[image: image1.png]

	oneM2M

Technical Specification

	Document Number
	TS-0004-V1.0.0

	Document Name:
	Service Layer Core Protocol

	Date:
	2015-January-30

	Abstract:
	The present document specifies the communication protocol(s) for oneM2M compliant Systems, M2M Applications, and/or other M2MSystems.The present document also specifies the common data formats, interfaces and message sequences to support reference points(s) defined by oneM2M

This Specification is provided for future development work within oneM2M only. The Partners accept no liability for any use of this Specification.

The present document has not been subject to any approval process by the oneM2M Partners Type 1. Published oneM2M specifications and reports for implementation should be obtained via the oneM2M Partners' Publications Offices.
About oneM2M

The purpose and goal of oneM2M is to develop technical specifications which address the need for a common M2M Service Layer that can be readily embedded within various hardware and software, and relied upon to connect the myriad of devices in the field with M2M application servers worldwide.

More information about oneM2M may be found at: http//www.oneM2M.org

Copyright Notification

No part of this document may be reproduced, in an electronic retrieval system or otherwise, except as authorized by written permission.

The copyright and the foregoing restriction extend to reproduction in all media.

© 2013-2015, oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TTA, TTC).

All rights reserved.

Notice of Disclaimer & Limitation of Liability

The information provided in this document is directed solely to professionals who have the appropriate degree of experience to understand and interpret its contents in accordance with generally accepted engineering or other professional standards and applicable regulations. No recommendation as to products or vendors is made or should be implied.

NO REPRESENTATION OR WARRANTY IS MADE THAT THE INFORMATION IS TECHNICALLY ACCURATE OR SUFFICIENT OR CONFORMS TO ANY STATUTE, GOVERNMENTAL RULE OR REGULATION, AND FURTHER, NO REPRESENTATION OR WARRANTY IS MADE OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR AGAINST INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS. NO oneM2M PARTNER TYPE 1 SHALL BE LIABLE, BEYOND THE AMOUNT OF ANY SUM RECEIVED IN PAYMENT BY THAT PARTNER FOR THIS DOCUMENT, WITH RESPECT TO ANY CLAIM, AND IN NO EVENT SHALL oneM2M BE LIABLE FOR LOST PROFITS OR OTHER INCIDENTAL OR CONSEQUENTIAL DAMAGES. oneM2M EXPRESSLY ADVISES ANY AND ALL USE OF OR RELIANCE UPON THIS INFORMATION PROVIDED IN THIS DOCUMENT IS AT THE RISK OF THE USER.

Contents

3Contents

1
Scope
13
2
References
13
2.1
Normative references
13
2.2
Informative references
14
3
Definitions and abbreviations
14
3.1
Definitions
14
3.2
Abbreviations
15
4
Conventions
16
5
Protocol design principles and requirements
16
5.1
Introduction
16
5.1.1
Interfaces to the underlying networks
17
5.2
API design guidelines
17
5.3
Primitives
18
5.3.1
Introduction
18
5.3.2
Primitives modelling
19
5.3.3
Primitive principles
19
5.3.4.
Serialization of primitives
19
5.4
Design principles
19
5.4.1
Introduction
19
5.4.2
Extensibility
20
5.4.3
Scalability
20
5.4.4
Fault tolerance and robustness
20
5.4.5
Efficiency
20
5.4.6
Inter-operability
20
5.4.7
Self-operation and self-management
21
6
oneM2M protocols/API overview
21
6.1
Introduction
21
6.2
Addressing
22
6.2.1
Summary of oneM2M Identifiers
22
6.2.2
oneM2M Entity Addressing
22
6.2.3
oneM2M Resource Addressing
23
6.3
Common data types
24
6.3.1
Simple data types incorporated from XML schema
24
6.3.2
oneM2M simple data types
26
6.3.3
oneM2M enumerated data types
29
6.3.3.1
Introduction
29
6.3.3.2
Enumeration type definitions
30
6.3.3.2.1
m2m:resourceType
30
6.3.3.2.2
m2m:cseTypeID
30
6.3.3.2.3
m2m:locationSource
30
6.3.3.2.4
m2m:stdEventCats
31
6.3.3.2.5
m2m:operation
31
6.3.3.2.6
m2m:responseType
31
6.3.3.2.7
m2m:resultContent
31
6.3.3.2.8
m2m:discResType
32
6.3.3.2.9
m2m:responseStatusCode
32
6.3.3.2.10
m2m:requestStatus
32
6.3.3.2.11
m2m:memberType
32
6.3.3.2.12
m2m:consistencyStrategy
33
6.3.3.2.13
m2m:cmdType
33
6.3.3.2.14
m2m:execModeType
34
6.3.3.2.15
m2m:execStatusType
34
6.3.3.2.16
m2m:execResultType
34
6.3.3.2.17
m2m:pendingNotification
35
6.3.3.2.18
m2m:notificationContentType
35
6.3.3.2.19
m2m:resourceStatus
35
6.3.3.2.20
m2m:status
36
6.3.3.2.21
m2m:batteryStatus
36
6.3.3.2.22
m2m:mgmtDefinition
36
6.3.3.2.23
m2m:logTypeId
37
6.3.3.2.24
m2m:logStatus
37
6.3.3.2.25
m2m:eventType
37
6.3.3.2.26
m2m:statsRuleStatusType
38
6.3.3.2.27
m2m:statModelType
38
6.3.3.2.28
m2m:encodingType
38
6.3.3.2.29
m2m:accessControlOperations
38
6.3.3.2.30
m2m:SRole-ID
39
6.3.4
Complex data types
39
6.3.4.1
m2m:deliveryMetaData
39
6.3.4.2
m2m:aggregatedRequest
39
6.3.4.3
m2m:metaInformation
40
6.3.4.4
m2m:primitiveContent
40
6.3.4.5
m2m:batchNotify
40
6.3.4.6
m2m:eventNotificationCriteria
40
6.3.4.7
m2m:filterCriteria
41
6.3.4.8
m2m:attribute
41
6.3.4.9
m2m:attributeList
41
6.3.4.10
m2m:scheduleEntries
42
6.3.4.11
m2m:aggregatedNotification
42
6.3.4.12
m2m:notification
42
6.3.4.13
m2m:actionStatus
42
6.3.4.14
m2m:anyArgType
43
6.3.4.15
m2m:resetArgsType
43
6.3.4.16
m2m:rebootArgsType
43
6.3.4.17
m2m:uploadArgsTypes
43
6.3.4.18
m2m:downloadArgsType
43
6.3.4.19
m2m:softwareInstallArgsType
44
6.3.4.20
m2m:softwareUpdateArgsType
44
6.3.4.21
m2m:softwareUninstallArgsType
44
6.3.4.22
m2m:execReqArgsListType
44
6.3.4.23
m2m:mgmtLinkRef
45
6.3.4.24
m2m:resourceWrapper
45
6.3.4.25
m2m:setOfAcrs
46
6.3.4.26
m2m:accessControlRule
46
6.3.4.27
m2m:locationRegion
46
6.3.4.28
m2m:childResourceRef
47
6.3.4.29
m2m:responseTypeInfo
47
6.3.4.30
m2m:rateLimit
47
6.3.4.31
m2m:operationResult
47
6.3.4.32
m2m:aggregatedResponse
48
6.3.5
Universal and Common attributes
48
6.3.6
Filter criteria
52
6.3.6.1
creationTime condition
52
6.3.6.2
lastModifiedTime condition
52
6.3.6.3
State Tag condition
52
6.3.6.4
expirationTime condition
52
6.3.6.5
labels Match condition
53
6.3.6.6
resourceType Match condition
53
6.3.6.7
contentSize condtion
53
6.3.6.8
typeOfContent condition
53
6.3.6.9
attribute Match condition
54
6.3.6.10
Limit results request parameter
54
6.3.6.11
Filter Usage request parameter
54
6.4
Message parameter data types
54
6.4.1
Request primitive parameter data types
54
6.4.2
Response primitive parameter data types
55
6.5
Resource data types
55
6.5.1
Description
55
6.5.2
resource
56
6.5.2.1
Description
56
6.5.2.2
Reference
56
6.5.2.3
Usage
56
6.5.3
regularResource
56
6.5.3.1
Description
56
6.5.3.2
Reference
56
6.5.3.3
Usage
57
6.5.4
announceableResource
57
6.5.4.1
Description
57
6.5.4.2
Reference
57
6.5.4.3
Usage
57
6.5.5
announcedResource
57
6.5.5.1
Description
57
6.5.5.2
Reference
57
6.5.5.3
Usage
57
6.5.6
announceableSubordinateResource
57
6.5.6.1
Description
57
6.5.6.2
Reference
58
6.5.6.3
Usage
58
6.5.7
announcedSubordinateResource
58
6.5.7.1
Description
58
6.5.7.2
Reference
58
6.5.7.3
Usage
58
6.6
Response status codes
58
6.6.1
Introduction
58
6.6.2
RSC framework overview
58
6.6.3
Definition of Response Status Codes
59
6.6.3.1
Overview
59
6.6.3.2
Informational response class
59
6.6.3.3
Successful response class
59
6.6.3.4
Redirection response class
59
6.6.3.5
Originator Error response class
59
6.6.3.6
Receiver Error response class
59
6.6.3.7
Network System Error response class
60
6.7
oneM2M specific MIME media types
60
6.8
Virtual Resources
61
7
oneM2M procedures
63
7.1
Primitive format and generic procedure
63
7.1.1
Primitive format
63
7.1.1.1
Request primitive format
63
7.1.1.2
Response primitive format
64
7.1.2
Description of generic procedures
65
7.1.2.1
Generic resource request procedure for originator
65
7.1.2.2
Generic request procedure for receiver
66
7.2
Common operations
69
7.2.1
Originator actions
69
7.2.1.1
Compose request primitive
69
7.2.1.2
Send a request to the receiver CSE
70
7.2.1.3
Wait for response primitive
70
7.2.1.4
Retrieve the <request> resource
70
7.2.2
Receiver CSE actions
70
7.2.2.1
Check the validity of received request primitive
70
7.2.2.2
Create <request> resource locally
71
7.2.2.3
Create a success response (acknowledgement)
72
7.2.2.4
Send response primitive (acknowledgement)
73
7.2.2.5
Update <request> resource
73
7.2.2.6
Forwarding
73
7.2.2.7
Check Service Subscription Profile
73
7.2.3
Hosting CSE actions
74
7.2.3.1
Check existence of the addressed resource
74
7.2.3.2
Check validity of resource representation for CREATE
74
7.2.3.3
Check validity of resource representation for UPDATE
74
7.2.3.4
Create the resource
75
7.2.3.5
Retrieve the resource
76
7.2.3.6
Update the resource
76
7.2.3.7
Delete the resource
77
7.2.3.8
Notify re-targeting
77
7.2.3.9
Announce the resource or attribute
77
7.2.3.10
De-announce the resource or attribute
78
7.2.3.11
Create a success response
79
7.2.3.12
Create an error response
79
7.2.3.13
Resource discovery procedure
80
7.2.3.14
Check authorization of the originator
80
7.2.4
Management common operations
81
7.2.4.1
Identify the managed entity and the management protocol
81
7.2.4.2
Locate the external management objects to be managed on the managed entity
81
7.2.4.3
Establish a management session with the managed entity or management server
81
7.2.4.4
Send the management request(s) to the managed entity corresponding to the received Request primitive
82
7.3
Resource type-specific procedures and definitions
82
7.3.1
Resource type specification conventions
82
7.3.1.1
Resource type definition conventions
82
7.3.1.2
Resource type-specific procedure conventions
83
7.3.2
Resource type <accessControlPolicy>
83
7.3.2.1
Introduction
83
7.3.2.2
accessControlPolicy resource specific procedure on CRUD operations
84
7.3.2.2.1
Create
84
7.3.2.2.2
Retrieve
84
7.3.2.2.3
Update
84
7.3.2.2.4
Delete
84
7.3.3
Resource Type <CSEBase>
85
7.3.3.1
Introduction
85
7.3.3.2
<CSEBase> resource specific procedure on CRUD operations
86
7.3.3.2.1
Create
86
7.3.3.2.2
Retrieve
86
7.3.3.2.3
Update
86
7.3.3.2.4
Delete
86
7.3.4
Resource Type <remoteCSE>
87
7.3.4.1
Introduction
87
7.3.4.2
<remoteCSE> resource specific procedure on CRUD operations
88
7.3.4.2.1
Create
88
7.3.4.2.2
Retrieve
88
7.3.4.2.3
Update
88
7.3.4.2.4
Delete
88
7.3.5
Resource Type <AE>
88
7.3.5.1
Introduction
88
7.3.5.2
<AE> resource specific procedure on CRUD+N operations
89
7.3.5.2.1
Create
89
7.3.5.2.2
Retrieve
90
7.3.5.2.3
Update
90
7.3.5.2.4
Delete
90
7.3.5.2.5
Notify
90
7.3.6
Resource Type <container>
90
7.3.6.1
Introduction
90
7.3.6.2
<container> resource specific procedure on CRUD operations
91
7.3.6.2.1
Create
92
7.3.6.2.2
Retrieve
92
7.3.6.2.3
Update
92
7.3.6.2.4
Delete
92
7.3.7
Resource Type <contentInstance>
92
7.3.7.1
Introduction
92
7.3.7.2
<contentInstance> resource specific procedure on CRUD operations
93
7.3.7.2.1
Create
93
7.3.7.2.2
Retrieve
93
7.3.7.2.3
Update
94
7.3.7.2.4
Delete
94
7.3.8
Resource Type <subscription>
94
7.3.8.1
Introduction
94
7.3.8.2
<subscription> resource specific procedure on CRUD operations
95
7.3.8.2.1
Create
95
7.3.8.2.2
Retrieve
96
7.3.8.2.3
Update
96
7.3.8.2.4
Delete
96
7.3.9
Resource Type <schedule>
97
7.3.9.1
Introduction
97
7.3.9.2
<schedule> resource specific procedure on CRUD operations
98
7.3.9.2.1
Create
98
7.3.9.2.2
Retrieve
98
7.3.9.2.3
Update
98
7.3.9.2.4
Delete
99
7.3.10
Resource Type <locationPolicy>
99
7.3.10.1
Introduction
99
7.3.10.2
<locationPolicy> resource specific procedure on CRUD Operations
100
7.3.10.2.1
Create
100
7.3.10.2.2
Retrieve
101
7.3.10.2.3
Update
101
7.3.10.2.4
Delete
101
7.3.11
Resource Type <delivery>
102
7.3.11.1
Introduction
102
7.3.11.2
<delivery> resource specific procedure on CRUD operations
103
7.3.11.2.1
Create
103
7.3.11.2.2
Retrieve
103
7.3.11.2.3
Update
103
7.3.11.2.4
Delete
104
7.3.12
Resource Type <request>
104
7.3.12.1
Introduction
104
7.3.12.2
<request> resource specific procedure on CRUD operations
105
7.3.12.2.1
Create
105
7.3.12.2.2
Retrieve
106
7.3.12.2.3
Update
106
7.3.12.2.4
Delete
106
7.3.13
Resource Type <group>
106
7.3.13.1
Introduction
106
7.3.13.2
<group> resource specific procedure on CRUD operations
108
7.3.13.2.1
Create
108
7.3.13.2.2
Retrieve
108
7.3.13.2.3
Update
108
7.3.13.2.4
Delete
109
7.3.14
Resource Type <fanOutPoint>
109
7.3.14.1
Introduction
109
7.3.14.2
<fanOutPoint> operations
109
7.3.14.2.1
Validate the member types
109
7.3.14.2.2
Sub-group creation for members residing on the same CSE
109
7.3.14.2.3
Assign URI for aggregation of notification
109
7.3.14.2.4
Fanout Request to each member
109
7.3.14.3
<fanOutPoint> resource specific procedure on CRUD operations
110
7.3.14.3.1
Create
110
7.3.14.4
Retrieve
111
7.3.14.4.1
Update
111
7.3.14.4.2
Delete
112
7.3.15
Resource Type <mgmtObj>
112
7.3.15.1
Introduction
112
7.3.15.2
<mgmtObj> resource specific procedure on CRUD operations
113
7.3.15.2.1
Create
113
7.3.15.2.2
Retrieve
114
7.3.15.2.3
Update
114
7.3.15.2.4
Delete
114
7.3.16
Resource Type <mgmtCmd>
114
7.3.16.1
Introduction
114
7.3.16.2
<mgmtCmd> resource specific procedure on CRUD oerations
117
7.3.16.2.1
Create
117
7.3.16.2.2
Retrieve
117
7.3.16.2.3
Update
117
7.3.16.2.4
Delete
118
7.3.17
Resource Type <execInstance>
119
7.3.17.1
Introduction
119
7.3.17.2
<execInstance> resource specific procedure on CRUD oerations
120
7.3.17.2.1
Update (Cancel)
120
7.3.17.2.2
Retrieve
121
7.3.17.2.3
Delete
121
7.3.18
Resource Type <node>
122
7.3.18.1
Introduction
122
7.3.18.2
<node> resource specific procedure on CRUD operations
122
7.3.18.2.1
Create
122
7.3.18.2.2
Retrieve
122
7.3.18.2.3
Update
123
7.3.18.2.4
Delete
123
7.3.19
Resource Type <m2mServiceSubscriptionProfile>
123
7.3.19.1
Introduction
123
7.3.19.2
<m2mServiceSubscriptionProfile> resource specific procedure on CRUD operations
124
7.3.19.2.1
Create
124
7.3.19.2.2
Retrieve
124
7.3.19.2.3
Update
124
7.3.19.2.4
Delete
124
7.3.20
Resource Type <serviceSubscribedNode>
125
7.3.20.1
Introduction
125
7.3.20.2
<serviceSubscribedNode> resource specific procedure on CRUD operations
125
7.3.20.2.1
Create
125
7.3.20.2.2
Retrieve
126
7.3.20.2.3
Update
126
7.3.20.2.4
Delete
126
7.3.21
Resource Type <pollingChannel>
126
7.3.21.1
Introduction
126
7.3.21.2
<pollingChannel> resource specific procedure on CRUD operations
127
7.3.21.2.1
Create
127
7.3.21.2.2
Retrieve
127
7.3.21.2.3
Update
127
7.3.21.2.4
Delete
128
7.3.22
Resource Type <pollingChannelURI>
128
7.3.22.1
Introduction
128
7.3.22.2
<pollingChannelURI> resource specific procedure on CRUD operations
128
7.3.22.2.1
Create
128
7.3.22.2.2
Retrieve
128
7.3.22.2.3
Update
129
7.3.22.2.4
Delete
129
7.3.23
Resource Type <statsConfig>
129
7.3.23.1
Introduction
129
7.3.23.2
<statsConfig> resource-specific procedure on CRUD operations
129
7.3.23.2.1
Create
129
7.3.23.2.2
Retrieve
130
7.3.23.2.3
Update
130
7.3.23.2.4
Delete
130
7.3.24
Resource Type <eventConfig>
130
7.3.24.1
Introduction
130
7.3.24.2
<eventConfig> resource-specific procedure on CRUD operations
131
7.3.24.2.1
Create
131
7.3.24.2.2
Retrieve
132
7.3.24.2.3
Update
132
7.3.24.2.4
Delete
132
7.3.25
Resource Type <statsCollect>
132
7.3.25.1
Introduction
132
7.3.25.2
<statsCollect> resource-specific procedure on CRUD operations
134
7.3.25.2.1
Create
134
7.3.25.2.2
Retrieve
134
7.3.25.2.3
Update
134
7.3.25.2.4
Delete
135
7.3.26
Announced resource type
135
7.3.26.1
Introduction
135
7.3.26.2
Resource specific procedure on CRUD operations
136
7.3.26.2.1
Create
136
7.3.26.2.2
Retrieve
136
7.3.26.2.3
Update
136
7.3.26.2.4
Delete
137
7.3.27
Resource Type latest
137
7.3.27.1
Introduction
137
7.3.27.2
<latest> Resource Specific Procedure on CRUD Operations
137
7.3.27.2.1
Create
137
7.3.27.2.2
Retrieve
137
7.3.27.2.3
Update
137
7.3.27.2.4
Delete
138
7.3.28
Resource Type oldest
138
7.3.28.1
Introduction
138
7.3.28.2
<oldest> Resource Specific Procedure on CRUD Operations
138
7.3.28.2.1
Create
138
7.3.28.2.2
Retrieve
138
7.3.28.2.3
Update
139
7.3.28.2.4
Delete
139
7.3.29
Resource Type <serviceSubscribedAppRule>
139
7.3.29.1
Introduction
139
7.3.29.2
<serviceSubscribedAppRule> resource specific procedure on CRUD operations
140
7.3.29.2.1
Create
140
7.3.29.2.2
Retrieve
140
7.3.29.2.3
Update
140
7.3.29.2.4
Delete
141
7.4
Primitive-specific procedures and definitions
141
7.4.1
Notification data object and procedures
141
7.4.1.1
Notification data object
141
7.4.1.2
Notification procedures
141
7.4.1.2.1
Notification for modification of subscribed resources
142
7.4.1.2.2
Subscription Verification during Subscription Creation
144
7.4.1.2.3
Notification for Subscription Deletion
144
7.4.1.2.4
Notification for Asynchronous Non-blocking Request
144
7.4.1.2.5
Notification for subscription via group
145
7.4.2
Elements contained in the primitive Content
145
8
Representation of primitives in data transfer
147
8.1
Introduction
147
8.2
Short names
147
8.2.1
Introduction
147
8.2.2
Primitive parameters
147
8.2.3
Resource attributes
149
8.2.4
Resource types
153
8.2.5
Complex data types members
155
8.3
XML serialization
155
8.3.1
Method
155
8.3.2
Examples
156
8.4
JSON serialization
157
8.4.1
Terminology
157
8.4.2
Method
157
8.4.3
Examples
158
Annex A (void):
159
Annex B (normative): Device triggering
161
B.1.
Providing device triggering service by means of 3GPP networks
161
B.1.1.
Introduction
161
B.1.2.
Device action request command
161
B.1.3.
Device action answer command
161
B.1.4.
Device notification request command
161
B.1.5.
Device notification answer command
161
Annex C (informative): XML examples
162
C.1.
XML schema for container resource type
162
C.2.
Container resource that conforms to the Schema given above (see Annex. C.1)
163
Annex D (Normative): <mgmtObj> Resource specializations
164
D.1.
Introduction
164
D.2.
Resource [firmware]
164
D.2.1.
Introduction
164
D.2.2.
Resource specific procedure on CRUD operations
164
D.2.2.1.
Create
164
D.2.2.2.
Update
165
D.2.2.3.
Retrieve
165
D.2.2.4.
Delete
165
D.3.
Resource [software]
165
D.3.1.
Introduction
165
D.3.2.
Resource specific procedure on CRUD operations
166
D.3.2.1.
Create
166
D.3.2.2.
Update
166
D.3.2.3.
Retrieve
167
D.3.2.4.
Delete
167
D.4.
Resource [memory]
167
D.4.1.
Introduction
167
D.4.2.
Resource specific procedure on CRUD operations
167
D.4.2.1.
Create
167
D.4.2.2.
Update
168
D.4.2.3.
Retrieve
168
D.4.2.4.
Delete
168
D.5.
Resource [areaNwkInfo]
168
D.5.1.
Introduction
168
D.5.2.
Resource specific procedure on CRUD operations
169
D.5.2.1.
Create
169
D.5.2.2.
Update
169
D.5.2.3.
Retrieve
169
D.5.2.4.
Delete
169
D.6.
Resource [areaNwkDeviceInfo]
169
D.6.1.
Introduction
169
D.6.2.
Resource specific procedure on CRUD operations
170
D.6.2.1.
Create
170
D.6.2.2.
Update
170
D.6.2.3.
Retrieve
170
D.6.2.4.
Delete
171
D.7.
Resource [battery]
171
D.7.1.
Introduction
171
D.7.2.
Resource specific procedure on CRUD operations
171
D.7.2.1.
Create
171
D.7.2.2.
Update
171
D.7.2.3.
Retrieve
172
D.7.2.4.
Delete
172
D.8.
Resource [deviceInfo]
172
D.8.1.
Introduction
172
D.8.2.
Resource specific procedure on CRUD operations
172
D.8.2.1.
Create
173
D.8.2.2.
Update
173
D.8.2.3.
Retrieve
173
D.8.2.4.
Delete
173
D.9.
Resource [deviceCapability]
173
D.9.1.
Introduction
173
D.9.2.
Resource specific procedure on CRUD operations
174
D.9.2.1.
Create
174
D.9.2.2.
Update
174
D.9.2.3.
Retrieve
175
D.9.2.4.
Delete
175
D.10.
Resource [reboot]
175
D.10.1.
Introduction
175
D.10.2.
Resource specific procedure on CRUD operations
175
D.10.2.1.
Create
176
D.10.2.2.
Update
176
D.10.2.3.
Retrieve
176
D.10.2.4.
Delete
176
D.11.
Resource [eventLog]
176
D.11.1.
Introduction
176
D.11.2.
Resource specific procedure on CRUD operations
177
D.11.2.1.
Create
177
D.11.2.2.
Update
177
D.11.2.3.
Retrieve
177
D.11.2.4.
Delete
178
D.12.
Resource [cmdhPolicy]
178
D.12.1.
Resource [activeCmdhPolicy]
179
D.12.2.
Resource [cmdhDefaults]
179
D.12.3.
Resource [cmdhDefEcValue]
179
D.12.4.
Resource [cmdhEcDefParamValues]
180
D.12.5.
Resource [cmdhLimits]
181
D.12.6.
Resource [cmdhNetworkAccessRules]
182
D.12.7.
Resource [cmdhNwAccessRule]
183
D.12.8.
Resource [cmdhBuffer]
183
Annex E (informative) Procedures for accessing resources
185
E.1.
Accessing resources in CSEs – blocking requests
185
E.2.
Accessing Resources in CSEs - non-blocking requests
185
E.2.1.
Non-blocking models
185
E.2.2.
Synchronous case
186
Annex F (informative): Guidelines for one M2M resource type XSD
191
Annex G (Normative): Location request
193
G.1.
Location request by means of OMA-REST-NetAPI-TerminalLocation interface
193
G.1.1.
Introduction
193
G.1.2.
Resource structure of OMA NetAPI for terminal location
193
G.1.3.
Procedures for terminal location
196
G.1.3.1.
Request in a single query toward a location server
196
G.1.4.
Subscribe to notifications for periodic location updates
196
G.1.5.
Subscribe to notifications for area updates
197
Annex H (Normative): CMDH message processing
199
H.1.
Pre-requisites
199
H.2.
CMDH processing: processing request or response messages requiring the receiver CSE to forward information to another CSE
200
H.2.1.
Applicability of CMDH processing
200
H.2.2.
Partitioning of CMDH processing
200
H.2.3.
CMDH message validation procedure
202
H.2.4.
CMDH message forwarding procedure
207
H.2.5.
Establishment of Mcc communication connection to another CSE
214
List of tables and figures
216
History
223

