

<current_status>

descriptor

contentInstances

containers

<networkX_deviceY>

<current_status>

descriptor

contentInstances

containers

<networkX_deviceY_applicationZ>

<interfaceW_datafieldN>

contentInstances

Links to the M2M Area Networks controlled by the IPU

Links to the Devices belonging to the M2M Area Network

Links to the Applications belonging to the Device

descriptor

contentInstances

<current_status>

<current_value>

<interfaceW_methodM>

contentInstances

<actual_parameters>

Links to the Interface Data Fields and Methods

latest

latest

latest

latest

latest

latest

Last contentInstance of the container

Last contentInstance of the container

Last contentInstance of the container

Last contentInstance of the container

Last contentInstance of the container

Last contentInstance of the container

Coordinator

(ZC)

Router

(ZR)

Router

(ZR)

Device

(ZED)

Device

(ZED)

Device

(ZED)

Device

(ZED)

Cluster A

 attribute 1

 attribute 2

 command 1

 …

Cluster B

 attribute 1

 attribute 2

 …

Application(s)

Network layer

MAC and physical layer

[image: image20.png]Device (d)

micro GIP

did

micro DA

Device (d)

assisting GIP

dla

GSCL

mid

Gateway (G)

NSCL

[image: image21.jpg]

_1393155554.vsd
Discover scl list

Discover ‘link’ attribute of ‘se2svr’
announced application resource

DSCL

M2M Device Interworking Proxy

NSCL

M2M /SEP2
NA

Do a discovery on scls collection GET <dscl>/scls
HOST: <DSCL’s IP Addr>:<Port>

RESPONSE - Valid
list of registeredTo SCLs

RESPONSE - Valid
List of URI of applications

Configuration of Application Defined CoAP Header Fields

Wait for CoAP Response

Check CoAP Response Code to verify GET was successful and decode CoAP Payload

Configuration of Application Defined M2M Retrieve Requestt Fields

Start to poll DSCL scls collection resource to detect announced nscl’s se2svr resource

 Parse discovery response payload’s list of URIs to detect if <dscl>/scls/<nscl> is present. If so, then do discovery on <dscl>/scls/<nscl>/applications collection

Configuration of Application Defined M2M Retrieve Requestt Fields

Configuration of Application Defined CoAP Header Fields

Wait for CoAP Response

Parse discovery response’s list of URIs to detect if announced <se2svr> application resource URI is present. .

Do a discovery on <dscl>/scls/<nscl>/applications collection
GET <dscl>/scls/<nscl>/applications
HOST: <DSCL’s IP Addr>:<Port>

SEP2 DA

_1393155897.vsd
Subscribe to NSCL ‘socket1/contentInstances’ Container Resource Collection

CoAP Proxy

POST nscl/applications/se2svr/containers/socket1/contentInstances/subscriptions
HOST: <NSCL’s IP Addr>:<Port>

Create Subscription Resource

RESPONSE - Created

CoAP Proxy

DSCL

M2M Device Interworking Proxy

NSCL

M2M/SEP2
NA

POST <NSCL’s IP Addr>:<Port>/nscl/applications/se2svr/containers/socket1/contentInstances/subscriptions
HOST: <DSCL’s IP Addr>:<Port>

RESPONSE - Created

Configuration of Application Defined CoAP Header Fields

Wait for CoAP Response

Check CoAP Response Code to verify CREATE was successful

Configuration of Application Defined M2M Subscription Request Fields
Type : Async
Contact : Absolute URI of SEP2 DA

SEP2 DA

_1393156043.vsd
POST /nscl/applications/se2srvr/containers/socket1/contentInstances/1
HOST: <NSCL’s IP Addr>:<Port>

 RESPONSE - Created

Process SEP2 Command

Configuration of Application Defined CoAP Header Fields

Wait for CoAP Response

NSCL Sends Notification of ‘socket1/contentInstances/1’ container resource update