1 Scope
The present document specifies the communication protocol(s) for oneM2M compliant Systems, M2M Applications, and/or other M2M systems.

The present document also specifies the common data formats, interfaces and message sequences to support reference points(s) defined by oneM2M.

2 References

References are either specific (identified by date of publication and/or edition number or version number) or non‑specific. For specific references, only the cited version applies. For non-specific references, the latest version of the reference document (including any amendments) applies.

2.1 Normative references

The following referenced documents are necessary for the application of the present document.

[1]
W3C, Extensible Markup Language (XML) 1.0 (Fifth Edition), W3C Recommendation 26 November 2008.
[2]
IETF RFC 3986: "Uniform Resource Identifier (URI): Generic Syntax".

[3]
W3C XMLSchemaP2: "W3C Recommendation (2004), XML Schema Part 2:Datatypes Second Edition.".

[4]
oneM2M TS-0005 “Management Enablement (OMA)”
[5]
oneM2M TS-0006 “Management Enablement (BBF)” [6]
oneM2M TS-0001 "Functional Architecture"
[7]
oneM2M TS-0003 “Security Solutions”
[8]
IEEE 754-2008: IEEE. IEEE Standard for Floating-Point Arithmetic. 29 August 2008. http://ieeexplore.ieee.org/servlet/opac?punumber=4610933

[9]
IETF RFC 3548: "The Base16, Base32, and Base64 Data Encodings". 2003.

[10]
IETF RFC 2045: "Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies". 1996.

[11]
IETF RFC 3987:" Internationalized Resource Identifiers (IRIs)" . January 2005.

[12]
IETF BCP 47: "Best Current Practices 47". Concatenation of RFC 4646:" Tags for Identifying Languages"(2006) and RFC 4647: "Matching of Language Tags"(2006).

[13]
IETF RFC 3588: "Diameter Base Protocol". September 2003.

[14]
IETF RFC 6733: "Diameter Base Protocol". October 2012.

[15]
3GPP TS 23.682: "Architecture enhancements to facilitate communications with packet data networks and applications" Release 11.
[16]
3GPP TS 29.368: "Tsp interface protocol between the MTC Interworking Function (MTC-IWF) and Service Capability Server (SCS)" Release 11.
[17]
3GPP TS 23.003: "Numbering, addressing and identification".

[18]
IETF RFC 4282: "The Network Access Identifier".

[19]
IETF RFC 7159: "The JavaScript Object Notation (JSON) Data Interchange Format".

[20]
IETF RFC 4234: "Augmented BNF for Syntax Specifications: ABNF"
[21]
IETF RFC 3629: " UTF-8, a transformation format of ISO 10646".

[22]
oneM2M TS-0008 CoAP Binding

[23]
oneM2M TS-0009 HTTP Binding
[24]
oneM2M TS-0010 MQTT Binding

[25]
oneM2M TS-0011 Common Terminology
[26]
IETF RFC 6837: " Media Type Specifications and Registration Procedures".

[27]
ISO 3601:2004; "Data elements and interchange formats -- Information interchange -- Representation of dates and times".

[28]
OMA-TS-REST-NetAPI_TerminalLocation-V1_0-20130924-A: "RESTful Network API for Terminal Location", Version 1.0.
2.2 Informative references

The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.
[i.1]
oneM2M Drafting Rules.
NOTE:
Available at http://member.onem2m.org/Static_pages/Others/Rules_Pages/oneM2M-Drafting-Rules-V1_0.doc.
[i.2]
Fielding, Roy Thomas (2000): "Architectural Styles and the Design of Network-based Software Architectures", Doctoral dissertation, University of California, Irvine.

[i.3]
"RESTful Network API for Notification Channel", Open Mobile Alliance™, OMA-TS-REST_NetAPI_NotificationChannel-V1_0.
[i.4]
OMA-TS-MLP-V3_4-20130226-C: "Mobile Location Protocol", Version 3.4.
3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document, the following terms and definitions and those given in TS-0011 Common Terminology [25] apply:

Complex Data Types: is a data type that has a child element.
Enumeration Type: is a data type that enables for a variable to be a set of predefined constants.
Group Hosting CSE: CSE where the addressed group resource resides.
Hosting CSE: CSE where the addressed resource is hosted.
Location Server: is a server offering location capabilities.
M2M Area Network: a network provides connectivity between Application Service Nodes or Application Dedicated Nodes and Middle Nodes in the field domain.
Mca: Reference Point for M2M Communication with AE.

Mcc: Reference Point for M2M Communication with CSE.

Mcc’: Reference Point for M2M Communication with CSE of different M2M Service Provider.
Originator: For single-hop case, the Originator is the entity that sends a Request. For multi-hop case, the Originator is the entity that sends the first Request in a sequence of requests.

NOTE:
An Originator can either be an AE or a CSE.
Receiver: is the entity that receives the Request.
Receiver CSE: is any CSE that receives a request.
Registrar CSE: CSE is the CSE where an Application or another CSE has registered.
Registree/Registrar CSE: is the CSE that registers with another CSE.
Request: is the message sent from the Originator to the Receiver.
Response: is the message replied to the Request from the Receiver to the Originator.
3.2 Abbreviations

For the purposes of the present document, the following abbreviations and those given in TS-0011 Common Terminology [25] apply:

3GPP2
3rd Generation Partnership Project 2

ACP
AccessControlPolicy

AD
Anno Domini
AE-ID
Application Entity Identifier

ARC
Architecture

ASN-CSE
Application Entity that is registered with the CSE at Application Service Node

BCP
best current practices
CDT
Common Data Type

CIDR
Classless Inter-Domain Routing
CMDH
Communication Management and Delivery Handling

CoAP
Constrained Application Protocol

CRUD
Create Retrive Update Delete
CRUD+N
Create Retrive Update Delete Notification
CSE-ID
Common Service Entity Identifier
CUDN
Create Update Delete NotifyDAA
Device Action Answer

DAR
Device-Action-request
DNA
Device Notification Answer
DNR
Device Notification Request
DTLS
Datagram Transport Layer Security

FFS
For Further Study

FQDN
Fully Qualified Domain Name

GPS
Global Positioning System
HTTP
HyperText Transfer Protocol

IANA
Internet Assigned Numbers Authority
ID
Identifier
IEEE
Institute of Electrical and Electronics Engineers

IETF
Internet Engineering Task Force
IN-AE
Application Entity that is registered with the CSE in the Infrastructure Node
IN-CSE
CSE which resides in the Infrastructure Node

IRI
Internationalized Resource Identifier

ISO
International Organization for Standardization
JSON
JavaScript Object Notation

MA
Mandatory Announced

MIME
Multipurpose Internet Mail Extension
MN-CSE
Reference Point for M2M Communication with CSE of different M2M Service Provider
MQTT
Message Queue Telemetry Transport
MTC-IWF
MachinetType Communications - InterWorking Function

NP
Not Present

OA
Optional Announced
OMA-DM
Open Mobile Alliance Device Management
RD
Retrieve DeleteRFC
Request For Comment
RPC
Remote Procedure Call
RSC
Response Status Codes

RUD
Retrieve Update Delete
SCS
Services Capability Server
SP
Service Provider

SP-ID
Service Provider Identifier

TBD
To Be Determined
TCP
Transmission Control Protocol
TLS
Transport Layer Security
UDP
User Datagram Protocol
URI
Uniform Resource Identifier
URL
Uniform Resource Locator

UTC
Coordinated Universal Time

UTF
UCS Transformation Format

UUID
Universally Unique Identifier
XML
eXtensible Markup Language

XSD
XML Schema Definition
WLAN
Wireless Local Area Network
4 Conventions

The key words "Shall", "Shall not", "May", "Need not", "Should", "Should not" in the present document are to be interpreted as described in the oneM2M Drafting Rules [i.1].
To improve readability:

· The information elements of oneM2M Request/Response messages will be referred to as parameters. Parameter names will be written in bold italic.

· The information elements of resources will be referred to as attributes and child resources. Attributes will be written in italics.

· Abbreviated short names for information elements (see clause 8) will be written in bold italic.
5 Protocol design principles and requirements
The following clauses contain the design principles and requirements for the oneM2M protocol.
5.1 Introduction

The oneM2M architecture is resource-based (oneM2M TS-0001 Functional Architecture [6]). The functionality of the system is exposed by means of APIs over all reference points specified in oneM2M TS-0001 Functional Architecture [6]. Operations upon resources hosted by a CSE are carried over an established channel that constitutes the communication on the reference points Mca and Mcc. All API operations could be fulfilled with the considerations in terms of scalability, extensibility, fault tolerance and robustness, energy efficiency, and self-operation.
Each resource operation comprises a pair of primitives: Request and Response.

In order to provide a well-defined interface for the reference points in oneM2M TS-0001 [6] Functional Architecture, the following aspects need to be provided:
· the collection of primitives carried over a specific reference point; and

· the definitions and procedures of resource types in relation to the underlying protocols and reference points involved.
The current document provides:

· Protocol design principles and requirements
· Data type definitions;
· Primitive definitions; and

· XML definitions and schema.

NOTE:
The actual binding of the interface to a specific protocol is not part of the present document, but is specified in a separate Technical Specifications [22], [23],[24].

In accordance with the oneM2M architecture, each reference point is applicable to a wide range of underlying network technologies and transport protocols. oneM2M defines a set of bindings for specific underlying network technologies and transport protocols, these bindings are not limiting the applicability of the interfaces when used in other underlying networks and transport protocols. However, the behaviour of the interface needs to be respected in accordance to the present document and oneM2M TS-0001 Functional Architecture [6].

5.1.1 Interfaces to the underlying networks
The CSEs access the network service functions provided by the underlying networks such as 3GPP, 3GPP2 and WLAN via Mcn reference point. The following services are provided by the underlying networks:

· Device triggering (see Annex B)
· Location request (see Annex G)
· Device Management (see clause 7.2.4)
5.2 API design guidelines

The following are the guidelines for designing APIs:

1) APIs shall follow the principle of RESTful architecture, as described in [i.2].
2) APIs shall indicate which features are supported and not supported over the reference points specified in TS-0001 Functional Architecture [6].
3) APIs shall define how to address resources and how to manipulate resources, in accordance with oneM2M TS‑0001 [6]; the resource is identified by a Universal Resource Identifier (URI), [2].

4) APIs shall provide the format and syntax of the operation primitives for all resources defined in TS-0001 Functional Architecture [6] . In case that for a particular protocol binding an operation cannot be supported it has to be clearly stated in the specific protocol binding technical specification.

5) Resource has a representation (see [i.2]) that shall be transferred and manipulated with the verbs. These verbs are identified as operations in TS-0001 Functional Architecture [6]: CREATE. RETRIEVE, UPDATE, DELETE and NOTIFY.

6) All primitives as well as the way that those primitives are sent shall be defined. The functionality of the primitives shall be compliant to the resource type specific procedure as specified in TS-0001 Functional Architecture [6], clause 10.2.

7) Primitives shall include attributes in accordance with TS-0001 Functional Architecture [6] for a specific resource.

8) Primitive shall be self-descriptive and contain all the information needed for the receiver of the primitives to handle the primitives.
9) Primitive should be idempotent operations which mean no matter how many times the primitive is sent, the result doesn't change, in accordance to [i.2].

10) Primitives shall be mapped on the transport layer protocols.

5.3 Primitives
5.3.1 Introduction

Primitives are common service layer messages exchanged over the Mca, Mcc and Mcc’ reference points.
There are two use cases:

· communication between an Originator and a Receiver which are collocated on the same M2M Node (e.g. ASN or MN) in the Common Service layer,

· communication between an Originator and a remote Receiver via an Underlying Network.
In the first use case the primitives may be exchanged directly between the Originator and Receiver processes.

In case of using an IP-based Underlying Network as illustrated in Figure 5.3.1‑1, the primitives are mapped to application layer communication protocols such as HTTP, CoAP or MQTT which use TCP or UDP on the transport layer. The specification of primitives, however, is independent of underlying communication protocols and allow introduction of bindings to other communication protocols.

[image: image2.emf]

Binding Function

Receiver

 IP - based Under l ying Network

Response

Originator

Request

Application/ Common Service L ayer

Application Layer Commu nication Protocol (e.g. HTTP, CoAP, MQTT)

Primitives

Request Response

Primitives

Binding Function

Application Layer Communication Protocol (e.g. HTTP, CoAP, MQTT)

Transport Layer Protocol (UDP/TCP)

Transport Layer Protocol (UDP/TCP)

Figure 5.3.1‑1: Communication model using Request and Response primitives
over an IP-based Underlying Network
A single primitive in the common service layer may be mapped to zero or more transport messages by the communication protocol..

The Originators shall send requests to Receivers through primitives. The Originator and Receiver may be represented by either an AE or a CSE. The CRUD request primitive addresses a resource residing in a CSE. The Notify request primitive may address an AE or CSE.

Each CRUD+N operation consists of request and response primitives.

5.3.2 Primitives modelling

Primitives are modelled as follows.

A primitive is represented in form of a data structure which defines with appropriate parameters specific procedures to be executed by both originator and receiver entities.

The data structure of a primitive consists of two parts:

· A control part, which contains parameters specifying the processing of the primitive; and

· An optional content part, which represents resource data, either the complete resource or only part of the resource (i.e. values of one or more resource attributes) in the partial addressing case.

[image: image3.emf]

Control part

Content part

Figure 5.3.2‑1: Primitives modelling
5.3.3 Primitive principles

Execution of one primitive shall finish completely before execution of a subsequent primitives starts that affects the same resource..

When creating or updating the resource, its representation (full or partial) shall be contained in the content part of the primitive. Based on the representation of the resource, the Hosting CSE can create or update the entire resource without need for further information.

The operations on resources triggered by primitives shall be idempotent. This means no matter how many times the same primitive is targeted to the same resource, the resource does not change after the first execution of this primitive, with the exception of the creation of child resources.
5.3.4. Serialization of primitives

When transferred over a oneM2M reference point while using a communication protocol such as HTTP, CoAP or MQTT, the way oneM2M Request and Response primitives are represented shall be defined by a specific oneM2M protocol binding that is being used for the message transfer. The originator and receiver of each primitive use the same binding, and thus they will be using compatible serialization and deserialization techniques. Clause 8 of the present document defines canonical approaches for serializing primitives as JSON objects or XML documents used by oneM2M protocol bindings.

5.4 Design principles
5.4.1 Introduction
The following clauses present the design principles which could wrap up the perspectives and ways in terms of definitions and procedures of APIs and resources for the oneM2M core protocol specified in this technical specification. These design principles shall cover all characteristics and advantages of oneM2M protocols including specifications of bindings to transport protocols such as HTTP, CoAP, and MQTT.

The design of oneM2M protocols consider and mitigate the risk of unintended consequences, such as extensibility and interoperability issues, operational problems, or efficiency.
5.4.2 Extensibility
The oneM2M protocols are designed to allow continued development and to facilitate changes by means of standardized extensions.

The impact of the extensibility on the existing oneM2M protocol functions shall be minimized.

Extensibility can be related to one or more of the following aspects:

· Handling a wide range of transport protocols as well as a different number of devices,

· Adding, removing or modifying oneM2M protocol functionality,

· New oneM2M protocol routines,

· New primitives and data types.

5.4.3 Scalability

For provisioning scalability as a requirement in the design of oneM2M protocols, one or several of the following mechanisms are used:

· Ensuring direct addressability to the CSEs hosting target resources, to minimize network hops.

· Asynchrony in terms of data processing, with the objective of minimizing the number of discarded packets.

· Caching mechanisms that allow all the received packets to be processed.

· Efficient load distribution to avoid bottlenecks and data loss.

· Data compression and/or aggregation, in order to reduce the amount of data sent through the network.
5.4.4 Fault tolerance and robustness
One or more of the following mechanisms in terms of link availability can be exploited in the design of oneM2M protocols to account for a variety of exception conditions.

· To provide reliable transmission of data packets, packet recovery will be dealt with by using mechanisms appropriate for the operating environment (e.g., constrained devices, unreliable networks).
· When oneM2M protocols are employed over unreliable links, multiple data dissemination paths can be provided and maintained.
5.4.5 Efficiency
 oneM2M protocols are designed with consideration of efficiency for networking involved resource-constrained devices.
· As energy consumption directly affects the overall system performance, oneM2M protocols should consider energy efficiency, especially in resource constrained environments with battery-powered oneM2M devices.

· Energy efficient oneM2M protocols aims at reducing the overall energy consumption while maintaining the performance required by the oneM2M Applications.
5.4.6 Inter-operability

API inter-operability between different protocol stacks is expected. For example, oneM2M API over HTTP/TCP/IP needs to inter-operate with CoAP/UDP in a local network using oneM2M API. oneM2M protocols are specified to provision the API inter-operability.
5.4.7 Self-operation and self-management

Devices employing the oneM2M API inter-work with established management protocols (e.g., security, discovery, bootstrapping etc). The inter-working with legacy management protocols via the oneM2M API shall be carried out in self-operation methods.
6 oneM2M protocols/API overview

6.1 Introduction

The present document describes message formats and procedures to communicate with oneM2M compliant M2M Platform System.

The present document describes:

· Data representation for communication protocol messages.
· Normal and exceptional procedure.
· Status codes.
· Guidelines for drafting APIs.
For wide acceptance by industrial markets, the present document describes structured and non-structured data for oneM2M Protocol using XML Schema Definition (XSD) language [3].

The actual format of data in request and response messages partially depends on the applied protocol binding. Mapping rules between the data formats defined in the present document types and protocol-specific native data formats are specified in the protocol binding specifications TS-0008, TS-0009 and TS-0010.

Any data types of XML elements defined for use in oneM2M protocols shall use the namespace:

· http://www.onem2m.org/xml/protocols.
The present document, and any XML or XML Schema Documents produced by oneM2M shall use the prefix m2m: to refer to that namespace.
The XSD filesreferenced in the present document shall serve following purposes:

1) Provide an unambiguous definition of XML element names and data types used for

a) resource representations,

b) resource attributes,

c) Request and Response primitives (including Notification primitive),
d) parameters used in Request and Response primitives.

2) Help to identify and avoid that equivalent data types are defined multiple times with different names.
3) Provide a testable definition of the value range of data elements (e.g. allowed number range, allowed characters or character patterns, allowed enumeration values).
4) Provide a testable definition of the presence of mandatory elements (“minOccurs=1”) and of cardinality not larger than a given limit (e.g. “maxOccurs=1”) in XML representations of data objects (i.e. resource instantiations and primitive parameters).
5) Provide a testable definition of the correct sequence of occurrence of each element of a data object (where correct sequence is required).

6) Enable the use of development tools that generate executable code for data object processing from the XSD.
7) Enable the use of XML development tools which allow automatic generation of valid templates for XML and JSON objects, and validation of the compliance of any XML or JSON objects with the XSD.
Parameters and resource representations exchanged in primitives between oneM2M entities shall comply with data formats defined in this specification based on the referred XSD documents. The present document defines procedures for validation of received messages and the error handling in case of reception of non-compliant message content.

NOTE: M2M implementations are required to validate the data received in incoming primitives in accordance with this specification, but this specification does not intend to impose restrictions on implementation of the validation procedures. In particular the validation procedure is not required to use the XSD documents directly.
6.2
Addressing
This clause describes the method of addressing oneM2M entities (e.g. AE or CSE) and oneM2M resources using identifiers described in the oneM2M TS-0001 Functional Architecture [6].
6.2.1 Summary of oneM2M Identifiers

shows the summary of M2M Identifers defined in oneM2M TS-0001 Functional Architecture [6].
Table 6.2.1‑1: M2M Identifiers
	Identifier
	Data Type
	Description

	M2M-SP-ID
	m2m:ID
(see clause 6.3.2)
	A globally unique ID as specified in [6]

	App-ID
	m2m:ID (see clause 6.3.2)
	The identifier is specified in[6]

	AE-ID
	m2m:ID
(see clause 6.3.2)
	A globally unique ID as specified in [6]

	CSE-ID
	m2m:ID
(see clause 6.3.2)
	A globally unique ID as specified in [6]

	M2M-Node-ID
	m2m:nodeID
(see clause 6.3.2)
	A globally unique ID as specified in[6]

	M2M-Sub-ID
	m2m:ID
(see clause 6.3.2)
	A globally unique ID as specified in [6]

	M2M-Request-ID
	m2m:requestID
(see clause 6.3.2)
	A unique ID as specified in [6]

	M2M-Ext-ID
	m2m:externalID
(see clause 6.3.4)
	The identifier is specified in [6]

	UNetwork-ID
	m2m:ID
(see clause 6.3.2)
	A unique ID as specified in [6]

	Trigger-Recipient-ID
	xs:unsignedInt
	The identifier is specified in [6]

6.2.2 oneM2M Entity Addressing
The oneM2M entities (e.g. AE or CSE) are identified and addressable using M2M Identifiers. Since an M2M Identifier is protocol independent, an IN-CSE shall accommodate address resolution functionality to get actual PoA addresses for communicating with other M2M entities using a specific protocol binding.

The present specification assumes each oneM2M entity has the CSE-PoA address of its Registrar CSE in advance.

When the oneM2M entity is communicating to another oneM2M entity , the address appearing in the oneM2M primitive (e.g. at From or To parameter) shall be the absolute form of AE-ID or CSE-ID defined in oneM2M TS-0001 [6].

The CSE-ID shall be assigned by M2M Service Provider. The syntax of CSE-ID is defined by following ABNF notation[20].

absolute-CSE-ID = "//" M2M-SP-ID SP-"/" Relative-CSE-ID

EXAMPLE 1 Starts:

EXAMPLE: //myoperator.com/cse1

This is example of CSE-ID, “myoperator.com” is the M2M-SP-ID and “cse1” is M2M-SP relative CSE-ID.

EXAMPLE 1 Ends:

The AE-ID which is assigned by M2M Service Provider (SP relative AE-ID), or by Registrar CSE locally (CSE relative AE-ID).

The syntax of AE-ID in ABNF notion [20] is following:

AE-ID = SP-relative-AE-ID / CSE-relative-AE-ID

absoluteSP-relative-AE-ID = "//" M2M-SP-ID "/" S-AE-ID-Stem

SPCSE-relative-AE-ID = CSE-ID "/" C-AE-ID-Stem

S-AE-ID-Stem = "S" SP-assigned-AE-ID-Stem

C-AE-ID-Stem = "C" CSE-assigned-AE-ID-Stem

SP-assigned-AE-ID-Stem = 1*unreserved

CSE-assigned-AE-ID-Stem = 1*unreserved

unreserved = ALPHA / DIGIT / "-" / "." / "_" / "~"

EXAMPLE 2 Starts:

EXAMPLE: //myoperator.com/S563423

This is example of absolute-SP-relative AE-ID.

EXAMPLE: //myoperator.com/cse2/C3532ea3
This is example of AE-ID, which registered on the Registrar CSE //myoperator.com/cse2. ‘C3532ea3’ is the AE-ID-Stem which is assigned by //myoperator.com/cse2.

EXAMPLE 2 Ends:
6.2.3 oneM2M Resource Addressing

The authorized oneM2M entities can operate oneM2M Resourrce by specifying the Resource Identifier as the target address.

There are 2 forms of oneM2M Resource Identifer is defined in clause 7.2 of the oneM2M TS-0001[6].

11) Hierachical Address: the address which is constructed as relative path from the CSEBase resource via parent resources.
12) Non-hierarchical Address: the address which uniquely identifies the resource in the M2M-SP's domain.

A single attribute of the targeted oneM2M resource shall be addressable adding the sub-address,(targeted-attribute-name) following a "#" character after the resource address.

The address appearing in 'ChildResourceRef' may be used as in M2M-SP relative form, if it is obvious which M2M-SP or CSE-ID should be added.

The syntax of the oneM2M Resource Identifier (resource-ID) in ABNF notion [20] is following:

resource-address = (hierarchical-resouce-address / non-hierachical-resource-address) ["#" targeted-attribute-name]

hierachical-resource-address = [[SP-ID] CSE-ID] 1*("/" resource-name)

non-hierarchical-resource-address = [[SP-ID] CSE-ID] non-hierarchical-resource-ID

resource-name = 1*unreserved

6.3 Common data types
The following sub-clauses define the data format of resource attributes and parameters used in primitives.
6.3.1 Simple data types incorporated from XML schema

The following 'built-in data types' are incorporated from XML Schema definition [3].
Note that name space identifier for 'http://www.w3.org/2001/XMLSchema' shall be referred to using the prefix xs: in the present document.
Table 6.3.1‑1: Data Types incorporated from XML Schema
	Data Type
	Description
	Notes

	xs:anyType
	A special complex type definition whose name is anyType in the XSD namespace, is present in each XSD schema. The definition of anyType serves as default type definition for element declarations whose XML representation does not specify one.
	

	xs:anySimpleType
	The anySimpleType is considered to have an unconstrained lexical space for all built-in simple datatypes.
	

	xs:string
	The string data type represents character strings in XML
	

	xs:boolean
	boolean represents the values of two-valued logic.
	

	xs:decimal
	decimal represents a subset of the real numbers, which can be represented by decimal numerals. The value space of decimal is the set of numbers that can be obtained by dividing an integer by a non-negative power of ten, i.e. expressible as i / 10 n where i and n are integers and n ≥ 0. Precision is not reflected in this value space; the number 2.0 is not distinct from the number 2.00. The order relation on decimal is the order relation on real numbers, restricted to this subset.
	

	xs:float
	The float data type is patterned after the IEEE single-precision 32-bit floating point data type IEEE 754-2008 [8]. Its value space is a subset of the rational numbers. Floating point numbers are often used to approximate arbitrary real numbers.
	

	xs:double
	The double data type is patterned after the IEEE double‑precision 64-bit floating point data type IEEE 754‑2008 [8]. Each floating point data type has a value space that is a subset of the rational numbers. Floating point numbers are often used to approximate arbitrary real numbers.
	

	xs:duration
	duration is a data type that represents durations of time.
	

	xs:dateTime
	dateTime represents instants of time, optionally marked with a particular time zone offset. Values representing the same instant but having different time zone offsets are equal but not identical.
	

	xs:time
	time represents instants of time that recur at the same point in each calendar day, or that occur in some arbitrary calendar day.
	

	xs:date
	date represents top-open intervals of exactly one day in length on the timelines of dateTime, beginning on the beginning moment of each day, up to but not including the beginning moment of the next day). For non-time zoned values, the top-open intervals disjointly cover the non‑time zoned timeline, one per day. For time zoned values, the intervals begin at every minute and therefore overlap.
	

	xs:hexBinary
	hexBinary represents arbitrary hex-encoded binary data.
	

	xs:base64Binary
	base64Binary represents arbitrary Base64-encoded binary data. For base64Binary data the entire binary stream is encoded using the Base64 Encoding defined in RFC 3548 [9], which is derived from the encoding described in RFC 2045 [10].
	

	xs:anyURI
	anyURI represents an Internationalized Resource Identifier Reference (IRI). An anyURI value can be absolute or relative, and may have an optional fragment identifier (i.e. it may be an IRI Reference). This type should be used when the value fulfils the role of an IRI, as defined in RFC 3987 [11] or its successor(s) in the IETF Standards Track.
	

	xs:normalizedString
	normalizedString represents white space normalized strings. The ·value space· of normalizedString is the set of strings that do not contain the carriage return (#xD), line feed (#xA) nor tab (#x9) characters. The lexical space· of normalizedString is the set of strings that do not contain the carriage return (#xD), line feed (#xA) nor tab (#x9) characters. The base type of normalizedString is string.
	

	xs:token
	token represents tokenized strings. The ·value space· of token is the set of strings that do not contain the carriage return (#xD), line feed (#xA) nor tab (#x9) characters, that have no leading or trailing spaces (#x20) and that have no internal sequences of two or more spaces. The lexical space· of token is the set of strings that do not contain the carriage return (#xD), line feed (#xA) nor tab (#x9) characters, that have no leading or trailing spaces (#x20) and that have no internal sequences of two or more spaces. The base type·of token is normalizedString.
	

	xs:NCName
	The·value space of NCName is the set of all strings which can be used as XML element names, omitting strings that contain : characters.
	

	xs:language
	language represents formal natural language identifiers, as defined by BCP 47[12].
	

	xs:integer
	integer is derived from decimal by fixing the value of fractionDigits·to be 0 and disallowing the trailing decimal point. This results in the standard mathematical concept of the integer numbers. The ·value space· of integer is the infinite set {...,-2,-1,0,1,2,...}. The ·base type of integer is decimal.
	

	xs:nonNegativeInteger
	nonNegativeInteger has a lexical representation consisting of an optional sign followed by a non-empty finite-length sequence of decimal digits (#x30-#x39). If the sign is omitted, the positive sign ('+') is assumed. If the sign is present, it shall be "+" except for lexical forms denoting zero, which may be preceded by a positive ('+') or a negative ('-') sign. For example: 1, 0, 12678967543233, +100000.
	

	xs:positiveInteger
	positiveInteger is ·derived· from nonNegativeInteger by setting the value of minInclusive·to be 1. This results in the standard mathematical concept of the positive integer numbers. The ·value space· of positiveInteger is the infinite set {1,2,...}. The base type·of positiveInteger is nonNegativeInteger.
	

	xs:unsignedLong
	unsignedLong is derived· from nonNegativeInteger by setting the value of ·maxInclusive· to be 18446744073709551615. The base type·of unsignedLong is nonNegativeInteger.
	

	xs:unsignedInt
	unsignedInt is ·derived·from unsignedLong by setting the value of·maxInclusive·to be 4294967295. The base type·of unsignedInt is unsignedLong.
	

	xs:unsignedShort
	unsignedShort is ·derived· from unsignedInt by setting the value of maxInclusive· to be 65535. The ·base type·of unsignedShort is unsignedInt.
	

6.3.2 oneM2M simple data types

Table 6.3.2‑1 describes oneM2M-specific simple data type definitions. XML Schema data type definitions for these data types can be found in the XSD file called CDT-commonTypes-v1_0_0.xsd.

The types in table 6.3.2‑1 are either:

· Atomic data types derived from XML Schema data types by restrictions other than enumeration

· List data types constructed from other XML Schema or oneM2M-defined atomic data types.

The oneM2M-defined enumeration data types are defined in clause 6.3.3.

Table 6.3.2‑1: oneM2M Simple Data Types
	XSD type name
	Type Name
	Examples
	Description

	m2m:ID
	Generic ID
	//globalm2m.org
	Used to represent generic IDs generated and used within oneM2M (M2M-SP-ID)

	
	
	//globalm2m.org/C190XX7T
	(CSE-ID)

	
	
	//globalm2m.org/CSE1/123A38ZZY
	(AE-ID)

	m2m:nodeID
	Node ID
	urn:gsma:imei:90420156-025763-0;svn=42
	Used for Node IDs. The constraints on this type are different from those on Generic IDs
(IMEI as node ID)

	m2m:deviceID
	Device ID
	
	

	m2m:externalID
	M2M-EXT-ID
	urn:gsma:imei:90420156-025763-0;vers=0
	The identifier of the node for the underlying network provider.
In 3GPP case, the accessID is mapped to External Identifier as specified in TS 23.003 [17].

Or (MSISDN)

The identifier of the node as specified in TS 23.003 [17],

	m2m:requestID
	Request ID
	ab3f124a, CSE1/98821
	Used for Request IDs. This type may include the ID of the target CSE as well as a part that varies for each ID

	m2m:nhURI
	Non hierarchical Identifier
	/CSE090112/ C190XX7T
	Used where a resourceID is required to be non-hierarchical

	m2m:acpType
	List of ACP Types
	//IN-CSEID.m2m.myoperator.org/93405
	Used to represent an AccessControlPolicy identifier. This can be either a URI or an opaque token

	m2m:labelsType
	Labels
	(printers networkwifi1 vender1)
	A list of tokens used as keys for discovering resources (searching wifi connected printer from vender 1)

	m2m:networkaccessID
	Network Access Identifier
	user@realm
	The networkaccessIdentifier is a standard way of identifying users who request access to a network as specified at IETF RFC 4282 [18].

	m2m:listOfM2MID
	List of M2M identifiers
	
	xs:list of elements of data type m2m:ID

	m2m:listOfMinMax
	List of Time Limits
	(10 2560)
	xs:list of two xs:long values defining min and max limits of time intervals in units of milliseconds (value -1 representing infinite time)

	m2m:backOffParameters
	List of Backoff Parameters
	(100 100 2000)
	Ordered sequence of 3 values of data type xs:nonNegativeInteger representing backoffTime, backoffTimeIncrement, maximumBackoffTime (in units of milliseconds)

	m2m:ipv4
	IPv4 address string with optional CIDR suffix
	10.125.0.0/16, 122.77.12.1
	Required in m2m:acr

	m2m:ipv6
	IPv6 address string with optional CIDR suffix
	::/0, Fadf:ddd0::/32, abcd:ffff:abb0:aaaa::/64
	Required in m2m:acr

	m2m:countryCode
	Country Code
	KR
	2-character country code as defined by ISO-3166

	m2m:poaList
	List of PointOfAccess strings
	http://172.25.0.10:8080,

coap://m2m.sp.com
	list of xs:string. Each pointOfAccess entry in list is represented as a string containing the underlying transport protocol as well as the IP address and port (or an FQDN).

	m2m:timestamp
	Time stamp string
	20141003T112032
	DateTime string of ‘Basic Format’ specified in ISO8601 [27]. Time zone shall be interpreted as UTC timezone.

	m2m:typeOfContent
	Type of Content
	application/xml
	The media type shall be an IANA registered Media Types name, or an experimental Media Type (See [26]) ‘:’

	m2m:contentInfo
	Content Information
	application/xml:2
	A string consisting of a media type optionally followed by a m2m:encoding separated by ‘:’ character.

If the encoding portion is omitted, value 0 (plain) shall be applied ‘:’..

	m2m:eventCat
	Event Category
	2
	Either

1. One of the values from m2m:stdEventCats or

2. A user-defined category in the range 100-999

	m2m:eventCatWithDef
	Event Category with default
	0
	Either
1. A value from m2m:eventCat , or

2. The value 0 which has the special meaning “default”

	m2m:listOfEventCat
	List of (applicable) Event Categories
	1 101

	xs:list of elements of data type m2m:eventCat

	m2m:listOfEventCatWithDef
	List of m2m:eventCatWithDef
	0 1 101
	

	m2m:scheduleEntry
	Schedule Entry
	* 0-5 2,6,10 * * *
	The string is used to describe a duration of enablement.The string format is described in clause 7.3.9.1

6.3.3 oneM2M enumerated data types
6.3.3.1 Introduction

The oneM2M Enumeration Types are defined as extension from ‘enumeration type’ which is defined in XML Schema definition [3]. The oneM2M Enumeration Types are based on <xs:integer>, and the numeric values are interpreted as specified in clause 6.3.3.2. Table 6.3.3.1‑1 shows the example of Enumeration Type definition for m2m:enumFooType.

Table 6.3.3.1‑1: Example of oneM2M Enumeration Type Definition

	Value
	Interpretation
	Note

	1
	Interpretation-1
	

	2
	Interpretation-2
	

	3
	Interpretation-3
	

	NOTE: See Clause x.x.x “title of clause”

The oneM2M Enumeration Type definition shall be implemented as part of
CDT-enumeration-v1_0_0-<<date of publication>>.xsd. Figure 6.3.3.1‑1 shows the example of XSD representation of ‘m2m:enumFooType’.

[image: image4]
Figure 6.3.3.1‑1: Example of XSD version of oneM2M Enumeration Type

6.3.3.2 Enumeration type definitions

6.3.3.2.1 m2m:resourceType
Table 6.3.3.2.1‑1: Interpretation of resourceType

	Value
	Interpretation
	Note

	1
	accessControlPolicy
	

	2
	AE
	

	3
	container
	

	4
	contentInstance
	

	5
	CSEBase
	

	6
	delivery
	

	7
	eventConfig
	

	8
	execInstance
	

	9
	group
	

	10
	locationPolicy
	

	11
	m2mServiceSubscriptionProfile
	

	12
	mgmtCmd
	

	13
	mgmtObj
	

	14
	node
	

	15
	pollingChannel
	

	16
	remoteCSE
	

	17
	request
	

	18
	schedule
	

	19
	serviceSubscribedAppRule
	

	20
	serviceSubscribedNode
	

	21
	statsCollect
	

	22
	statsConfig
	

	23
	subscription
	

	10001
	accessControlPolicyAnnc
	

	10002
	AEAnnc
	

	10003
	containerAnnc
	

	10004
	contentInstanceAnnc
	

	10009
	groupAnnc
	

	10010
	locationPolicyAnnc
	

	10013
	mgmtObjAnnc
	

	10014
	nodeAnnc
	

	10016
	remoteCSEAnnc
	

	10018
	scheduleAnnc
	

	NOTE: See clause 6.4.1 “Request message parameter data types”

6.3.3.2.2 m2m:cseTypeID

Used for cseType attribute of <CSEBase> resource.

Table 6.3.3.2.2‑1: Interpretation of cseTypeID

	Value
	Interpretation
	Note

	1
	IN_CSE
	

	2
	MN_CSE
	

	3
	ASN_CSE
	

	NOTE: See clause 7.3.4 “Resource Type remoteCSE”

6.3.3.2.3 m2m:locationSource

Used for locationSource attribute of <locationPolicy> resource.

Table 6.3.3.2.3‑1: Interpretation of locationSource

	Value
	Interpretation
	Note

	1
	Network_based
	

	2
	Device_based
	

	3
	Sharing_based
	

	NOTE: See clause 7.3.10 “Resource Type locationPolicy”

6.3.3.2.4 m2m:stdEventCats
Used for ec parameter in request and eventCat attribute of <delivery> resource and cmdh policy resource types.
Table 6.3.3.2.4‑1: Interpretation of stdEventCats
	Value
	Interpretation
	Note

	1
	Default
	

	2
	Immediate
	

	3
	BestEffort
	

	4
	Latest
	

	NOTE: See clause 7.3.11 “Resource Type delivery” and Annex D.12 “Resource cmdhPolicy”

6.3.3.2.5 m2m:operation

Used for Operation parameter in request and operation attribute in <request> resource as well as operationMonitor.
Table 6.3.3.2.5‑1: Interpretation of operation
	Value
	Interpretation
	Note

	1
	Create
	

	2
	Retrieve
	

	3
	Update
	

	4
	Delete
	

	5
	Notify
	

	NOTE: See clause 6.4.1 “Request message parameter data types”

6.3.3.2.6 m2m:responseType

Used for Response Type parameter (as a part of responseTypeInfo, See Clause 6.3.4.29) in request .
Table 6.3.3.2.6‑1: Interpretation of responseType

	Value
	Interpretation
	Note

	1
	nonBlockingRequestSynch
	

	2
	nonBlockingRequestAsynch
	

	3
	blockingRequest
	

	NOTE: See clause 6.4.1 “Request message parameter data types”

6.3.3.2.7 m2m:resultContent

Used for Result Content parameter in request.
Table 6.3.3.2.7‑1: Interpretation of resultContent

	Value
	Interpretation
	Note

	0
	nothing
	

	1
	attributes
	

	2
	hierarchical address
	

	3
	hierarchical address and attributes
	

	4
	attributes and child resources
	

	5
	attributes and child resource references
	

	6
	child resource references
	

	7
	original resource
	

	NOTE: See clause 6.4.1 “Request message parameter data types”

6.3.3.2.8 m2m:discResType

Used in metaInformation attribute in <request> resource
Table 6.3.3.2.8‑1: Interpretation of discResType

	Value
	Interpretation
	Note

	1
	hierarchical
	

	2
	non_hierarchical
	

	3
	cseID and resourceID
	

	NOTE: See clause 6.4.1 “Request message parameter data types”

6.3.3.2.9 m2m:responseStatusCode
See clause 6.6.3 "Current Response Status Codes"
Table 6.3.3.2.9‑1: Interpretation of responseStatusCode
	Value
	Interpretation
	Note

	(‘Numeric Code’ in Clause 6.6.3)
	(‘Description’ in clause 6.6.3)
	

	

6.3.3.2.10 m2m:requestStatus

Used for requestStatus attribute in <request> resource.

Table 6.3.3.2.10‑1: Interpretation of requestStatus

	Value
	Interpretation
	Note

	1
	COMPLETED
	

	2
	FAILED
	

	3
	PENDING
	

	4
	FORWARDED
	

	NOTE: See clause 7.3.12 “Resource Type request”

6.3.3.2.11 m2m:memberType

Used for memberType attribute in <member> resource.