POST <DA IP Addr>:<Port>/<Path>
HOST: <DSCL’s IP Addr>:<Port>

DSCL

Check CoAP Response Code to verify CoAP POST Request was successful

Configuration of Application Defined M2M Create Request Fields

CoAP Proxy

NA Creates ‘dr/contentInstances/1’ container resource in NSCL

M2M Device Interworking Proxy

CoAP Proxy

NSCL

POST <Path>
HOST: <DA’s IP Addr>:<Port>

 RESPONSE - Created

 RESPONSE - Created

M2M/SEP2 NA

Form SEP2 Command

Receive CoAP Request

SEP2 DA

SEP2 Command

Extract SEP2 Command from M2M Notification

_1393155759.vsd
POST /nscl/applications/se2srvr/containers
HOST: <NSCL’s IP Addr>:<Port>

 RESPONSE - Created

DSCL

SEP2 DA

NSCL

M2M/SEP2 NA

Configuration of Application Defined CoAP Header Fields

Wait for CoAP Response

Check CoAP Response Code to verify CoAP POST Request was successful

Configuration of Application Defined M2M Create Request Fields

POST /dscl/scls/nscl/applications/se2srvr/containers/socket1
HOST: <DSCL’s IP Address>:<Port>

RESPONSE - Created

PUT /nscl/applications/se2srvr/containers/socket1
HOST: <NSCL’s IP Addr>:<Port>
announceTo.active = TRUE

 RESPONSE - Updated

Configuration of Application Defined CoAP Header Fields

Wait for CoAP Response

Check CoAP Response Code to verify CoAP PUT Request was successful

Configuration of Application Defined M2M Create Request Fields

NA Create ‘socket1’ container resource in NSCL

NA Requests NSCL to Announce ‘socket1’ container resource to DSCL

NA initiates creation of SEP2 container resouce called ‘socket1’

Create ‘socket1’ Resource

Create Announced socket1 Resource

M2M Device Interworking Proxy

_1384270418.vsd
SEP2
DA

GSCL

SEP2/M2M
GA

Step 2: POST gscl/applications/pwrNodeDA1
HOST: <GSCL IP Address>:<Port>
aPoC = coap://<SEP2 Node IP Address>:<Port>
aPoCPath = /

Step 1: GSCL Registers to NSCL; NSCL configures GSCL aPoCHandling as DEEP

Step 4: RESPONSE - Created

Step 7: RESPONSE - Created

Step 3: Create SEP2DA1 application resource

Step 9: Retrieve applications resource
GET gscl/applications
HOST: <GSCL IP Addr>:<Port>

Step 10: RESPONSE - Valid
applications representation containing list of applications

Step 5: POST gscl/applications/SEP2GA
HOST: <GSCL IP Addr>:<Port>

Step 6: Create SEP2GA application resource

Step 8: Initiate Discovery of SEP2DA resources

Step 12: Retrieve SEP2DA1 resource
GET gscl/applications/SEP2DA1
HOST: <GSCL IP Addr>:<Port>

Step 13: RESPONSE - Valid
SEP2DA1 representation

Step 11: Search and find instance of SEP2DA1 application

M2M
DA

Discover SEP2 DA

_1393155299.vsd
DSCL

M2M Device
Interworking Proxy

POST /dscl/applications
HOST: <DSCL’s IP Address>:<Port>

 DSCL Registers to NSCL

Create se2svr resource

RESPONSE - Created

RESPONSE - Created

Create se2clnt resource

NSCL

Discover SEP2 DA

Configuration of Application Defined M2M Registration Request Fields

M2M/SEP2 NA

NA & DA
M2M
Registration

POST /nscl/applications
HOST: <NSCL’s IP Addr>:<Port>
announceTo=TRUE

Build proxy registration request

Wait for CoAP Response

Check CoAP Response Code to verify se2clnt resource was created in DSCL successfully

Configuration of Application Defined CoAP Header Fields

Wait for CoAP Response

Check CoAP Response Code to verify se2srvr resource was created in NSCL successfully

POST /dscl/scls/nscl/applications
HOST: <DSCL’s IP Address>:<Port>

Create Announced
se2svr resource

RESPONSE - Created

SEP2 DA

_1384270709.vsd
SEP2
DA

GSCL

SEP2/M2M
GA

Step 2: POST gscl/applications/pwrNodeDA1
HOST: <GSCL IP Address>:<Port>
aPoC = coap://<SEP2 Node IP Address>:<Port>
aPoCPath = /