Table 6.3.3.2.11‑1: Interpretation of memberType

	Value
	Interpretation
	Note

	1
	accessControlPolicy
	

	2
	AE
	

	3
	container
	

	4
	contentInstance
	

	5
	CSEBase
	

	6
	delivery
	

	7
	eventConfig
	

	8
	execInstance
	

	9
	group
	

	10
	locationPolicy
	

	11
	m2mServiceSubscription
	

	12
	mgmtCmd
	

	13
	mgmtObj
	

	14
	node
	

	15
	pollingChannel
	

	16
	remoteCSE
	

	17
	request
	

	18
	schedule
	

	19
	serviceSubscribedAppRule
	

	20
	serviceSubscribedNode
	

	21
	statsCollect
	

	22
	statsConfig
	

	23
	subscription
	

	24
	mixed
	

	NOTE: See clause 7.3.13 “Resource Type group”

6.3.3.2.12 m2m:consistencyStrategy

Used for consistencyStrategy attribute in <group> resource.

Table 6.3.3.2.12‑1: Interpretation of consistencyStrategy
	Value
	Interpretation
	Note

	1
	ABANDON_MEMBER
	

	2
	ABANDON_GROUP
	

	3
	SET_MIXED
	

	NOTE: See clause 7.3.13 “Resource Type group”

6.3.3.2.13 m2m:cmdType

Used for cmdType attribute in <mgmtCmd> resource.

Table 6.3.3.2.13‑1: Interpretation of cmdType
	Value
	Interpretation
	Note

	1
	RESET
	

	2
	REBOOT
	

	3
	UPLOAD
	

	4
	DOWNLOAD
	

	5
	SOFTWAREINSTALL
	

	6
	SOFTWAREUNINSTALL
	

	7
	SOFTWAREUPDATE
	

	NOTE: See clause 7.3.16 “Resource Type mgmtCmd”

6.3.3.2.14 m2m:execModeType

Used for execModeType attribute in <mgmtCmd> and <execInstance> resource.

Table 6.3.3.2.14‑1: Interpretation of execModetType
	Value
	Interpretation
	Note

	1
	IMMEDIATEONCE
	

	2
	IMMEDIATEREPEAT
	

	3
	RANDOMONCE
	

	4
	RANDOMREPEAT
	

	NOTE: See clause 7.3.16 “Resource Type mgmtCmd” and Clause 7.3.17 “Resource Type execInstance”

6.3.3.2.15 m2m:execStatusType

Used for execStatusType attribute in <execInstance> resource.

Table 6.3.3.2.15‑1: Interpretation of execStatusType
	Value
	Interpretation
	Note

	1
	INITIATED
	

	2
	PENDING
	

	3
	FINISHED
	

	4
	CANCELLING
	

	5
	CANCELLED
	

	6
	STATUS_NON_CANCELLABLE
	

	NOTE: See clause 7.3.17 “Resource Type execInstance”

6.3.3.2.16 m2m:execResultType

Used for execStatusType attribute in <execInstance> resource.

Table 6.3.3.2.16‑1: Interpretation of execResultType
	Value
	Interpretation
	Note

	1
	STATUS_REQUEST_UNSUPPORTED
	

	2
	STATUS_REQUEST DENIED
	

	3
	STATUS_CANCELLATION_DENIED
	

	4
	STATUS_INTERNAL_ERROR
	

	5
	STATUS_INVALID_ARGUMENTS
	

	6
	STATUS_RESOURCES_EXCEEDED
	

	7
	STATUS_FILE_TRANSFER_FAILED
	

	8
	STATUS_FILE_TRANSFER_SERVER_AUTHENTICATION_FAILURE
	

	9
	STATUS_UNSUPPORTED_PROTOCOL
	

	10
	STATUS_UPLOAD_FAILED
	

	11
	STATUS_FILE_TRANSFER_FAILED_MULTICAST_GROUP_UNABLE_JOIN
	

	12
	STATUS_FILE_TRANSFER_FAILED_SERVER_CONTACT_FAILED
	

	13
	STATUS_FILE_TRANSFER_FAILED_FILE_ACCESS_FAILED
	

	14
	STATUS_FILE_TRANSFER_FAILED_DOWNLOAD_INCOMPLETE
	

	15
	STATUS_FILE_TRANSFER_FAILED_FILE_CORRUPTED
	

	16
	STATUS_FILE_TRANSFER_FILE_AUTHENTICATION_FAILURE
	

	17
	STATUS_FILE_TRANSFER_FAILED
	

	18
	STATUS_FILE_TRANSFER_SERVER_AUTHENTICATION_FAILURE
	

	19
	STATUS_FILE_TRANSFER_WINDOW_EXCEEDED
	

	20
	STATUS_INVALID_UUID_FORMAT
	

	21
	STATUS_UNKNOWN_EXECUTION_ENVIRONMENT
	

	22
	STATUS_DISABLED_EXECUTION_ENVIRONMENT
	

	23
	STATUS_EXECUTION_ENVIRONMENT_MISMATCH
	

	24
	STATUS_DUPLICATE_DEPLOYMENT_UNIT
	

	25
	STATUS_SYSTEM_RESOURCES_EXCEEDED
	

	26
	STATUS_UNKNOWN_DEPLOYMENT_UNIT
	

	27
	STATUS_INVALID_DEPLOYMENT_UNIT_STATE
	

	28
	STATUS_INVALID_DEPLOYMENT_UNIT_UPDATE_DOWNGRADE_DISALLOWED
	

	29
	STATUS_INVALID_DEPLOYMENT_UNIT_UPDATE_UPGRADE_DISALLOWED
	

	30
	STATUS_INVALID_DEPLOYMENT_UNIT_UPDATE_VERSION_EXISTS
	

	NOTE: See clause 7.3.16 “Resource Type mgmtCmd”

6.3.3.2.17 m2m:pendingNotification
This is used for pendingNotification attribute in <subscription> resource.

Table 6.3.3.2.17‑1: Interpretation of pendingNotification
	Value
	Interpretation
	Note

	1
	sendLatest
	

	2
	sendAllPending
	

	NOTE: See clause 7.3.8 “Resource Type subscription”

6.3.3.2.18 m2m:notificationContentType

Table 6.3.3.2.18‑1: Interpretation of notificationContentType
	Value
	Interpretation
	Note

	1
	modifiedAttributes
	

	2
	wholeResource
	

	3
	referenceOnly
	

	NOTE: See clause 7.3.8 “Resource Type subscription”

6.3.3.2.19 m2m:resourceStatus
This is used for eventNotificationCriteria.

Table 6.3.3.2.19‑1: Interpretation of resourceStatus
	Value
	Interpretation
	Note

	1
	childCreated
	

	2
	childDeleted
	

	3
	updated
	

	4
	deleted
	

	NOTE: See clause 7.4.1.1 “Definition of Notification”

6.3.3.2.20 m2m:status

This is used for [software], [firmware] resources.

Table 6.3.3.2.20‑1: Interpretation of status

	Value
	Interpretation
	Note

	1
	Successful
	

	2
	Failure
	

	3
	In_Process
	

	NOTE: See clause D.2, D.3 firmware and software management

6.3.3.2.21 m2m:batteryStatus
This is used for [battery] resource.

Table 6.3.3.2.21‑1: Interpretation of batteryStatus

	Value
	Interpretation
	Note

	1
	NORMAL
	The battery is operating normally and not on power.

	2
	CHARGING
	The battery is currently charging.

	3
	CHARGING_COMPLETE
	The battery is fully charged and still on power.

	4
	DAMAGED
	The battery has some problem.

	5
	LOW_BATTERY
	The battery is low on charge.

	6
	NOT_INSTALLED
	The battery is not installed.

	7
	UNKNOWN
	The battery information is not available.

	NOTE: See annex D.7 battery management

6.3.3.2.22 m2m:mgmtDefinition
This is used for <mgmtObj> resource.

Table 6.3.3.2.22‑1: Interpretation of mgmtDefinition

	Value
	Interpretation
	Note

	1001
	[firmware]
	

	1002
	software
	

	1003
	memory
	

	1004
	areaNwkInfo
	

	1005
	areaNwkDeviceInfo
	

	1006
	battery
	

	1007
	deviceInfo
	

	1008
	deviceCapability
	

	1009
	reboot
	

	1010
	eventLog
	

	1011
	cmdhPolicy
	

	1012
	activeCmdhPolicy
	

	1013
	cmdhDefaults
	

	1014
	cmdhDefEcValue
	

	1015
	cmdhEcDefParamValues
	

	1016
	cmdhLimits
	

	1017
	cmdhNetworkAccessRules
	

	1018
	cmdhNwAccessRule
	

	1019
	cmdhBuffer
	

	0
	Unspecified
	Permits vendor-specific extensions

	NOTE: See clause 7.3.15 mgmtObj

6.3.3.2.23 m2m:logTypeId

Used for the logTypeId attribute of [eventLog] Management Resource.

Table 6.3.3.2.23‑1: Interpretation of logTypeId

	Value
	Interpretation
	Note

	1
	System
	

	2
	Security
	

	3
	Event
	

	4
	Trace
	

	5
	Panic
	

	

6.3.3.2.24 m2m:logStatus

Used for the logStatus attribute of [eventLog] Management Resource.

Table 6.3.3.2.24‑1: Interpretation of logStatus

	Value
	Interpretation
	Note

	1
	Started
	the logging activity is started

	2
	Stopped
	the logging activity is stopped

	3
	Unknown
	the current status of the logging activity is unknown.

	4
	NotPresent
	the log data is not present and the logData attribute shall be ignored.

	5
	Error
	error conditions for the logging activities, and the logging is stopped.

	

6.3.3.2.25 m2m:eventType

Used for eventType attribute in <eventConfig> resource.

Table 6.3.3.2.25‑1: Interpretation of eventType

	Value
	Interpretation
	Note

	1
	DATAOPERATION
	

	2
	STORAGEBASED
	

	3
	TIMERBASED
	

	NOTE: See clause 7.3.24 “Resource Type eventConfig”

6.3.3.2.26 m2m:statsRuleStatusType

Used for statsRuleStatusType attribute in <statsCollect> resource.

Table 6.3.3.2.26‑1: Interpretation of statsRuleStatusType
	Value
	Interpretation
	Note

	1
	ACTIVE
	

	2
	INACTIVE
	

	NOTE: See clause 7.3.25 “Resource Type statsCollect”

6.3.3.2.27 m2m:statModelType

Used for statModelType attribute in <statsCollect> resource.

Table 6.3.3.2.27‑1: Interpretation of statModelType
	Value
	Interpretation
	Note

	1
	EVENTBASED
	

	NOTE: See clause 7.3.25 “Resource Type statsCollect”

6.3.3.2.28 m2m:encodingType

Used for describing encoding type which is applied on the content attribute of the contentInstance resource.
Table 6.3.3.2.28‑1: Interpretation of encodingType
	Value
	Interpretation
	Note

	0
	Plain - no transfer encoding is applied
	

	1
	base64 encoding (see [9]) is applied on string data
	

	2
	base64 encoding (see [9]) is applied on binary data
	

	

6.3.3.2.29 m2m:accessControlOperations
Used for accessControlPolicys.

Table 6.3.3.2.29‑1: Interpretation of accessControlOperations
	Value
	Interpretation
	Note

	1
	CREATE
	

	2
	RETRIEVE
	

	4
	UPDATE
	

	8
	DELETE
	

	16
	DISCOVERY
	

	32
	NOTIFY
	

	NOTE: Combinations of these values are specified by adding them together. For example the value 5 is interpreted as “CREATE and UPDATE”

6.3.3.2.30 m2m:SRole-ID
Used for <m2mServiceSubscriptionProfile>
Table 6.3.3.2.30‑1: Interpretation of SRole-ID
	Value
	Interpretation
	Note

	"01-001"
	Software Management
	

	"02-001"
	Device Configuration
	

	"02-002"
	Device Diagnostics and Management
	

	"02-003"
	Device Firmware Management
	

	"02-004"
	Device Topology
	

	"03-001"
	Location
	

	"04-001"
	Basic Data
	

	"05-001"
	Onboarding
	

	"06-001"
	Security Administration
	

	"07-001"
	Groups Management
	

	"08-001"
	Event Collection
	

	NOTE: This is an enumeration of String values

6.3.4 Complex data types
The present clause defines structured information for specific use in oneM2M protocol. These types are defined to be xs:sequence complex types, unless specified otherwise. XML Schema data type definitions for these data types can be found in the XSD file called CDT-commonTypes-v1_0_0.xsd.

In addition, each oneM2M resource has a corresponding complex data type. These are described in Clause 6.5.
6.3.4.1 m2m:deliveryMetaData
Used for deliveryMetaData attribute in <delivery> resource.
Table 6.3.4.1‑1: Type Definition of m2m:deliveryMetadata
	Element Path
	Element Data Type
	Multiplicity
	Note

	tracingOption
	xs:boolean
	1
	

	tracingInfo
	m2m:listOfM2MID
	0..1
	

6.3.4.2 m2m:aggregatedRequest
Used for aggregatedRequest attribute in <delivery> resource.
Table 6.3.4.2‑1: Type Definition of m2m:aggregatedRequest
	Element Path
	Element Data Type
	Multiplicity
	Note

	Request
	(anonymous)
	1..n
	

	request/operation
	m2m:operation
	1
	See Clause 6.3.3.2.5

	request/to
	xs:anyURI
	1
	

	request/from
	m2m:ID
	1
	See Clause 6.3.2

	request/requestIdentifier
	m2m:requestID
	1
	See Clause 6.3.2

	request/content
	m2m:primitiveContent
	0..1
	See Clause 6.3.4.4

	request/metaInformation
	m2m:metaInformation
	0..1
	See Clause 6.3.4.3

6.3.4.3 m2m:metaInformation
Used for metaInformation attribute in <request> resource, and m2m:aggregatedRequest data type.
 Table 6.3.4.3‑1: Type Definition of m2m:metaInformation

	Element Path
	Element Data Type
	Multiplicity
	Note

	resourceType
	m2m:resourceType
	0..1
	See Clause 6.3.3.2.1

	Name
	xs:string
	0..1
	

	originatingTimestamp
	m2m:timestamp
	0..1
	

	requestExpirationTimestamp
	m2m:timestamp
	0..1
	

	resultExpirationTimestamp
	m2m:timestamp
	0..1
	

	operationExecutionTime
	m2m:timestamp
	0..1
	

	responseType
	m2m:responseType
	0..1
	See Clause 6.3.3.2.6

	resultPersistence
	m2m:timestamp
	0..1
	

	resultContent
	m2m:resultContent
	0..1
	See Clause 6.3.3.2.7

	eventCategory
	m2m:eventCat
	0..1
	See Clause 6.3.2

	deiveryAggregation
	xs:boolean
	0..1
	

	groupRequestIdentifier
	xs:string
	0..1
	

	filterCriteria
	m2m:filterCriteria
	0..1
	See Clause 6.3.4.7

	discoveryResultType
	m2m:discResType
	0..1
	See Clause 6.3.3.2.8

6.3.4.4 m2m:primitiveContent
Used for Content parameter in request/response primitive and the content attribute in <request> resource.
See clause 7.1.1.1 and 7.1.1.2 .
6.3.4.5 m2m:batchNotify
Used for batchNotify attribute in <subscription> resource.

Table 6.3.4.5‑1: Type Definition of m2m:batchNotify

	Element Path
	Element Data Type
	Multiplicity
	Note

	Number
	xs:nonNegativeInteger
	0..1
	

	Duration
	xs:duration
	0..1
	

6.3.4.6 m2m:eventNotificationCriteria
Used for eventNotificationCriteria of a <subscription> resource.

Table 6.3.4.6‑1:Type Definition of m2m:eventNotificationCriteria

	Element Path
	Element Data Type
	Multiplicity
	Note

	createdBefore
	m2m:timestamp
	0..1
	

	createdAfter
	m2m:timestamp
	0..1
	

	modifiedSince
	m2m:timestamp
	0..1
	

	unmodifiedSince
	m2m:timestamp
	0..1
	

	stateTagSmaller
	xs:positiveInteger
	0..1
	

	stateTagBigger
	xs:nonNegativeInteger
	0..1
	

	expireBefore
	m2m:timestamp
	0..1
	

	expireAfter
	m2m:timestamp
	0..1
	

	sizeAbove
	xs:nonNegativeInteger
	0..1
	

	sizeBelow
	xs:positiveInteger
	0..1
	

	resourceStatus
	m2m:resourceStatus
	0..n
	

	operationMonitor
	m2m:operation
	0..5
	

	attribute
	m2m:attribute
	0..n
	

6.3.4.7 m2m:filterCriteria
Used indirectly in the <request> resource and for the Filter Criteria parameter in a request.
Table 6.3.4.7‑1: Type Definition of m2m:filterCriteria

	Element Path
	Element Data Type
	Mutiplicity
	Note

	createdBefore
	m2m:timestamp
	0..1
	

	createdAfter
	m2m:timestamp
	0..1
	

	modifiedSince
	m2m:timestamp
	0..1
	

	unmodifiedSince
	m2m:timestamp
	0..1
	

	stateTagSmaller
	xs:positiveInteger
	0..1
	

	stateTagBigger
	xs:nonNegativeInteger
	0..1
	

	expireBefore
	m2m:timestamp
	0..1
	

	expireAfter
	m2m:timestamp
	0..1
	

	labels
	m2m:labels
	0..1
	

	resourceType
	list of m2m:resourceType
	0..1
	

	sizeAbove
	xs:nonNegativeInteger
	0..1
	

	sizeBelow
	xs:positiveInteger
	0..1
	

	contentType
	m2m:typeOfContent
	0..n
	

	attribute
	m2m:attribute
	0..n
	

	filterUsage
	m2m:filterUsage
	0..1
	

	limit
	xs:nonNegativeInteger
	0..1
	

6.3.4.8 m2m:attribute
Used in m2m:eventNotificationCriteria and m2m:filterCriteria.
Table 6.3.4.8‑1: Type Definition of m2m:attribute

	Element Path
	Element Data Type
	Multiplicity
	Note

	@name
	xs:NCName
	1
	

	(base content)
	xs:anyType
	1
	

6.3.4.9 m2m:attributeList
Used in the Content parameter of a Primitive

Table 6.3.4.9‑1: Type Definition of m2m:attributeList

	Element Path
	Element Data Type
	Multiplicity
	Note

	attribute
	m2m:attribute
	1..n
	

6.3.4.10 m2m:scheduleEntries
Table 6.3.4.10‑1: Type Definition of m2m:scheduleEntries

	Element Path
	Element Data Type
	Multiplicity
	Note

	scheduleEntry
	m2m:scheduleEntry
	1..n
	

6.3.4.11 m2m:aggregatedNotification
Used in the Notification Data Object.
Table 6.3.4.11‑1: Type Definition of m2m:aggregatedNotification

	Element Path
	Element Data Type
	Multiplicity
	Note

	notification
	m2m:notification
	1..n
	

6.3.4.12 m2m:notification
Table 6.3.4.12‑1: Type Definition of m2m:notification

	Element Path
	Element Data Type
	Multiplicity
	Note

	notificationEvent
	(anonymous)
	0..1
	

	notificationEvent/representation
	xs:anyType
	0..1
	Representation of resource modification in XML/JSON representation.

	notificationEvent/resourceStatus
	m2m:resourceStatus
	0..1
	

	notificationEvent/operationMonitor
	 (anonymous)
	0..1
	

	notificationEvent/operationMonitor/operation
	m2m:operation
	1
	m2m:operation

	notificationEvent/operationMonitor/originator
	m2m:ID
	1
	m2m:ID

	verificationRequest
	xs:boolean
	0..1
	

	subscriptionDeletion
	xs:boolean
	0..1
	

	subscriptionReference
	xs:anyURI
	1
	

	creator
	m2m:ID
	0..1
	

	notificationForwardingURI
	xs:anyURI
	0..1
	

6.3.4.13 m2m:actionStatus
Table 6.3.4.13‑1: Type Definition of m2m:actionStatus

	Element Path
	Element Data Type
	Multiplicity
	Note

	action
	xs:anyURI
	0..1
	Reference to the action (represented by a resource attribute) being performed

	status
	m2m:status
	0..1
	Indicates the status of the operation is successful, failure or in process. See Table 6.3.2.2 1

6.3.4.14 m2m:anyArgType
Table 6.3.4.14‑1: Type Definition of m2m:anyArgType
	Element Path
	Element Data Type
	Multiplicity
	Note

	name
	xs:NCName
	
	

	type
	xs:anyType
	
	

6.3.4.15 m2m:resetArgsType
Table 6.3.4.15‑1: Type Definition of m2m:resetArgsType
	Element Path
	Element Data Type
	Multiplicity
	Note

	anyArg
	m2m:anyArgType
	0..n
	

6.3.4.16 m2m:rebootArgsType
Table 6.3.4.16‑1: Type Definition of m2m:rebootArgsType
	Element Path
	Element Data Type
	Multiplicity
	Note

	anyArg
	m2m:anyArgType
	0..n
	

6.3.4.17 m2m:uploadArgsTypes
Table 6.3.4.17‑1: Type Definition of m2m:uploadArgsType
	Element Path
	Element Data Type
	Multiplicity
	Note

	fileType
	xs:string
	1
	

	URL
	xs:anyURI
	1
	

	username
	xs:string
	1
	

	password
	xs:string
	1
	

	anyArg
	m2m:anyArgType
	0..n
	

6.3.4.18 m2m:downloadArgsType
Table 6.3.4.18‑1: Type Definition of m2m:downloadArgsType
	Element Path
	Element Data Type
	Multiplicity
	Note

	fileType
	xs:string
	1
	

	URL
	xs:anyURI
	1
	

	username
	xs:string
	1
	

	password
	xs:string
	1
	

	filesize
	xs:positiveInteger
	1
	

	targetFile
	xs:string
	1
	

	delaySeconds
	xs:positiveInteger
	1
	

	successURL
	xs:anyURI
	1
	

	startTime
	m2m:timestamp
	1
	

	completeTime
	m2m:timestamp
	1
	

	anyArg
	m2m:anyArgType
	0..n
	

6.3.4.19 m2m:softwareInstallArgsType
Table 6.3.4.19‑1: Type Definition of m2m:softwareInstallArgsType
	Element Path
	Element Data Type
	Multiplicity
	Note

	URL
	xs:anyURI
	1
	

	UUID
	xs:string
	1
	

	username
	xs:string
	1
	

	password
	xs:string
	1
	

	executionEnvRef
	xs:string
	1
	

	anyArg
	m2m:anyArgType
	0..n
	

6.3.4.20 m2m:softwareUpdateArgsType
Table 6.3.4.20‑1: Type Definition of m2m:softwareUpdateArgsType
	Element Path
	Element Data Type
	Multiplicity
	Note

	UUID
	xs:string
	1
	

	version
	xs:string
	1
	

	URL
	xs:anyURI
	1
	

	username
	xs:string
	1
	

	password
	xs:string
	1
	

	executionEnvRef
	xs:string
	1
	

	anyArg
	m2m:anyArgType
	0..n
	

6.3.4.21 m2m:softwareUninstallArgsType
Table 6.3.4.21‑1: Type Definition of m2m:softwareUninstallArgsType
	Element Path
	Element Data Type
	Multiplicity
	Note

	UUID
	xs:string
	1
	

	version
	xs:string
	1
	

	executionEnvRef
	xs:string
	1
	

	anyType
	m2m:anyArgType
	0..n
	

6.3.4.22 m2m:execReqArgsListType
Table 6.3.4.22‑1: Type Definition of m2m:execReqArgsListType
	Element Path
	Element Data Type
	Multiplicity
	Note

	reset
	m2m:resetArgsType
	0..n
	

	reboot
	m2m:rebootArgsType
	0..n
	

	upload
	m2m:downloadArgsType
	0..n
	

	download
	m2m:downloadArgsType
	0..n
	

	softwareInstall
	m2m:softwareInstallArgsType
	0..n
	

	softwareUpdate
	m2m:softwareUpdateType
	0..n
	

	softwareUninstall
	m2m:softwareUninstallArgsType
	0..n
	

	anyArg
	m2m:anyArgListType
	0..n
	

This type is an xs:choice. It shall contain elements from no more than one row listed in the table above.
6.3.4.23 m2m:mgmtLinkRef
Table 6.3.4.23‑1: Type Definition of m2m:mgmtLinkRef
	Element Path
	Element Data Type
	Multiplicity
	Note

	(base content)
	xs:anyURI
	1
	URI (of type xs:anyURI) with name and type attributes.

	@name
	xs:string
	1
	The name attribute represents the name of the referenced resource instance.

	@type
	m2m:mgmtDefinition
	1
	The type attribute is restricted to the allowed specializations of resource type <mgmtObj>

In the above table, names of XML schema attributes are prefixed with a “@” character to differentiate these from Resource attribute names. The “@” character is not part of the actual attribute name.
6.3.4.24 m2m:resourceWrapper
Table 6.3.4.24‑1: Type Definition of m2m:resourceWrapper

	Element Path
	Element Data Type
	Multiplicity
	Note

	(base content)
	m2m:resource
	1
	Resource element as described in clause 7.3

	@URI
	xs:anyURI
	1
	Hierarchical URI of the resource

In the above table, names of XML schema attributes are prefixed with a “@” character to differentiate these from Resource attribute names. The “@” character is not part of the actual attribute name.

6.3.4.25 m2m:setOfAcrs
Table 6.3.4.25‑1: Type Definition of m2m:setOfAcrs
	Element Path
	Element Data Type
	Multiplicity
	Note

	accessControlRules
	m2m:accessControlRule

	1..n
	Data type of privileges and selfPrivileges attributes

6.3.4.26 m2m:accessControlRule
Table 6.3.4.26‑1: Type Definition of m2m:accessControlRule

	Element Path
	Element Data Type
	Multiplicity
	Note

	accesscControlOriginators
	list of xs:anyURI
	1
	

	accessControlOperations
	m2m:accessControlOperations
	1
	

	accessControlContexts
	
	0..1
	

	accessControlContexts/accessControlWindow
	m2m:scheduleEntry
	0..n
	

	accessControlContexts/accessControlIpAddresses
	list of m2m:ipv4 or list of m2m:ipv6
	0..1
	

	accessControlContexts/accessControlLocationRegions
	m2m:locationRegion
	0..n
	

6.3.4.27 m2m:locationRegion
Table 6.3.4.27‑1: Type Definition of m2m:locationRegion

	Element Path
	Element Data Type
	Multiplicity
	Note

	circRegion
	List of 3 xs:float
	0..1
	The values represent latitude (+/-90 degrees), longitude (+/-180 degrees), and radius (metres)

	countryCode
	list of m2m:countryCode
	0..1
	

This is an xs:choice. A locationRegion shall contain either:
13) A countryCode element, in which case circRegion shall not appear, or

14) A circRegion element, in which case countryCode shall not appear

6.3.4.28 m2m:childResourceRef
Table 6.3.4.28‑1: Type Definition of m2m:childResourceRef

	Element Path
	Element Data Type
	Multiplicity
	Note

	(base content)
	xs:anyURI
	1
	URI of the child resource

	@name
	xs:string
	1
	Gives the name of the child resource pointed to by the URI

	@type
	m2m:resourceType
	1
	Gives the resourceType of the child resource pointed to by the URI

In the above table, names of XML schema attributes are prefixed with a “@” character to differentiate these from Resource attribute names. The “@” character is not part of the actual attribute name.
6.3.4.29 m2m:responseTypeInfo
Table 6.3.4.29‑1: Type Definition of m2m:responseTypeInfo
	Element Path
	Element Data Type
	Multiplicity
	Note

	responseType
	m2m:responseType
	1
	See Clause 6.3.3.2.6

	notificationURI
	xs:anyURI
	0..unbounded
	This element may be included only when the responseType is set to “2” (nonBlockingRequestAsynch),

6.3.4.30 m2m:rateLimit
Used in <subscription>.
Table 6.3.4.30‑1: Type Definition of m2m:rateLimit
	Element Path
	Element Data Type
	Multiplicity
	Note

	maxNrOfNotify
	xs:nonNegativeInteger
	0..1
	

	timeWindow
	xs:duration
	0..1
	

6.3.4.31 m2m:operationResult
Used for operationResult attribute in <request> resource.

Table 6.3.4.31‑1: Type Definition of m2m:operationResult

	Element Path
	Element Data Type
	Multiplicity
	Note

	content
	m2m:primitiveContent
	0..1
	See Clause 6.3.4.4

	event Category
	m2m:eventCat
	0..1
	See Clause 6.3.2

	from
	m2m:ID
	0..1
	See Clause 6.3.2

	originating Timestamp
	m2m:timestamp
	0..1
	

	request Identifier
	m2m:requestID
	1
	See Clause 6.3.2

	result Expiration Timestamp
	m2m:timestamp
	0..1
	

	to
	xs:anyURI
	0..1
	

	response Status Code
	m2m:responseStatusCode
	1
	See Clause 6.3.3.2.9

6.3.4.32 m2m:aggregatedResponse
Used when aggregating responses by a group.
Table 6.3.4.32‑1: Type Definition of m2m:aggregatedResponse
	Element Path
	Element Data Type
	Multiplicity
	Note

	responsePrimitive
	See Table 6.4.2‑1 for detail.
	1..n
	

6.3.5 Universal and Common attributes

TS-0001 Functional Architecture [6] defines a number of Universal Attributes (which appear in all resources) and Common Attributes (which appear in more than one resource and have the same meaning whenever they do appear). The type and values shall be supported according to the description given inTable 6.3.5‑1.
If a Resource is represented as an XML document then the resource attributes (if present) appear in the order listed in this table. They appear before any resource-specific attributes.
Table 6.3.5‑1: Universal and Common Attributes

	Attribute Name
	Data Type
	Value restrictions and Notes

	resourceType
	m2m:resourceType
	This attribute is only determined at creation time by the hosting CSE

	resourceID
	m2m:ID
	This attribute is determined at creation time by the hosing CSE and used for non hierarchical addressing method

	parentID
	m2m:nhURI
	This attribute is determined by the hosting CSE and specified in all resource types except of <CSEBase>

	creationTime
	m2m:timestamp
	This attribute is determined by the hosting CSE when the resource is locally created

	lastModifiedTime
	m2m:timestamp
	This attribute is determined by the hosting CSE when the addressed resource is modified by means of the UPDATE operation

	labels
	list of xs:token
	Absence of this attribute means there are no labels

	accessControlPolicyIDs
	m2m:acpType
	accessControlPolicyIDs

	expirationTime
	m2m:timestamp

	expirationTime

	link
	xs:anyURI
	Absence of this attribute means that this is not an announced resource

	announceTo
	list of xs:anyURI
	Absence of this attribute means that this is not an announced resource

	announcedAttribute
	list of xs:token
	Absence of this attribute means that this is not an announced resource

	stateTag
	xs:nonNegativeInteger
	This attribute is determined by the hosting CSE. When a resource is created this counter is set to ‘0’ and it will be incremented on every modification of the resource

	resourceName
	xs:NCName
	

Table 6.3.5‑2 describes some complex types that group together the universal and common attributes, to be used by Resource Type definitions. Note that stateTag only appears in four resource types, and so is not included in these definitions, instead it is declared in the XSD files of the resources that need it.

Table 6.3.5‑2: Complex Data Types declaring groups of resource common attributes

	XSD type name
	Child Elements
	Child Element Datatype
	Multiplicity
	Description

	m2m:resource
	@resourceName
	xs:NCName
	1
	

	
	resourceType
	m2m:resourceType
	1
	

	
	resourceID
	m2m:ID
	1
	

	
	parentID
	m2m:nhURI
	1
	

	
	creationTime
	m2m:timestamp
	1
	

	
	lastModifiedTime
	m2m:timestamp
	1
	

	
	labels
	m2m:labelsType
	0..1
	

	m2m:regularResource
	@resourceName
	xs:NCName
	1
	Declares the universal / common attributes included in the non-announceable resource types.

	
	resourceType
	m2m:resourceType
	1
	

	
	resourceID
	m2m:ID
	1
	

	
	parentID
	m2m:nhURI
	1
	

	
	accessControlPolicyIDs
	m2m:acpType
	0..1
	

	
	creationTime
	m2m:timestamp
	1
	

	
	expirationTime
	m2m:timestamp
	1
	

	
	lastModifiedTime
	m2m:timestamp
	1
	

	
	stateTag
	xs:nonNegativeInteger
	1
	

	
	labels
	m2m:labelsType
	0..1
	

	
	accessControlPolicyIDs
	m2m:acpType
	0..1
	

	
	expirationTime
	m2m:timestamp
	1
	

	m2m:announceableResource
	@resourceName
	xs:NCName
	1
	Declares the universal / common attributes included in the majority of announceable resource types.

	
	resourceType
	m2m:resourceType
	1
	

	
	resourceID
	m2m:ID
	1
	

	
	parentID
	xs:anyURI
	1
	

	
	accessControlPolicyIDs
	m2m:acpType
	0..1
	

	
	creationTime
	m2m:timestamp
	1
	

	
	expirationTime
	m2m:timestamp
	1
	

	
	lastModifiedTime
	m2m:timestamp
	1
	

	
	stateTag
	xs:nonNegativeInteger
	1
	

	
	Labels
	m2m:labelsType
	0..1
	

	
	Link
	xs:anyURI
	0..1
	

	
	announceTo
	list of xs:anyURI
	0..1
	

	
	announcedAttribute
	list of xs:token
	0..1
	

	m2m:announcedResource
	@resourceName
	xs:NCName
	1
	Declares the universal / common attributes in the announced variant of the preceding resources

	
	resourceType
	m2m:resourceType
	1
	

	
	resourceID
	m2m:ID
	1
	

	
	parentID
	m2m:nhURI
	1
	

	
	creationTime
	m2m:timestamp
	1
	

	
	lastModifiedTime
	m2m:timestamp
	1
	

	
	labels
	m2m:labelsType
	0..1
	

	
	accessControlPolicyIDs
	m2m:acpType
	0..1
	

	
	expirationTime
	m2m:timestamp
	1
	

	
	link
	list of xs:token
	0..1
	

	m2m:announceableSubordinateResource
	@resourceName
	xs:NCName
	1
	Declares the universal / common attributes used by resource types that are subordinate children of other resources

	
	resourceType
	m2m:resourceType
	1
	

	
	resourceID
	m2m:ID
	1
	

	
	parentID
	xs:anyURI
	1
	

	
	creationTime
	m2m:timestamp
	1
	

	
	lastModifiedTime
	m2m:timestamp
	1
	

	
	labels
	m2m:labelsType
	0..1
	

	
	expirationTime
	m2m:timestamp
	1
	

	
	announceTo
	list of xs:anyURI
	0..1
	

	
	announcedAttribute
	list of xs:token
	0..1
	

	m2m:announcedSubordinateResource
	@resourceName
	xs:NCName
	1
	Declares the common / universal attributes used in the announced variants of the subordinate resource types

	
	resourceType
	m2m:resourceType
	1
	

	
	resourceID
	m2m:ID
	1
	

	
	parentID
	m2m:nhURI
	1
	

	
	creationTime
	m2m:timestamp
	1
	

	
	lastModifiedTime
	m2m:timestamp
	1
	

	
	labels
	m2m:labelsType
	0..1
	

	
	expirationTime
	m2m:timestamp
	1
	

	
	link
	list of xs:token
	0..1
	

NOTE: In the above table, names of XML schema attributes are prefixed with a “@” character to differentiate these from Resource attribute names. The “@” character is not part of the actual attribute name.
6.3.6 Filter criteria
The request message parameter Filter Criteria shall be specified as combination of following sub-parameters.

6.3.6.1 creationTime condition
The condition matches with the resources which the creationTime attribute is chronologically in specified range.
Table 6.3.6.1‑1: Defition of Create Time condition

	Format Variants
	Definition
	Note

	createdBefore
	m2m:timestamp
	

	created After
	m2m:timestamp
	

	NOTE: Both createdBefore and createdAfter may be specified same time, but createdAfter shall be the timestamp before createdBefore.

6.3.6.2 lastModifiedTime condition
The condition matches with the resources which the lastModifiedTime attribute is chronologically in specified range.

Table 6.3.6.2‑1: Defition of LastModified Time condition

	Format Variants
	Definition
	Note

	modifiedSince
	m2m:timestamp
	

	unmodifiedSince
	m2m:timestamp
	

	NOTE: Both modifiedSince and unmodifiedSince may be specified same time, but modifiedSince shall be the timestamp before unmodified Since.

6.3.6.3 State Tag condition
The condition matches with the <contentInstance> resources which the stateTag attribute is in specified numeric value range.
Table 6.3.6.3‑1 Defition of State Tag condition

	Format Variants
	Definition
	Note

	stateTagSmaller
	xsd:positiveInterger
	

	stateTagBigger
	xsd:nonNegativeInteger
	

	NOTE:

6.3.6.4 expirationTime condition
The condition matches with the expirationTime attribute of the resources is chronologically in specified chnological time range.

Table 6.3.6.4‑1: Defition of ExirationTime condition

	Format Variants
	Definition
	Note

	exprieBefore
	m2m:timestamp
	

	expireAfter
	m2m:timestamp
	

	NOTE: Both expireBefore and expireAfter may be specified same time, but expireBefore shall be the timestamp after expireAfter.

6.3.6.5 labels Match condition
The condition matches with the resource which labels attribute contains the specified value.

Table 6.3.6.5‑1: Defition of Lebel Match condition

	Format Variants
	Definition
	Note

	label contains
	xs:token
	

	any of label matches
	list of xs:token
	separator of list elements shall be specified in protocol bindings.

	NOTE:

6.3.6.6 resourceType Match condition
The condition matches with the resource which resourceType attribute value is specified value.

Table 6.3.6.6‑1: Defition of Resource Type Match condition

	Format Variants
	Definition
	Note

	single type
	m2m:resourceType
	

	multiple types
	list of m2m:resourceType
	separator of list elements shall be specified in protocol bindings.

	NOTE:

6.3.6.7 contentSize condtion
The condition matches with the contentSize attribute of the <contentInstance> resources is in range of specified numerica value range.

Table 6.3.6.7‑1: Defition of Content Size Match condition

	Format Variants
	Definition
	Note

	sizeBelow
	xs:nonNegativeInteger.
	

	sizeAbove
	xs:nonNegativeInteger.
	

	NOTE:

6.3.6.8 typeOfContent condition
The condition matches with the typeOfContent attribute of the <contentInstance> resource is the specified value.
Table 6.3.6.8‑1: Defition of Content Type Match condition

	Format Variants
	Definition
	Note

	content type
	xs:token
	The one of the Content-Type string shall be specified

	content sub-types
	xs:token after ‘:’ character.
	The one of the Content sub-type strings shall be specified.

	NOTE:

6.3.6.9 attribute Match condition
The condition matches with the resources which all attribute/value pairs are specified combination.

Table 6.3.6.9‑1: Defition of Attribute Match condition

	Format Variants
	Definition
	Note

	single pair
	concatenation of xs:token with ‘:’ character.
	first token shall be shortname of attribute and second token shall be its value.

	multiple pairs
	list of single pairs.
	separator of list elements shall be specified in protocol bindings.

	NOTE:

6.3.6.10 Limit results request parameter
Limitation the number of matching resources to the specified value.
Table 6.3.6.10‑1: Defition of Limit conditions

	Format Variants
	Definition
	Note

	limits
	xs:nonNegativeInteger
	

	NOTE:

6.3.6.11 Filter Usage request parameter
Indicates how the filter criteria is used. E.g. if this parameter is not provided, the Retrieve operation is for generic retrieve operation.
Table 6.3.6.11‑1: Definition of Filter Usage
	Value
	Interpretation
	Note

	1
	Discovery Criteria
	

	2
	Event Notification Criteria
	

	NOTE:

6.4 Message parameter data types

6.4.1 Request primitive parameter data types

The data types of request primitive parameters are specified in this clause.

Detailed request primitive parameter descriptions and usage can be found in clause 8.1.2 of the oneM2M TS-0001 Functional Architecture [6]. Further details on the representation of primitives are specified in clauses 7.1.1.1 and 8.
Table 6.4.1‑1: Data Types for Request primitive parameters
	Primitive Parameter
	Data Type
	Multiplicity
	Note

	Operation
	m2m:operation
	1
	See Clause 6.3.3.2.5

	To
	xs:anyURI
	1
	

	From
	m2m:ID
	1
	See Clause 6.3.2

	Request Identifier
	m2m:requestID
	1
	See Clause 6.3.2

	Resource Type
	m2m:resourceType
	0..1
	See Clause 6.3.3.2.1

	Name
	xs:string
	0..1
	

	Content
	m2m:primitiveContent
	0..1
	 See Clause 6.3.4.4

	Originating Timestamp
	m2m:timestamp
	0..1
	

	Request Expiration Timestamp
	m2m:timestamp
	0..1
	“Result Expiration Timestamp” shall be later than “Request Message Expiration Timestamp”

	Result Expiration Timestamp
	m2m:timestamp
	0..1
	

	Operation Execution Time
	m2m:timestamp
	0..1
	

	Response Type
	m2m:responseTypeInfo
	0..1
	See Clause 6.3.4.29

	Result Persistence
	xs:duration
	0..1
	

	Result Content
	m2m:resultContent
	0..1
	See Clause 6.3.3.2.7

	Event Category
	m2m:eventCat
	0..1
	See Clause 6.3.2

	Delivery Aggregation
	xs:boolean
	0..1
	

	Group Request Identifier
	xs:string
	0..1
	

	Filter Criteria
	m2m:filterCriteria
	0..1
	See Clause 6.3.4.7

	Discovery Result Type
	m2m:discResType
	0..1
	See Clause 6.3.3.2.8

6.4.2 Response primitive parameter data types

The data types of response primitive parameters are specified in this clause.

Detailed response message parameter descriptions and usage can be found in clause 8.1.3 of TS-0001 Functional Architecture [6]. Further details on the representation of primitives are specified in clauses 7.1.1.1 and 8.
Table 6.4.2‑1: Data Types for Response primitive parameters
	Primitive Parameter
	Data Type
	Multiplicity
	Note

	Response Status Code
	m2m:responseStatusCode
	1
	See Clause 6.3.3.2.9

	Request Identifier
	m2m:requestID
	1
	See Clause 6.3.2

	Content
	m2m:primitiveContent
	0..1
	See Clause 6.3.4.4

	To
	m2m:ID
	0..1
	See Clause 6.3.2

	From
	m2m:ID
	0..1
	

	Originating Timestamp
	m2m:timestamp
	0..1
	See Table 6.3.2‑1

	Result Expiration Timestamp
	m2m:timestamp
	0..1
	See Table 6.3.2‑1

	Event Category
	m2m:eventCat
	0..1
	See Clause 6.3.2

6.5 Resource data types

6.5.1 Description

Each oneM2M Resource Data Type is defined using XML Schema (XSD), and supplied as a separate XSD document. This XML Schema defines the attributes of the Resource in accordance with TS-0001 Functional Architecture [6]. It represents an entire resource. In other words if and only if a requestor retrieves an entire resource in XML format, the XML that is returned shall be valid with respect to the schema for that resource. Note that the payload of a Create or Update request primitive does not necessarily have to be valid according to the schema, as this payload is not required to contain values for all the resource attributes. In particular a resource might contain mandatory read-only primitives, and these would not appear in a Create or Update request.
Each Resource Type , along with its Announced variant (if there is one) is defined in a separate XSD file. The name of that file should be prefixed with 'CDT-' and followed by the resource type name and version of the TS0004 Core Protocol (the present document).

The individual Resource Types inherit from a set of base resource types. These definitions, which can be found in the file CDT‑commonTypes-v1_0_0.xsd, contain definitions for the common and universal attributes, and establish an inheritance hierarchy shown in Figure 6.5.1‑1.

[image: image5.png][Resource

cg parentiD

g labels
resourcelD

(o resourceType

(cg creationTime
(cg lesthodifiedTime

|Ggresourceld |

(] RegularResource

(cg accessControlPolicylDs
e exvirationTime

‘J

] AnnouncedSubordinateResource

£ expiationTime.

g link: Resource:

(] AnnounceableResource

(] AnnouncedResource.

(] AnnounceableSubordinateResource

g announceTo (cg accessControlPolicylDs cg evpirationTime
(eg announcedatiibute g expirationTime g announceTo

gtk

g announcegatiibute

Figure 6.5.1‑1: Resource Types

6.5.2 resource

6.5.2.1 Description

This XSD type definition includes the six universal attributes that are present in all oneM2M resource type definitions. It forms the root of the resource inheritance hierarchy.

6.5.2.2 Reference

See Table 6.3.5‑2
6.5.2.3 Usage

This type is used indirectly by all resource types. It is used directly just by the <CSEBase> resource type.
6.5.3 regularResource

6.5.3.1 Description

This type definition includes the universal and common attributes used by the non-annouceable M2M resources.
6.5.3.2 Reference
See Table 6.3.5‑2.

6.5.3.3 Usage

This type is used by the following resource types:

<delivery>, <eventConfig>, <execInstance>, <m2mServiceSubscriptionProfile>, <mgmtCommand>, <pollingChannel>, <request>, <serviceSubscribedNode>, <statsCollect>, <statsConfig>, <subscription>, <serviceSubscribedAppRule>
6.5.4 announceableResource

6.5.4.1 Description
This type definition includes the universal and common attributes used by M2M resource types that are capable of being announced. In addition to the attributes of a regularResource, it includes (as optional) the common attributes that are used by the announcement mechanism.