Step 1: GSCL Registers to NSCL; NSCL configures GSCL aPoCHandling as DEEP

Step 4: RESPONSE - Created

Step 7: RESPONSE - Created

Step 3: Create SEP2DA1 application resource

Step 9: Retrieve applications resource
GET gscl/applications
HOST: <GSCL IP Addr>:<Port>

Step 10: RESPONSE - Valid
applications representation containing list of applications

Step 5: POST gscl/applications/SEP2GA
HOST: <GSCL IP Addr>:<Port>

Step 6: Create SEP2GA application resource

Step 8: Initiate Discovery of SEP2DA resources

Step 12: Retrieve SEP2DA1 resource
GET gscl/applications/SEP2DA1
HOST: <GSCL IP Addr>:<Port>

Step 13: RESPONSE - Valid
SEP2DA1 representation

Step 11: Search and find instance of SEP2DA1 application

M2M
DA

Discover SEP2 DA

_1384194806.vsd
SEP2
DA

GSCL

SEP2/M2M
GA

Step 16: M2M aPoC Proxy Request to SEP2DA1

Step 17: GET ubiami
Host: <SEP2 IP Address>:<Port>

Step 18: RESPONSE - Valid
ubiami resource representation

Step 19: RESPONSE - Valid
ubiami resource representation

Step 15: GET gscl/applications/SEP2DA1/ubiami
HOST: <GSCL IP Addr>:<Port>

Step 14: Build ETSI M2M request to retrieve representation of SEP2 resource named ‘ubiami’ hosted by SEP2DA1 using GSCL aPoC functionality

Step 22: M2M aPoC Proxy Request to SEP2DA1

Step 23: POST a/relay
Host: <SEP2 IP Address>:<Port>

Step 24: RESPONSE - Created

Step 25: RESPONSE - Created

Step 21: POST gscl/applications/SEP2DA1/a/relay
HOST: <GSCL IP Addr>:<Port>

Step 20: Build ETSI M2M request to send command to SEP2 resource named ‘a/relay’ on SEP2DA1 using GSCL aPoC functionality

aPoC Retrieve Request

aPoC Create Request

M2M
DA

_1384195230.vsd
SEP2 DA

GSCL

NSCL

SEP2/M2M
NA

Step 24: M2M proxy request to DA via ‘aPoC’

Step 25: GET ubiami
Host: <SEP2 IP Address>:<Port>

Step 26: RESPONSE - Valid
Contents of ubiami resource

Step 27: RESPONSE - Valid
Contents of uabiami resource

Step 28: RESPONSE - Valid
Contents of ubiami resource

Step 21: GET <M2M GW IP Address>:<Port>/gscl/applications/SEP2DA1/ubiami
HOST: <NSCL IP Addr>:<Port>

Step 23: GET gscl/applications/SEP2DA1/ubiami Host: <GSCL IP Address>:<Port>

Step 20: Build ETSI M2M request to retrieve SEP2 ‘ubiami’ resource representation hosted by SEP2DA1 using GSCL aPoC functionality

Step 22: CoAP proxy request to GSCL

aPoC Retrieve Request

Step 33: M2M proxy request to DA via ‘aPoC’

Step 34: POST a/relay
Host: <SEP2 IP Address>:<Port>

Step 35: RESPONSE - Created

Step 36: RESPONSE - Created

Step 37: RESPONSE - Created

Step 30: POST <M2M GW IP Address>:<Port>/gscl/applications/SEP2DA1/a/relay
HOST: <NSCL IP Addr>:<Port>

Step 32: POST gscl/applications/SEP2Da1/a/relay
Host: <GSCL IP Address>:<Port>

Step 29: Build ETSI M2M request to send SEP2 command to a/relay resource on SEP2DA1 using GSCL aPoC functionality

Step 31: CoAP proxy request to GSCL

aPoC Create Request

M2M
DA