6.5.4.2 Reference
See Table 6.3.5‑2.
6.5.4.3 Usage

This type is used by the following resource types:

AE>, <container>, <group>, <locationPolicy>, <node>, <remoteCSE>

It is also used by the specializations of <mgmtObj>.
6.5.5 announcedResource

6.5.5.1
Description

This type definition includes the universal and common attributes used by a resource that is announcing an announceable resource. In addition to the attributes of a regularResource, it includes (as optional) the link common attribute.

6.5.5.2 Reference

See Table 6.3.5‑2.

6.5.5.3 Usage

This type is used by the following resource types:

<AEAnnc>, <containerAnnc>, <groupAnnc>, <locationPolicyAnnc>, <nodeAnnc>, <remoteCSEAnnc>

It is also used by the xxxAnnc variants of the <mgmtObj> specializations.

6.5.6 announceableSubordinateResource

6.5.6.1 Description
This type definition includes the common attributes used by resource types that are subordinate children of other resource types. It excludes attributes like accessControlPolicyIDs, as this attribute is defined for such resources.

6.5.6.2 Reference
See Table 6.3.5‑2.
6.5.6.3 Usage

This type is used by the following resource types:

<AEAnnc>, <containerAnnc>, <groupAnnc>, <locationPolicyAnnc>, <nodeAnnc>, <remoteCSEAnnc>

It is also used by the xxxAnnc variants of the <mgmtObj> specializations.
6.5.7 announcedSubordinateResource

6.5.7.1 Description

This type definition includes the common attributes used by the Announced variants of the resource types that are subordinate children of other resource types.

6.5.7.2 Reference

See Table 6.3.5‑2
6.5.7.3 Usage

This type is used by the following resource types:

<accessControlPolicyAnnc>, <contentInstanceAnnc>, <scheduleAnnc>.
6.6 Response status codes

6.6.1 Introduction

The present clause specifies the assignment of oneM2M Response Status Code (RSC) values, which are returned in the Response Status Code parameter of Response primitive.
The RSC may be delivered as oneM2M defined structured data, or the mapped native status code for transport protocol binding (e.g. HTTP, CoAP, MQTT).
6.6.2 RSC framework overview

The RSCs are categorised as one of 6 classes:
Table 6.6.2‑1: Definition of Response Status Code class

	Status Class
	Codeclass
	Interpretation

	Informational
	1xxx
	The request is successfully received, but the request is still on process.

	Success
	2xxx
	The request is successfully received, understood, and accepted.

	Redirection
	3xxx
	(Not used in present release)

	Originator Error
	4xxx
	The request was malformed by the Originator and, is rejected.

	Receiver Error
	5xxx
	The requested operation cannot be performed due to an error condition at the Receiver CSE.

	Network Service Error
	6xxx
	The requested operation cannot be performed due to an error condition at the Network Serivce Entity.

6.6.3 Definition of Response Status Codes

6.6.3.1 Overview
The tables in the following clauses specify the RSCs for oneM2M releases. Each RSC includes: a response status innumeric code. The supplemental information may be returned when it is needed.
6.6.3.2
Informational response class
Table 6.6.3.2‑1 specify the RSCs for acknowledgement responses for each release.

Table 6.6.3.2‑1: Informational Responses class
	Numeric Code
	Description

	1000
	ACCEPTED

6.6.3.3
Successful response class
Table 6.6.3.2-1 specify the RSCs for Successful responses.

Table 6.6.3.3‑1: RSCs for Successful response class

	Numeric Code
	Description

	2000
	OK

	2001
	CREATED

	2002
	DELETED

	2004
	CHANGED

6.6.3.4 Redirection response class
Not defined any values in this response class.
Table 6.6.3.4‑1: RSCs for Redirection response class

	Numeric Code
	Description

	
	

6.6.3.5 Originator Error response class

Table 6.6.3.5-1 specify the RSCs for Originator Error responses.
Table 6.6.3.5‑1: RSCs for Originator Error response class

	Numeric Code
	Description

	4000
	BAD_REQUEST

	4004
	NOT_FOUND

	4005
	OPERATION_NOT_ALLOWED

	4008
	REQUEST_TIMEOUT

	4101
	SUBSCRIPTION_CREATOR_HAS_NO_PRIVILEGE–

	4102
	CONTENTS_UNACCEPTABLE

	4103
	ACCESS_DENIED

	4104
	GROUP_REQUEST_IDENTIFIER_EXISTS

	4105
	CONFLICT

6.6.3.6 Receiver Error response class

Table 6.6.3.6-1 specify the RSCs for Receiver Error responses.
Table 6.6.3.6‑1: RSCs for Receiver Error response class

	Numeric Code
	Description

	5000
	INTERNAL_SERVER_ERROR

	5001
	NOT_IMPLEMENTED

	5103
	TARGET_NOT_REACHABLE

	5105
	NO_PRIVILEGE

	5106
	ALREADY_EXISTS

	5203
	TARGET_NOT_SUBSCRIBABLE

	5204
	SUBSCRIPTION_VERIFICATION_INITIATION_FAILED

	5205
	SUBSCRIPTION_HOST_HAS_NO_PRIVILEGE

	5206
	NON_BLOCKING_REQUEST_NOT_SUPPORTED

6.6.3.7 Network System Error response class

Table 6.6.3.7-1 specify the RSCs for when the External System reported some errors.

Table 6.6.3.7‑1: RSCs for Network Service Error response class

	Numeric Code
	Description

	6003
	EXTENAL_OBJECT_NOT_REACHABLE

	6005
	EXTENAL_OBJECT_NOT_FOUND

	6010
	MAX_NUMBERF_OF_MEMBER_EXCEEDED

	6011
	MEMBER_TYPE_INCONSISTENT

	6020
	MGMT_SESSION_CANNOT_BE_ESTABLISHED

	6021
	MGMT_SESSION_ESTABLISHMENT _TIMEOUT

	6022
	INVALID _CMDTYPE

	6023
	INVALID_ARGUMENTS

	6024
	INSUFFICIENT_ARGUMENTS

	6025
	MGMT_CONVERSION_ERROR

	6026
	MGMT_CANCELATION_FAILURE

	6028
	ALREADY_COMPLETE

	6029
	COMMAND_NOT_CANCELLABLE

6.7 oneM2M specific MIME media types
The present sub-clause defines oneM2M specific MIME media types which may be used by protocol bindings.

The oneM2M specific MIME media types are defined under the vendor tree of "application" mediate type which is prefixed with ‘application/vnd.onem2m-‘.

Table 6.7‑1: oneM2M specific MIME media types

	oneM2M specific MIME subtype
	mapped oneM2M data type
	Note

	vnd.onem2m-res+xml
	m2m:resource
	For oneM2M resource operation.The type of oneM2M resource in content shall be indicated by "ty" parameter. XML serialization rule is applied.

(See clause 7.4.2)

	vnd.onem2m-res+json
	m2m:resource
	Same information of above. JSON serialization rule is applied.

(See clause 7.4.2)

	vnd.onem2m-ntfy+xml
	m2m:notification or

m2m:aggregatedNotification
	For Notify operation for resource subscription. XML serialization rule is applied.

(See clause 7.4.1)

	vnd.onem2m-ntfy+json
	m2m: notification or

m2m:aggregatedNotification
	Same information of above. JSON serialization rule is applied.
(See clause 7.4.1)

	vnd.onem2m-attrs+xml
	m2m:attributeList
	For exchanging alist of oneM2M resource attributes and its value when it is needed. XML serialization rules is applied.

(See clause 7.4.2)

	vnd.onem2m-attrs+json
	m2m:attributeList
	Same information of above. JSON serialization rule is applied.

(See clause 7.4.2)

	vnd.onem2m-preq+xml
	m2m:requestPrimitive
	For exchanging serialized oneM2M request primitive. XML serialization rule is applied.

(See clause 6.4.1 and 7.1.1.1)

	vnd.onem2m-preq+json
	m2m:requestPrimitive
	Same information of above. JSON serialization rule is applied.

(See clause 6.4.1 and 7.1.1.1)

	vnd.onem2m-prsp+xml
	m2m:responsePrimitive
	For exchanging Response parameters. XML serialization rules is applied.

(See clause 6.4.2 and 7.1.1.2)

	vnd.onem2m-prsp+json
	m2m:responsePrimitive
	Same information of above. JSON serialization rule is applied.

(See clause 6.4.2 and 7.1.1.2)

6.8 Virtual Resources
A virtual resource is used to trigger processing and/or retrieve results, but does not have a permanent representation in a CSE. Table 6.8‑1 lists the Virtual Resources

Table 6.8‑1: Virtual Resources
	Virtual Resource Type
	resourceName
	Parent Resource
	Notes

	<latest>
	latest
	<container>
	See clause 7.3.27

	<oldest>
	oldest
	<container>
	See clause 7.3.28

	<fanOutPoint>
	fanOutPoint
	<group>
	See clause 7.3.14

	<pollingChannelURI>
	pollingChannelURI
	<pollingChannel>
	See clause 7.3.22

Each resource instance listed in “Parent Resource” column of Table 6.8‑1has one virtual resource child of each type listed against it in the table. These child resource instances have fixed resourceNames, as shown in the second column.

The parent resources contain named references, whose names match the virtual child’s resourceNames. Each reference is a URI to the corresponding virtual resource. In the <container> case, there are two such references, one called latest and one called oldest. The URI returned stays valid for the lifetime of the virtual resource.

A virtual resource can also be addressed using a hierarchical URI formed by taking the hierarchical URI of the parent resource and appending a / followed by the resourceName of the virtual resource.

7 oneM2M procedures
The following clauses describe prerequisites such as primitive format and procedure outline with three generic scenarios that are Originator, Receiver, and Resource Handling in accordance with CRUD+N operations. In addition, for specific resource type they provide common or resource specific attributes, data type definition for the attributes, and child resources as well as they explain resource specific procedures on CRUD operations to communicate with oneM2M compliant M2M Platform System by oneM2M protocols and APIs as follows:

· Primitive formats and generic procedures
· Common operations
· Resource type-specific definitions and procedures
· Notification definition and procedures
7.1 Primitive format and generic procedure

7.1.1 Primitive format

7.1.1.1 Request primitive format

Table 7.1.1.1‑1 summarizes the primitive parameters of the Request primitive, indicating their presence depending on the C, R, U, D or N operations. "M" indicates mandatory, "O" indicates optional, "NP" indicates not present.
Refer to clause 8.1.2 of the oneM2M TS-0001 [6] for additional information on the request primitive parameters.
Table 7.1.1.1‑1: Request Primitive Parameters
	Primitive Parameter
	CREATE
	RETRIEVE
	UPDATE
	DELETE
	NOTIFY

	Operation
	M
	M
	M
	M
	M

	To
	M
	M
	M
	M
	M

	From
	M
	M
	M
	M
	M

	Request Identifier
	M
	M
	M
	M
	M

	Resource Type
	M
	NP
	NP
	NP
	NP

	Name
	O
	NP
	NP
	NP
	NP

	Content
	M
	O
	M
	NP
	M

	Originating Timestamp
	O
	O
	O
	O
	O

	Request Expiration Timestamp
	O
	O
	O
	O
	O

	Result Expiration Time
	O
	O
	O
	O
	O

	Operation Execution Time
	O
	O
	O
	O
	O

	Response Type
	O
	O
	O
	O
	O

	Result Persistence
	O
	O
	O
	O
	NP

	Result Content
	O
	O
	O
	O
	NP

	Event Category
	O
	O
	O
	O
	O

	Delivery Aggregation
	O
	O
	O
	O
	O

	Group Request Identifier
	O
	O
	O
	O
	O

	Filter Criteria
	NP
	O
	O
	O
	NP

	Discovery Result Type
	NP
	O
	NP
	NP
	NP

The Content parameter in a Request shall contain one of the following:

15) A complete or partial Resource. In this case the Content shall contain a single element whose name is the name of the Resource and whose content consists of one or more attributes, child Resources or childResource references. In this case the resource type is as defined in clause 7.3, however if a partial resource is being transferred, it is not required to be valid according to the XSD for that resource.
16) A Notification Data Object. This is named <m2m:notification> and is described in Clause 7.4.1
17) An Aggregated Notification. This is named <m2m:aggregatedNotification> and contains multiple <m2m:notification> objects. This is described in clause 7.4.1.

18) An AttributeList element, as described in clause 7.4.2. This is used in the partial retrieval case to pass a set of attribute Names (by leaving the attribute values blank). In the partial update case it is used to pass a set of attribute Name/Value pairs.

19) A ResponsePrimitive object as described in clause 7.4.1. This is used in Asynchronous non-blocking case.
7.1.1.2 Response primitive format

Table7.1.1.2‑1 summarizes the primitive parameters for Response primitive, indicating their presence depending on the C, R, U, D or N operations of the associated Request primitive and whether this operation was successful or caused an error. "M" indicates mandatory, "O" indicates optional, "NP" indicates not present.
Refer to clause 8.1.3 of TS-0001 [6] for additional information on the request primitive parameters.
NOTE: Response Code and Status Code parameters are merged into the Response Status Code parameter.

Table7.1.1.2‑1 : Response Primitive Parameters
	Primitive parameter
	Ack
	CREATE

Success
	RETRIEVE

Success
	UPDATE

Success
	DELETE
Success
	NOTIFY
Success
	Error

	Response Status Code
	M
	M
	M
	M
	M
	M
	M

	Request Identifier
	M
	M
	M
	M
	M
	M
	M

	Content
	O
	O
	M
	O
	O
	O
	O

	To
	O
	O
	O
	O
	O
	O
	O

	From
	O
	O
	O
	O
	O
	O
	O

	Originating Timestamp
	O
	O
	O
	O
	O
	O
	O

	Result Expiration Timestamp
	O
	O
	O
	O
	O
	O
	O

	Event Category
	O
	O
	O
	O
	O
	O
	O

The Content parameter in a Response shall contain one of the following:

20) A complete or partial Resource. In this case the Content shall contain a single element whose name is the name of the Resource and whose content consists of one or more attributes, child Resources or childResource references. In this case the resource type is as defined in clause 7.3, however if a partial resource is being transferred, it is not required to be valid according to the XSD for that resource.
21) The URI of a resource. This is included directly as the content of the Content parameter (like in case 6)

22) A partial resource and its hierarchical URI. These are included in an element called m2m:resource defined in clause 7.4.2. The URI is included as an attribute of m2m:resource.

23) A list of URIs. This can be used for transferring the childResource URIs only or in a Discovery response. These are included in an element called m2m:URIList defined in clause 7.4.2.

24) An Aggregated Response. This is sent as a result of a Group operation. This uses the element m2m:aggregatedResponse defined in clause 7.4.2.

25) Raw data. This could be a simple data value, or structured data (an XML complex type or JSON object)
7.1.2 Description of generic procedures

7.1.2.1 Generic resource request procedure for originator

A generic resource Request procedure shall be comprised of the following actions. Additional actions specific to individual procedures are listed in the respective sections by referencing these actions and providing additional steps. The Originator shall execute the following steps in order:

[image: image6][image: image7]
Orig-1.0 “Compose Request primitive”: Please refer to clause 7.2.1.1 for details.
Orig-2.0 “Send a Request to the Receiver CSE”: Please refer to clause 7.2.1.2 for details.
Orig-3.0 “Wait for Response primitive”: Please refer to clause 7.2.1.3 for details.
Orig-4.0 “Communication Method?”: This step shall be operated after getting the Response primitive from step Oring-3.0 “Wait for Response primitive”. In this step, the Originator checks whether the request was blockingRequest, nonBlockingRequestSynch or nonBlockingRequestAsynch by using Response Type parameter (see detail in clause 8.1.2 in the oneM2M TS-0001 Functional Architecture [6]).
If the request was blockingRequest it goes to step Orig-6.0 “Process Response”. If the request was nonBlockingRequestSync, it goes to step Orig-5.0 “Retrieve result from the <request> resource”. If the request was nonBlockingRequestAsynch, it goes to step Orig-7.0 “Receive Notification”.
Orig-5.0 “Retrieve result from the <request> resource”: See clause 7.2.1.4 for details.
Orig-6.0 “Process Response”: the Originator processes the response.
Orig-7.0 “Receive Notification”: the Originator processes the notification.

Orig-8.0 “Create a Response”: Please refer to clause 7.2.2.2 for details.

Orig-9.0 “Send Response primitive”: Please refer to clause 7.2.2.3 for details..
7.1.2.2 Generic request procedure for receiver

The Receiver shall execute the following steps in order. In case of error in any of the steps below, the Receiver shall execute "Create an error response" (refer to clause 7.2.3.12 for details) and then "Send Response primitive" (refer to clause 7.2.2.4for details). The corresponding Response code shall be included in the Response primitive.

[image: image8]
Figure 7.1.2.2‑1: Generic procedure of Receiver

Recv-1.0 “Check the validity of received request primitive”: See clause 7.2.2.1 for details.
Recv-2.0 “Communication method?”: The Receiver CSE checks whether a received request is blockingRequest, nonBlockingRequestSynch or nonBlockingRequestAsynch by using Response Type parameter (see detail in clause 8.1.2 in TS-0001 Functional Architecture [6]). If the request is blockingRequest or Response Type parameter is not included, it goes to step Recv-6.0 “Resource handling procedure”. If the request is nonBlockingRequestSynch, it goes to step Recv-3.0 “Create <request> resource locally” If the request is nonBlockingRequestAsynch, it goes to step Recv-3.0 “Create <request> resource locally”.
Recv-3.0 “Create <request> resource locally”: Please refer to clause 7.2.2.2 for details.
Recv-4.0 “Create a successResponse”: Please refer to clause 7.2.2.2 for details.
Recv-5.0 “Send Response Primitive”: Please refer to clause 7.2.2.4 for details.
Recv-6.0 “Resource handling procedure”: Please refer to Figure 7.1.2.2‑2for details.
Recv-7.0 “Update <request> resource”: Please refer to clause 7.2.2.5 for details. This step is only valid when the request is non-blocking.
Recv-8.0 “Send Notification”: Please refer to clause 7.4.1.2.4 for details.

Recv-9.0 “Wait for a Response primitive”: Please refer to clause 7.2.1.3 for details.

[image: image9]
Figure 7.1.2.2‑2: Resource handling procedure
The above figure describes the generic procedure to resource handling procedures.
Recv-6.0.1 “Receiver is Registrar CSE, Originator is AE and operation is create?”: The step checks if the receiver is Registrar CSE, the Originator is AE, and operation is create. If the receiver is Registrar CSE and Originator is an AE, goes to Recv-6.0.2 “Check Service Subscription Profile”. Otherwise, goes to Recv-6.1.

Recv-6.0.2 “Check Service Subscription Profile”: Please refer to clause 7.2.2.7 for details.
Recv-6.1 “Hosting CSE of the targeted resource?”: The step checks if the receiver is a transit CSE or the Hosting CSE of the received Request by examining the To parameter of the Request primitive. If the receiver hosts the resource that the address in the To parameter represents, the receiver is the Hosting CSE (goes to Recv-6.2“Check existence of the addressed resource”, Yes branch). Otherwise, the receiver is the Transit CSE (goes to Recv-6.9 “Queue request primitive and execute CMDH message forwarding procedure”, No branch).

Recv-6.2 “Check existence of the addressed resource”: Please refer to clause 7.2.3.1 for details.

Recv-6.3 “Check authorization of the Originator”: Please refer to clause 7.2.3.14 for details.
Recv-6.4 “Check validity of resource representation”: Please refer to clause 7.2.3.2 and clause REF CommonOp_HostCSE_Chk_validity_UpdateReq \h
7.2.3.3 for details. Notify is not applicable for this step.
Recv-6.5 “Create/Update/Retrieve/Delete/Notify operation is performed”: The step represents five common operations which are “Create the resource (clause 7.2.3.4)”, “Retrieve the resource (clause 7.2.3.5)”, “Update the resource (clause 7.2.3.6)”, “Delete the resource (clause 7.2.3.7)” and “Notify re-targeting (clause 7.2.3.8)”. Notify re-targeting is performed for the Create, Update, Retrieve, Delete, or Notify operation respectively.

Recv-6.6 “Announce/De-announce the resource”: The step represents two common operations which are “Announce the resource” and “De-announce the resource”. Please refer to clause 7.2.3.9 and clause 7.2.3.10 REF CommonOp_HostCSE_DeAnnounce_resource \h
 for details. Notify is not applicable for this step.
Recv-6.6.1 “Communication method?”: The Receiver CSE checks whether a received request is blockingRequest or not by using Response Type parameter (see detail in clause 8.1.2 in TS-0001 Functional Architecture [6]). If the request was blockingRequest or Response Type parameter was not included, it goes to step Recv-6.7 “Create a success response”.Otherwise, it goes back to the generic procedure of the receiver (Figure 7.1.1.2.2-1).
Recv-6.7 “Create a success response”: Please refer to clause 7.2.3.11 for details.
Recv-6.8 “Send Response Primitive”: Please refer to clause 7.2.2.4 for details. If the Receiver is Hosting CSE, after this step, the procedure is terminated.
Recv-6.9 “CMDH processing supported?”: This step checks whether the Receiver supports the CMDH processing.

Recv-6.10 “Queue request primitive and execute CMDH message forwarding procedure”: If CMDH message is supported, the Receiver CSE shall queue the received request primitive and execute the “CMDH message forwarding procedure”. Please refer to Annex H.2.4. for details.
Recv-6.11 “Forwarding”: If CMDH processing is not supported, carry out message forwarding as defined in clause 7.2.2.6.
7.2 Common operations

7.2.1 Originator actions

7.2.1.1 Compose request primitive
The originator shall compose a Request message that shall be mapped to a specific protocol.

The Request shall include the From and To parameters to indicate the identifier of the originator of the request and the targeted receiver of the request.

The Request shall include the other attributes in case needed depend on the resource the request is addressing.

When including a resource representation in the request indication for create and update, the originator shall take into account the validation rules as specified in "Check validity for resource representation for create" and "Check validity for resource representation for update" respectively.
EXAMPLE:
Any attributes marked with NP shall not be present in the resource representation for the corresponding request indication.

7.2.1.2 Send a request to the receiver CSE

The originator shall determine the receiver CSE.
The receiver of the Request shall be the registrar CSE of the originator in case the originator is not IN-CSE.

If the originator is the IN-CSE, the receiver of the Request shall be the CSE whose identifier is the prefix of the To parameter of the Request.
If this results in no matching CSE, then the request is rejected with a Response Status Code indicating “NOT_FOUND” error.

If this results in multiple CSEs, the request is rejected with a Response Status Code indicating “INTERNAL_SERVER_ERROR” error.
7.2.1.3 Wait for response primitive

The originator shall wait for the Response primitive from the receiver that corresponds to the Request primitive that was sent by the originator. Correlation between the Request and the corresponding Response is handled by the transport layer or by Request Identifier parameter of the primitive.

If no Response primitive is received within a certain time, specified by server policy and/or by the underlying transport technology, this shall be handled as if a Response primitive with a Response Status Code indicating “REQUEST_TIMEOUT” error was received.

7.2.1.4 Retrieve the <request> resource
When the Originator needs to retrieve information about an associated previously issued non-blocking request, the Originator shall request to Retrieve the attributes of the <request> resource. The Originator shall compose the Request primitive with the following parameters and send the Request to the Receiver CSE. See clauses 7.2.1.1 and 7.2.1.2.

NOTE: The Originator may include optional parameters described in clause 8.1.2 of TS-0001 Functional Architecture [6].
Table 7.2.1.4‑1: Request primitive parameter settings
	Parameter Name
	Value

	Operation
	Retrieve

	To
	This shall be set to the URI of the <request> resource received in the response (acknowledgement) to the previously issued non-blocking request.

	From
	Id of the Originator

	Request Identifier
	The identifier of this request message.

	Content
	Optionally includes the name of attributes that needs to be retrieved.

7.2.2 Receiver CSE actions

7.2.2.1 Check the validity of received request primitive
The validity checking of the message carrying the received request primitive is specified by the protocol mapping Technical Specifications (CoAP binding [22], HTTP binding [23

 REF REF_oneM2M_TS0008 \h
22], and MQTT binding [24]). The received resource representation (e.g. in plain XML, binary XML or JSON) shall be validated against the provided schema definitions.

If the received request is communicated within an established Security Association (TS-0003 [7]), and

· the Receiver knows that the Registree using the established Security Association is an AE, and

· the Receiver knows the AE-ID(s) of the Registree using the established Security Association, and

· the From parameter does not match the allowed AE-ID(s) of the Registree using the established Security Association,

then the request shall be rejected with an "ACCESS_DENIED" Response Status Code parameter value.

If the received request is communicated within an established Security Association, and

· the Receiver knows that the Registree using the established Security Association is a CSE, and

· the Receiver knows the CSE -ID of the Registree using the established Security Association, and

· if one of the following applies:

· The From parameter is an CSE-ID that matches one of the Receiver’s Registree CSE’s CSE-ID other than the CSE-ID of the Registree using the established Security Association, or

· The From parameter is an CSE-Relative C-Type AE-ID-Stem, or

· The From parameter is an SP-Relative AE-ID or Absolute AE-ID with a C-Type AE-ID-Stem, and the CSE-ID portion of the From parameter matches one of the Receiver’s Registree CSE’s CSE-ID other than the CSE-ID of the Registree for the established Security Association,

then the request shall be rejected with an "ACCESS_DENIED" Response Status Code parameter value .

NOTE: An SP-Relative-AE-ID or Absolute AE-ID with a C-Type AE-ID-Stem always includes a CSE-ID portion (see TS-0001 [6]).

If the received request is communicated outside of an established Security Association, and

· If the From parameter includes an AE-ID, and

· The request is not a CREATE <AE> Request, and

· The From parameter does not match the AE-ID of an AE currently registered to the Receiver

then the request shall be rejected with a “ACCESS_DENIED” Response Status Code parameter value.

If the received request is communicated outside of an established Security Association, and the From parameter includes a CSE-ID, then the request shall be rejected with an "ACCESS_DENIED" Response Status Code parameter value.

If a received request needs to be forwarded to another CSE and if CMDH processing is supported, then in addition, the “CMDH message validation procedure” defined in Annex H.2.3. shall be carried out.

If the message is not valid, the request shall be rejected with a Response Status Code indicating "BAD_REQUEST" error.

7.2.2.2 Create <request> resource locally

Creation of a <request> resource can only be done on a Receiver CSE implicitly. When the Receiver CSE receives a request for targeting any other resource type or requesting a notification in non-blocking mode, i.e. the Response Type parameter of the request is set to either ‘nonBlockingRequestSynch’ or ‘nonBlockingRequestAsynch’, and if the Receiver CSE supports the <request> resource type as indicated by the ‘supportedResourceType’ attribute of the <CSEBase> resource, the Receiver CSE shall create an instance of <request> resource based on the following steps. If the Receiver CSE does not support the <request> resource type, the ‘nonBlockingRequestSynch’ request shall be rejected with a Response Status Code indicating “NON_BLOCKING_REQUEST_NOT_SUPPORTED” error. For the ‘nonBlockingRequestAsynch’request, a Receiver CSE that does not support the <request> resource type shall be able to respond to an acceptable request with a response containing an Acknowledgement without a reference to a resource containing the context of the request.

The Receiver CSE of a non-blocking request is the Hosting CSE for the <request> resource that shall be associated with the non-blocking request.

26) Assign a value to the common attributes of <request> resource according to the following table:

Table 7.2.2.2‑1: Common attributes settings for <request> resource
	Attribute Name
	Value

	resourceType
	Request

	resourceID
	Hosting CSE shall assign a value to this attribute.

	expirationTime
	The value of the expirationTime shall be chosen dependent on the Request Expiration Timestamp, Result Expiration Timestamp, Operation Execution Time and Result Persistence parameters associated with the original request. If the value consistent with the Request Expiration Timestamp, Result Expiration Timestamp, Operation Execution Time and Result Persistence parameters is too long, the Hosting CSE shall reject the request.

	parentID
	The parent resource of a <request> resource shall be the <CSEBase> resource of the Hosting CSE.

	creationTime
	Date/time of creation of this resource.

	lastModifiedTime
	Date/time which is equal to the creationTime.

	accessControlPolicyIDs
	Populate with one ID of an <accessControlPolicy> that contains the following:
In the ‘privileges’ attribute

· Allow RUD operations to the Hosting CSE

· Allow RD operations to the Originator, i.e. the value of the parameter From in the associated non-blocking request

In the 'selfPrivileges' attribute

1. Allow U operations the parent <accessControlPolicy> resource to the Originator, i.e. the value of the parameter From in the associated non-blocking request

	Labels
	Originator ID

	stateTag
	0

	resorceName
	Hosting CSE shall assign a value to this attribute.

27) Assign a value to the resource-specific attributes of <request> resource according to the following table:

Table 7.2.2.2‑2: Resource-specific attributes settings for <request> resource
	Attribute Name
	Value

	operation
	The value of the parameter Operation in the associated non-blocking request.

	Target
	The value of the parameter To in the associated non-blocking request.

	originator
	The value of the parameter From in the associated non-blocking request.

	requestID
	The value of the parameter Request Identifier in the associated non-blocking request.

	metaInformation
	The content of this attribute is set to information in optional parameters described in clause 8.1.2 of [6] given in the associated non-blocking request.

	content
	The value of the parameter Content, if any, in the associated non-blocking request.

	requestStatus
	The Receiver CSE shall set this to “PENDING”.

	operationResult
	Empty

7.2.2.3 Create a success response (acknowledgement)
The Receiver CSE shall create a Response primitive. The Receiver CSE shall include the following parameters in the Response primitive.

Table 7.2.2.3‑1: Response primitive parameter settings
	Parameter Name
	Value

	Response Status Code
	”ACCEPTED”

	Request Identifier
	The value of the parameter Request Identifier in the associated non-blocking request.

	Originating Timestamp
	Timestamp when this message was built

	Content
	Reference to the <request> of the associated non-blocking request only if <request> resource is supported.

7.2.2.4 Send response primitive (acknowledgement)

A Response primitive shall be sent back to the originator.
7.2.2.5 Update <request> resource

Changes in the attributes of a <request> resource shall be done by the Hosting CSE implicitly due to changes of the status (requestStatus) of the associated non-blocking request or due to the reception of an operation result (operationResult) in response to the associated non-blocking request. The Receiver CSE shall update attributes of an instance of <request> resource based on the following steps.

28) Update a value to the common attributes of <request> resource according to the following table:

Table 7.2.2.5‑1: Common attributes settings for <request> resource
	Attribute Name
	Value

	lastModifiedTime
	Date/time of the last modification.

	stateTag
	This value is incremented on every modification.

29) Update a value to the resource-specific attributes of <request> resource according to the following table:

Table 7.2.2.5‑2: Resource-specific attributes settings for <request> resource
	Attribute Name
	Value

	requestStatus
	If the Receiver CSE is a Transit CSE and the previously received request has been successfully forwarded to the next hop, this shall be set to “FORWARDED”.
If the Receiver CSE is a Transit CSE and the previously received request has been rejected by the next hop, this shall be set to “FAILED”.
If the Receiver CSE is the Target CSE (i.e. To parameter in the request message starts with the CSEBase URI of the Receiver CSE) and the originally requested operation has been completed, this shall be set to “COMPLETED”.

	operationResult
	Hosting CSE shall contain the response message of the originally requested operation – if any – in line with the rc parameter in the associated non-blocking request.

7.2.2.6 Forwarding

If the To parameter in the request does not start with the CSEBase URI of the receiver, the receiver CSE shall forward the request or shall serve the request locally (see below).

If the To parameter in the request starts with the CSEBase URI of the receiver, then the receiver CSE shall handle the request locally.
Acting as an originator the CSE shall perform the following procedures:

30) "Send a Request to the receiver CSE".

31) "Wait for Response primitive".

When the Response is received the receiver CSE shall:

32) Primitive specific procedure: Forward the Response to the original CSE.
7.2.2.7 Check Service Subscription Profile
The receiver shall check if the originator’s <serviceSubscriptionProfile> has S-RoleID in serviceRoles attribute that allows to create resource type specified in resource type parameter. The receiver shall find a proper <serviceSubscribedNode> including CSE-ID of the receiver and determine serviceRoles from the parent resource of the <serviceSubscribedNode> which corresponds to <serviceSubscriptionProfile> resource.
7.2.3 Hosting CSE actions

7.2.3.1 Check existence of the addressed resource

The hosting CSE shall check if the resource addressed by the To parameter exists in the repository. If the resource does not exist, the hosting CSE shall reject the request with a Response Status Code indicating "NOT_FOUND" error.
7.2.3.2 Check validity of resource representation for CREATE

The handling below shall apply to each attribute in the resource for CREATE request primitives and the handling depends on the "presence in CREATE request" column of the resource table. If the request is rejected based on the rules below, then the other attributes do not have to be checked.

If no resource representation is present in the CREATE request, then the request is rejected with a Response Status Code indicating “BAD_REQUEST” error.

The resourceName attribute has special handling. If the resourceName-attribute is present in the CREATE request, the hosting CSE shall check if a resource with the same resourceName already exists in the addressed collection. If such a resource exists, then the hosting CSE shall reject the request with a Response Status Code indicating "CONFLICT" error. If the resourceName is not provided in the Request, the Hosting CSE shall assign an resourceName to the resource being created.
If the expirationTime attribute is present in the resource representation, but its value indicates a time in the past, then the request shall be rejected with a Response Status Code indicating “BAD_REQUEST” error.

M attribute

If the attribute is present in the resource representation in the CREATE request, the hosting CSE shall check if the value is acceptable according to internal policies.

If the provided value is not accepted, the hosting CSE shall reject the request with a Response Status Code indicating "BAD_REQUEST" error.

If the attribute is not present in the resource representation in the CREATE request the hosting CSE shall reject the request with a Response Status Code indicating "BAD_REQUEST" error.

O attribute

If the attribute is present in the resource representation in the CREATE request, the hosting CSE shall check if the value is acceptable according to internal policies.

If the provided value is not accepted then the hosting CSE shall reject the request with a Response Status Code indicating "BAD_REQUEST" error.
NP attribute

If the attribute is present in the resource representation in the CREATE request, the hosting CSE shall reject the request with a Response Status Code indicating "BAD_REQUEST" error.

7.2.3.3 Check validity of resource representation for UPDATE

The handling below shall apply to each attribute in the resource for UPDATE request primitives and the handling depends on the "presence in UPDATE request" column of the resource table. If the request is rejected based on the rules below, then the other attributes do not have to be checked.

If the expirationTime attribute is present in the resource representation, but its value indicates a time in the past, then the request shall be rejected with a Response Status Code indicating “BAD_REQUEST” error.

M attribute

If the attribute is present in the resource representation in the UPDATE request, the hosting CSE shall check if the value is acceptable according to internal policies.

If the provided value is not accepted, the hosting CSE shall reject the request with a Response Status Code indicating "BAD_REQUEST" error.

If the attribute is not present in the resource representation in the UPDATE request, the hosting CSE shall reject the request with a Response Status Code indicating "BAD_REQUEST" error.

O attribute

If the attribute is present in the resource representation in the UPDATE request, the hosting CSE shall check if the value is acceptable according to internal policies.

If the provided value is not accepted, the hosting CSE shall reject the request with a Response Status Code indicating "BAD_REQUEST " error.

NP attribute

If the attribute is present in the resource representation in the UPDATE request, the hosting CSE shall reject the request with a Response Status Code indicating "BAD_REQUEST" error unless the value provided for the attribute exactly matches the value in the current resource representation stored in the hosting CSE. In addition, the lastModifiedTime attribute shall always be accepted (but ignored) by the hosting CSE, no matter what value was provided in the request.

7.2.3.4 Create the resource

A new resource shall be created and correlated to the addressed and existing parent resource. As the result of the resource creation, the lastModifiedTime attribute of the parent resource shall be set to the same value as the creationTime attribute of the created resource. The following rules shall be applied.

The URI of the created resource shall be the URI of its parent resource with the resourceName appended. (e.g. http://CSEbase.operator.org/myAppID, for an application resource with resourceName "myAppID" created in the parent resource http://CSEbase.operator.org).

If a resource with the same resourceName already exists among the siblings of the addressed parent resource, the hosting CSE shall provide a new resourceName that is unique within the parent.

If expirationTime attribute is present in the resource representation of the to be created resource and the expirationTime is set to a non-negative time, then an expiration timer shall be started by the hosting CSE. At timer expiration the related resource is deleted by "Delete the addressed resource".

For setting the attributes in the resource representation the following rules shall apply in CREATE request primitives:

M attribute

If the provided value is acceptable, the server shall use the provided value in the resource representation of the created resource.

O attribute

If a value is provided and accepted, then the server shall use the provided value in the resource representation of the created resource.

If the attribute is not provided or accepted, but the multiplicity of the attribute is "1" in the resource, the hosting CSE shall assign default value or assign value based on local policy, or the value of specified in clause 7.3.

If the attribute is not present in the resource representation in the CREATE request and the multiplicity of the attribute is "0..1" in the resource, the hosting CSE shall create the resource without the attribute.

NP attribute

If the attribute is not present in the resource representation in the CREATE request, and the multiplicity of the attribute is "1" in the resource, then the hosting CSE shall create the resource with the default value.

7.2.3.5 Retrieve the resource

When the resource is read to provide a response to Retrieve request primitives:
Full retrieve request: the request target is a resource given in the To parameter

The content of the Response to the Retrieve Request shall comply to the Result Content parameter in the Request. If the Result Content is not provided in the Request, the representation of the resource which includes all the attributes shall be returned.
Partial retrieve request: there are two cases:
Case 1)
the request target is a resource given in the To parameter and specific attribute names are provided in the Content parameter:

The values of the resource attribute(s) provided in the Content parameter shall be retrieved.
Case 2)
the request target is a resource given in the To parameter, the resource attribute is provided in the To parameter as a fragment identifier component of URI following ‘#’ character [2]. The resource attribute shall be represented as a short name and shall belong to short name list in Table 8.2.3‑1 to Table 8.2.3‑5
The resource attribute provided in the To parameter shall be retrieved.
7.2.3.6 Update the resource

Attributes that are not included in the Content parameter of the addressed resource shall not be changed by the hosting CSE. For attributes provided in the Content parameter, their content shall be updated while the following rules apply:
If the announceTo attribute or announcedAttribute attribute of the resource is requested to be updated, the hosting CSE shall update the attribute as described in the "announce the resource or attribute" and "de-announce the resource or attribute" procedures as specified in the clause 7.2.3.9 and clause 7.2.3.10, respectively.
M attribute

If the provided attribute value is accepted, the server shall use the provided value in the resource representation of the updated resource.

O attribute

If an attribute value is provided and the value is accepted, the server shall use the provided value in the resource representation of the updated resource.

If the attribute is not provided or accepted, but the multiplicity of the attribute is "1", the hosting CSE shall assign a default value or assign a value based on local policy, or the value specified in this specification in clause 7.3.

If this attribute is provided in the Content parameter and does not exist in the target resource, the hosting CSE shall create such attribute with the provided value.

If this attribute is set to NULL in the Content parameter and exists in the target resource, the hosting CSE shall delete such attribute if the deletion of the attribute is allowed by the local policy.

NP attribute

If the attribute is not present in the resource representation in the UPDATE request and the multiplicity of the attribute is "1" in the resource, then the hosting CSE shall not update the attribute value. There is 2 exceptions to this rule and they are the lastModifiedTime attribute and stateTag attribute. The hosting CSE shall set the lastModifiedTime to the current time whenever an update primitive is received. The hosting CSE shall change the stateTag each time an update primitive is received.
If the attribute is present in the resource representation in the UPDATE request the presented value shall be ignored, i.e. the hosting CSE shall never update its resource representation based on the presence of an NP attribute value in an update.

If the expirationTime attribute is present and modified by the procedure and it is set to a non-negative time, then an expiration timer shall be re-started by the hosting CSE. At timer expiration the related resource is deleted by "Delete the addressed resource".

7.2.3.7 Delete the resource

The addressed resource with all its attributes shall be deleted. Any expiration timer shall be stopped. This same procedure shall be invoked (recursively) for each child resource of the deleted resource in case the child resource is only linked to the deleted resource.

The parent resource of the addressed resource shall be updated to remove the reference to the deleted resource. If the parent resource has a lastModificationTime attribute then this attribute shall be set to the time of the deletion.

If the resource is announced, the CSE shall try to de-announce the resource correspondingly.

7.2.3.8 Notify re-targeting

When the Hosting CSE receives a Notify request primitive targeting (i.e., To parameter) its <AE> resource, the Hosting CSE re-targets the primitive to the AE if the <AE> resource does not have any <pollingChannel> resource as a child.

1) Get pointOfAccess attribute value of the corresponding <AE> resource. If there is no available pointOfAccess address then the Hosting CSE shall send the Notify response primitive with a Response Status Code indicating “TARGET_NOT_REACHABLE” error.
33) Forward the Notify request primitive to the first address retrieved from pointOfAccess value
34) If the forwarding is failed due to “Target not reachable”, iterate 2) with the next address.
2) If the Hosting CSE cannot forward it in the end, then it send the Notify response primitive with a Response Status Code indicating “TARGET_NOT_REACHABLE” error.
7.2.3.9 Announce the resource or attribute

If CREATE request that contains an announceTo attribute is received,

· Compose the CREATE Request primitive as follows:

· Link is set to the URI of the original resource.

· If accessControlPolicyIDs of the original resource is not present, accessControlPolicyIDs is set to the same value with the parent resource or from the local policy of the original resource.

· Attributes marked with MA and attributes marked with OA that are included in the announcedAttribute attribute. Such attributes shall be present in the original resource and set to same value as the original resource.

· Send a CREATE Request to the CSE(s) represented by exact URI(s) or CSE-ID(s) in the announceTo of the request.

· Wait for Response primitive

· Add the URI of successfully announced resource to the announceTo attribute of the resource

· Include updated announceTo attribute in the Content parameter in the Response to the received CREATE Request.

If UPDATE request that adds the URI or CSE-ID into the announceTo attribute is received,

· Compose the CREATE Request primitive as follows:

· Link is set to the URI of the original resource.

· If accessControlPolicyIDs of the original resource is not present, accessControlPolicyIDs is set to the same value with the parent resource or from the local policy of the original resource.

· Attributes marked with MA and attributes marked with OA that are included in the announcedAttribute attribute. Such attributes shall be present in the original resource and set to same value as the original resource.

· Send a CREATE Request to the CSE(s) represented by exact URI(s) or CSE-ID(s) in the announceTo of the request, which is not included in the announceTo attribute of the original resource.

· Wait for Response primitive

· Add the URI of successfully announced resource to the announceTo attribute of the resource

· Include updated announceTo attribute in the Content parameter in the Response to the received UPDATE Request.

If UPDATE request that adds the attribute name into the announcedAttribute attribute is received,

· Compose the UPDATE Request. The UPDATE Request shall provide the attribute name for the attribute to be announced, and the initial value for the attribute in the Content parameter. The initial value shall be the same with the value from the original resource. The attribute that will be announced shall be marked as OA.

· Send UPDATE Requests to all announced resources listed in the announceTo attribute.

· Wait for Response primitive.

· Add the attribute name of the successfully announced attribute to the announcedAttribute attribute.

· Include updated announcedAttribute attribute in the Content parameter in the Response to the received UPDATE Request.

If an attribute(s) specified as MA (See TS-0001 Functional Architecture [6]) or an attribute(s) included in the announcedAttribute attribute is updated:

· Compose an UPDATE Request primitive by including the updated attribute(s) with its associated updated value.
· Send the UPDATE Request to all CSE(s) represented by the URI(s) in the announceTo attribute of the original resource.

If an attribute(s) specified as MA (See TS-0001 Functional Architecture [6]) or an attribute(s) included in the announcedAttribute attribute is deleted:

· Compose an UPDATE Request primitive by including the updated attribute(s) with its value set to NULL.
· Send the UPDATE Request to all CSE(s) represented by the URI(s) in the announceTo attribute of the original resource.

7.2.3.10 De-announce the resource or attribute

If UPDATE Request that deletes the URI from the announceTo attribute is received:

· Compose the DELETE Request primitive.

· Send a DELETE Request to the CSE(s) represented by URI(s) in the announceTo attribute of the resource, which is not included in the announceTo of the request. The To parameter in the DELETE Request shall be set to the URI for the announced resource that will be deleted.

· Wait for Response primitive.

· Remove the URI of successfully de-announced resource from the announceTo attribute of the resource.

· Include updated announceTo attribute in the Content parameter in the Response to the UPDATE Request of the original resource.

If DELETE Request is received:

· Compose the DELETE Request primitive.

· Send DELETE Requests to all announced resources addressed by the URI(s) in the announceTo attribute of the resource.

· Wait for Response primitive.

If UPDATE request that deletes the attribute name from the announcedAttribute attribute is received:

· Compose the UPDATE Request primitive. The To parameter in the UPDATE Request shall be set to the URI for the announced resource. The UPDATE Request shall set the attribute that will be de-announced (i.e. to be deleted) in the Content parameter to NULL. The attribute that will be de-announced shall be marked as OA.

· Send UPDATE Requests to all announced resources listed in the announceTo attribute of the original resource.

· Wait for Response primitive.

· Delete the attribute name of the successfully de-announced attribute from the announcedAttribute attribute.

· Include updated announcedAttribute attribute in the Content parameter in the Response to the received UPDATE Request.

7.2.3.11 Create a success response
The Hosting CSE shall create a success response primitive with a Response Status Code indicating:
· " CREATED" in case of Create operation. If the Hosting CSE assigned attribute(s) not provided or modified any of the provided attributes as provided in the Request, the Content parameter shall include the assigned and/or modified attributes;

· "OK" in case of Retrieve operation;

· "OK" in case of Update operation;

· "OK" in case of Delete operation; and

· "OK" in case of Notify operation.

The Hosting CSE shall include Request Identifier parameter in the response primitive.

The Hosting CSE shall include Content parameter with:

· the address and/or attributes(assigned and modified by the Hosting CSE) of the created reseource depending on Result Content parameter (i.e., attributes, hierarchical-address, hierarchical-address+attributes) in the request primitive. This shall apply for Create operation;

· the retrieved attributes and/or child resource references depending on Result Content parameter (i.e., attributes, attributes+child-resources, attributes+child-resource-references, child-resource-references, original-resource) in the request primitive. This shall apply for Retrieve operation; and

· the modified/created/deleted attributes. This shall apply for Update operation.

More details can be found in clause 7.1.1.2 (Response primitive format).

NOTE: If Result Content parameter is not given in the request primitive, the default value is attributes. How to deal with each Result Content value is described in clause 8.1.2 [6]).

The Hosting CSE may include To, From, Originating Timestamp, Result Expiration Timestamp, Event Category parameters.
7.2.3.12 Create an error response
The receiver shall create an error response primitive with a Response Status Code indicating the detected error condition.

NOTE:
Possible error codes and its error handling is described in resource specific procedure.
7.2.3.13 Resource discovery procedure

A resource discovery is used to discover resources in a CSE. A Resource discovery request is done by sending Retrieve request with filterUsage, one of the filterCriteria parameters, configured as "discovery" and the request may include other filterCriteria parameters as well. A resource discovery request procedure shall be comprised of the following actions.

Originator:

The Originator shall follow the steps from Orig-1.0 to Orig-6.0 specified in clause 7.1.2.1 Generic Resource Request Procedure for Originator.

In addition to Orig-1.0, the following steps shall be performed.

The To parameter in the Retrieve Request indicates the root of where the discovery begins.

The Retrieve Request shall include filterUsage parameter in filterCriteria.

The Retrieve Request may include other parameters of filterCriteria.

Receiver:

The Receiver shall follow the steps from Recv-1.0 to Recv-7.0 specified in clause 7.1.2.2 Generic Resource Request Procedure for Receiver.

Hosting CSE shall not perform steps from Recv-6.3 to Recv-6.6 and perform the following steps instead.

The Receiver shall find resources, which match all the configured filterCriteria and which the Originator has "Discover" access right, under the addressed resource".

In Recv-6.7, the Receiver shall include addresses for all the found resources.

The Receiver shall perform Recv-6.8 and the procedure is terminated.

7.2.3.14 Check authorization of the originator
Depending on the target resource type, the Hosting CSE shall use accessControlPolicyIDs of the different resources.

· For <schedule> resource, the Hosting CSE shall evaluate the accessControlPolicyIDs of the parent resource.

· For <latest>, <oldest> and <contentInstance> resource, the Hosting CSE shall evaluate the accessControlPolicyIDs of the parent <container> resource.

· For <m2mServiceSubscriptionProfile> and <serviceSubscriedNode> resource, if it has no accessControlPolicyIDs value, the Hosting CSE shall evaluate the accessControlPolicyIDs of the parent resource.

· For other resources, the Hosting CSE shall evaluate the accessControlPolicyIDs of the resource.

The evaluation procedure shall be performed as following:

1) The Hosting CSE retrieves the access control rules from privilege attribute of the <accessControlPolicy> which is linked as the accessControlPolicyIDs. If the target is <accessControlPolicy> resource, it retrieves the rules from selfPrivilege attribute instead.

2) The Hosting CSE checks the following conditions for the access control rules. If there is any rule satisfying all conditions then the evaluation is successful, otherwise it is failed. For more details, see the clause 7.1.5 in TS-0003 Security Solutions [7].

· accessControlOriginators of the rule includes the Originator information.

· accessControlContexts of the rule includes the request context, if the rule includes the accessControlContexts
· accessControlOperations of the rule matches the operation type of the request.

If the evaluation failed, then authorization failure information shall be returned to the Originator.
7.2.4 Management common operations

7.2.4.1 Identify the managed entity and the management protocol

The Hosting CSE shall identify the managed entity to be managed via the <node> resource which is the parent resource in case of an addressed <mgmtObj> resource. In case of a <mgmtCmd> resource the entity to be managed is indicated in the execTarget attribute which addresses either a <node> resource or a group of resources of type <node>. Hence, in all cases the managed entity is ultimately identified through the <node> resource, from which the identifier of the device can be retrieved.
Then the Hosting CSE shall determine the management protocol to be used for communicating with the managed entity based on the objectID of the addressed <mgmtObj> resource. If the managed entity cannot be identified, the Hosting CSE shall reject the request with the Response Status Code indicating "EXTERNAL_OBJECT_NOT_REACHABLE" in the Response primitive.
7.2.4.2 Locate the external management objects to be managed on the managed entity

The Hosting CSE shall locate the external management object information to be managed on the managed entity by the objectPaths attribute of the <mgmtObj> resource addressed by the URI provided in the To primitive parameter. In the case that the To addresses an [objectAttribute], the Hosting CSE shall locate the external management object information on the managed entity through the objectPaths attribute of the <mgmtObj> resource of the addressed [objectAttribute], combined with their relative position in the external management object tree. If the external management object information cannot be located, the Hosting CSE shall reject the request with the Response Status Code indicating "EXTERNAL_OBJECT_NOT_FOUND” in the Response primitive.
In the case that the management server is external to the Hosting CSE, the Hosting CSE shall identify the management server that is capable of performing the operation on the external management object. If the management server cannot be identified, the Hosting CSE shall reject the request with the Response Status Code indicating “EXTERNAL_OBJECT_NOT_REACHABLE” in the Response primitive.
7.2.4.3 Establish a management session with the managed entity or management server
In the case that the management server is embedded with the CSE, if there is no existing management session between the Hosting CSE and the managed entity, the Hosting CSE shall also trigger the managed entity to establish a management session with the Hosting CSE by sending triggering message to the managed entity using the determined management protocol in case such triggering mechanism is supported by the external management technology. If the triggering mechanism is not supported by the external management technology, the Hosting CSE shall reject the request with the Response Status Code indicating “MGMT_SESSION_CANNOT_BE_ESTABLISHED”. If the management session cannot be established with the managed entity, the Hosting CSE shall reject the request with the Response Status Code indicating “MGMT_SESSION_CANNOT_BE_ESTABLISHED”. If the management session cannot be established within a limited time span as per local policy, the Hosting CSE shall reject the request with the Response Status Code indicating "MGMT_SESSION_ESTABLISHMENT_TIMEOUT” in the Response primitive.
In the case that the management server is external to the Hosting CSE, if there is no existing management session between the Hosting CSE and the management server that manages the external management objects, the Hosting CSE shall establish a session with the managed entity with the necessary access control privileges to perform the management request on the external management protocol. If the management session cannot be established with the management server, the Hosting CSE shall reject the request with Response Status Code indicating “MGMT_SESSION_CANNOT_BE_ESTABLISHED”. If the management session cannot be established within a limited time span as per local policy, the Hosting CSE shall reject the request with Response Status Code indicating “MGMT_SESSION_ESTABLISHMENT_TIMEOUT” in the Response primitive.
7.2.4.4 Send the management request(s) to the managed entity corresponding to the received Request primitive

The Hosting CSE shall send the management request(s) to the managed entity or management server in the established management session in order to perform the management operation as requested by the received Request primitive. The management request shall address the external management object information on the managed entity as determined in clause 7.2.4 or in the primitive specific clauses. The management request being used is specific to the external management technology according to a pre-defined mapping relationship with the Request primitive. The internal data structure of the external management object addressed by the management request shall be determined based on the mapping relationship of the <mgmtObj>, or <mgmtCmd> resources and the external management objects or based on the generic mapping rule as specified in TS-0001 Functional Architecture [6] clauses, 9.6.15, 9.6.16, and 9.6.17. The Hosting CSE shall extract the management results received from the managed entity or management server in order to prepare a Response primitive to be sent to the originator later. Unless explicitly stated, if the management request cannot be performed successfully, the Hosting CSE shall reject the Request primitive with the management server in the Response primitive according to the mapping relationship with the external management technology.

7.3 Resource type-specific procedures and definitions

The reference point applicability of each resource-specific procedure for the following sub-clauses is described in the corresponding procedure specification in clause 10.2(Resource Type-Specific Procedures) [6]. E.g., Applicable reference points of <container> resource creation procedure (clause 7.3.6.2.1) in present specification is described as Mca, Mcc and Mcc’ in clause 10.2.4.1(create <container> procedure) [6].
7.3.1 Resource type specification conventions

This clause describes how to understand the following clauses for resource type-specific procedures and definitions.
7.3.1.1 Resource type definition conventions

The following table includes the information of XSD data type definition files for the corresponding resource type.
Table 7.3.1.1‑1: Data type definition of <resourceType>

	Data Type ID
	File Name
	Note

	Actual Data Type ID
	XSD file name
	

The following table includes the information of universal/common attributes of the resource type. Request optionality information means inclusion of the attribute name and its value in the request primitive is Mandatory(M)/Optional(O)/NP(Not Present). This is applicable for Create and Update operation only. For Retrieve operation, attribute names are optionally included in the request, but not with any values. For Delete operation, any attribute names or their values cannot be included in the request.
Universal/common attributes do not have any default value, however, have value restrictions and notes (see Table 6.3.5‑1).
Table 7.3.1.1‑2: Universal/Common Attributes of <resourceType> resource
	Attribute Name
	Request Optionality

	
	Create
	Update

	Universal/common attribute name
	M/O/NP
	O/NP

The following table includes the information of resource specific attributes of the resource type. Convention for request optionality is the same as the universal/common attribute table above.

Table 7.3.1.1‑3: Resource Specific Attributes of <resourceType> resource
	Attribute Name
	Request Optionality
	Data Type
	Default Value and Constraints

	
	Create
	Update
	
	

	resource specific attribute name
	M/O/NP
	O/NP
	
	

The following table includes the information of child resources of the resource type.

Table 7.3.1.1‑4: Child resources of <resourceType> resource
	Child Resource Type
	Child Resource Name
	Multiplicity
	Ref. to Resource Type Definition

	<resourceType>
	“[variable]” or fixed name
	Multiplicity of child resource instances in the corresponding resource type
	Reference to the resource type definition in this TS

7.3.1.2 Resource type-specific procedure conventions

This clause describes resource type specific procedures referring generic procedures defined in clause 7.1.2. Each operation specific procedure describes procedures for the Originator and the Receiver. If the resource and operation specific procedure is the same as the generic procedure, the Originator and Receiver procedure refer to them. Otherwise, the deviation/addition is clearly described with related procedure numbers (e.g., Recv 6.1) in clause 7.1.2.

If a deviation/addition procedure includes sub-procedures in one more more level(s), proper numbering is used to show the levels (e.g., “1)”, “a)”). If sub-procedures do not care the order, bullets are used instead of numbers
7.3.2 Resource type <accessControlPolicy>
7.3.2.1 Introduction

The <accessControlPolicy> resource is comprised of privileges and selfPrivileges attributes which represent a set of access control rules defining which entities (defined as accessControlOriginators) have the privilege to perform certain operations (defined as accessContolOperations) within specified contexts (defined as accessControlContexts) and are used by the CSEs in making access decision to specific resources.

The detailed description can be found in clause 9.6.2 in TS-0001 Functional Architecture [6].

Table 7.3.2.1‑1: Data type defintion of <accessControlPolicy> resource
	Data Type ID
	File Name
	Note

	accessControlPolicy
	CDT-accessControlPolicy-V1_0_0.xsd
	

Table 7.3.2.1‑2: Universal/Common Attributes of <accessControlPolicy> resource
	Attribute Name
	Request Optionality

	
	Create
	Update

	@resourceName
	NP
	NP

	resourceType
	NP
	NP

	resourceID
	NP
	NP

	parentID
	NP
	NP

	expirationTime
	O
	O

	labels
	O
	O

	creationTime
	NP
	NP

	lastModifiedTime
	NP
	NP

	announceTo
	O
	O

	announcedAttribute
	O
	O

Table 7.3.2.1‑3: Resource Specific Attributes of <accessControlPolicy> resource
	Attribute Name
	Request Optionality
	Data Type
	Default Value and Constraints

	
	Create
	Update
	
	

	privileges
	M
	O
	m2m:setOfAcrs
	No default

	selfPrivileges
	M
	O
	m2m:setOfAcrs
	No default

The following table includes the information of child resources of the resource type.

Table 7.3.2.1‑4: Child Resources of <accessControlPolicy> resource
	Child Resource Type
	Child Resource Name
	Multiplicity
	Ref. to Resource Type Definition

	<subscription>
	[variable]
	0..n
	Clause 7.3.8

7.3.2.2 accessControlPolicy resource specific procedure on CRUD operations

This sub-clause describes accessControlPolicy resource specific behaviour for CRUD operations.

7.3.2.2.1 Create

Originator:

No changes from the generic procedures in clause 7.1.2.1.

Receiver:

No change from the generic procedures in clause 7.1.2.2.

7.3.2.2.2 Retrieve

Originator:

No changes from the generic procedures in clause 7.1.2.1.

Receiver:

No change from the generic procedures in clause 7.1.2.2.

7.3.2.2.3 Update

Originator:

No change from the generic procedures in clause 7.1.2.1.

Receiver:

No change from the generic procedures in clause 7.1.2.2.

7.3.2.2.4 Delete

Originator:

No change from the generic procedures in clause 7.1.2.1.

Receiver:

No change from the generic procedures in clause 7.1.2.2.

7.3.3 Resource Type <CSEBase>
7.3.3.1 Introduction

A <CSEBase> resource shall represent a CSE. This <CSEBase> resource shall be the root for all the resources that are residing on the CSE. The detailed description can be found in clause 9.6.3 in TS-0001 Functional Architecture [6]).
Table 7.3.3.1‑1: Data type definition of <CSEBase> resource
	Data Type ID
	File Name
	Note

	CSEBase
	CDT-CSEBase-v1_0_0.xsd
	

Table 7.3.3.1‑2: Universal/Common Attributes of <CSEBase> resource
	Attribute Name
	Request Optionality

	
	Create
	Update

	@resourceName
	NP
	NP

	resourceType
	NP
	NP

	resourceID
	NP
	NP

	parentID
	NP
	NP

	accessControlPolicyIDs
	NP
	NP

	creationTime
	NP
	NP

	lastModifiedTime
	NP
	NP

	Labels
	NP
	NP

Table 7.3.3.1‑3: Resource Specific Attributes of <CSEBase> resource
	Attribute Name
	Request Optionality
	Data Type
	Default Value and Constraints

	
	Create
	Update
	
	

	cseType
	NP
	NP
	m2m:cseTypeID
	No default

	CSE-ID
	NP
	NP
	m2m:ID
	No default

	supportedResourceType
	NP
	NP
	list of m2m:resourceType
	No default

	pointOfAccess
	NP
	NP
	m2m:pOAList
	No default

	nodeLink
	NP
	NP
	xs:anyURI
	No default

Table 7.3.3.1‑4: Child resources of <CSEBase> resource
	Child Resource Type
	Child Resource Name
	Multiplicity
	Ref. to Resource Type Definition

	<remoteCSE>
	[variable]
	0..n
	Clause 7.3.4

	<node>
	[variable]
	0..n
	Clause 7.3.18

	<AE>
	[variable]
	0..n
	Clause 7.3.5

	<container>
	[variable]
	0..n
	Clause 7.3.6

	<group>
	[variable]
	0..n
	Clause 7.3.13

	<accessControlPolicy>
	[variable]
	0..n
	Clause 7.3.2

	<subscription>
	[variable]
	0..n
	Clause 7.3.8

	<mgmtCmd>
	[variable]
	0..n
	Clause 7.3.16

	<locationPolicy>
	[variable]
	0..n
	Clause 7.3.10

	<statsConfig>
	[variable]
	0..n
	Clause 7.3.23

	<statsCollect>
	[variable]
	0..n
	Clause 7.3.25

	<request>
	[variable]
	0..n
	Clause 7.3.12

	<delivery>
	[variable]
	0..n
	Clause 7.3.11

	<schedule>
	[variable]
	0..1
	Clause 7.3.9

	<m2mServiceSubscriptionPolicy
	[variable]
	0..n
	Clause 7.3.19

	<serviceSubscribedAppRule>
	[variable]
	0..n
	Clause 7.3.29

7.3.3.2 <CSEBase> resource specific procedure on CRUD operations
7.3.3.2.1 Create

Originator:
The <CSEBase> resource shall not be created via API.

Receiver:
Primitive specific operation on Recv-1.0 "Check the syntax of received message":

35) If the request is received, the Receiver CSE shall execute the following steps in order.
a) "Create an unsuccessful Response primitive" with the Response Status Code indicating “OPERATION_NOT_ALLOWED” error.
b) "Send the Response primitive".
7.3.3.2.2 Retrieve

Originator:

No change from the generic procedures in clause 7.1.2.1.

Receiver:

No change from the generic procedures in clause 7.1.2.2.
7.3.3.2.3 Update

Originator:

The <CSEBase> resource shall not be updated via API.

Receiver:
Primitive specific operation on Recv-1.0 "Check the syntax of received message":

36) If the request is received, the Receiver CSE shall execute the following steps in order.
a) "Create an unsuccessful Response primitive" with the Response Status Code indicating “OPERATION_NOT_ALLOWED” error .
e) "Send the Response primitive".
7.3.3.2.4 Delete

Originator:
The <CSEBase> resource shall not be DELETEed via API.

Receiver:
Primitive specific operation on Recv-1.0 "Check the syntax of received message":

37) If the request is received, the Receiver CSE shall execute the following steps in order.
b) "Create an unsuccessful Response primitive" with the Response Status Code indicating “OPERATION_NOT_ALLOWED” error.

f) "Send the Response primitive".

7.3.4 Resource Type <remoteCSE>
7.3.4.1 Introduction

A <remoteCSE> resource shall represent a remote CSE that is registered to the Registrar CSE. <remoteCSE> resources shall be located directly under the <CSEBase>.

Conversely each registered CSE shall also be represented as a sub-set of <remoteCSE> resource in the registering CSE's <CSEBase>.

The detailed description can be found in clause 9.6.4 in Architecture TS.

Table 7.3.4.1‑1: Data type definition of <remoteCSE> resource
	Data Type ID
	File Name
	Note

	remoteCSE
	CDT-remoteCSE-v1_0_0.xsd
	

Table 7.3.4.1‑2: Universal/Common Attributes of <remoteCSE> resource
	Attribute Name
	Request Optionality

	
	Create
	Update

	@resourceName
	NP
	NP

	resourceType
	NP
	NP

	resourceID
	NP
	NP

	parentID
	NP
	NP

	accessControlPolicyIDs
	O
	O

	creationTime
	NP
	NP

	expirationTime
	O
	O

	lastModifiedTime
	NP
	NP

	labels
	O
	NP

	announceTo
	O
	O

	announcedAttribute
	O
	O

Table 7.3.4.1‑3: Resource Specific Attributes of <remoteCSE> resource
	Attribute Name
	Request Optionality
	Data Type
	Default Value and Constraints

	
	Create
	Update
	
	

	cseType
	O
	NP
	m2m:cseTypeID
	No default

	pointOfAccess
	O
	O
	m2m:pOAList
	No default

	CSEBase
	M
	NP
	xs:anyURI
	No default

	CSE-ID
	M
	NP
	m2m:ID
	No default

	M2M-Ext-ID
	O
	O
	m2m:externalID
	No default

	Trigger-Recipient-ID
	O
	O
	m2m:triggerRecipientID
	No default

	requestReachability
	M
	O
	xs:boolean
	No default

	nodeLink
	NP
	NP
	xs:anyURI
	No default

Table 7.3.4.1‑4: Child resources of <remoteCSE> resource
	Child Resource Type
	Child Resource Name
	Multiplicity
	Ref. to Resource Type Definition

	<AE>
	[variable]
	0..n
	Clause 7.3.5

	<container>
	[variable]
	0..n
	Clause 7.3.6

	<group>
	[variable]
	0..n
	Clause 7.3.13

	<accessControlPolicy>
	[variable]
	0..n
	Clause 7.3.2

	<subscription>
	[variable]
	0..n
	Clause 7.3.8

	<pollingChannel>
	[variable]
	0..n
	Clause 7.3.21

	<schedule>
	[variable]
	0..n
	Clause 7.3.9

7.3.4.2 <remoteCSE> resource specific procedure on CRUD operations
The entire CSE registration procedure including <CSE> resource creation procedure below is defined in 10.1.1.2.1 [6] (“CSE registration procedure”).
7.3.4.2.1 Create

Originator:
No change from the generic procedures in clause 7.1.2.1 with the following exception:
· An AE shall not originate a Create <remoteCSE> resource request.
Receiver:
38) Primitive specific operation on Recv-1.0 "Check the syntax of received message":If the request is received over the Mca reference point, the Receiver CSE shall execute the following steps in order.
a) "Create an unsuccessful Response primitive" with the response status code ‘OPERATION_NOT_ALLOWED’.
b) "Send the Response primitive"
NOTE: Determination of the reference point is to the discretion of the Receiver CSE implementation.
7.3.4.2.2 Retrieve

Originator:
No change from the generic procedures in clause 7.1.2.1.

Receiver:
No change from the generic procedures in clause 7.1.2.1.

7.3.4.2.3 Update

Originator:
No change from the generic procedures in clause 7.1.2.1.

Receiver:
No change from the generic procedures in clause 7.1.2.1.

7.3.4.2.4 Delete

Originator:
No change from the generic procedures in clause 7.1.2.1.

Receiver:
No change from the generic procedures in clause 7.1.2.1.

7.3.5 Resource Type <AE>
7.3.5.1 Introduction

The <AE> resource represents information about an Application Entity known to a given Common Services Entity.
The detailed description can be found in clause 9.6.5 in TS-0001 Functional Architecture [6].

Table 7.3.5.1‑1: Data type definition of <AE> resource
	Data Type ID
	File Name
	Note

	AE
	CDT-AE-v1_0_0.xsd
	XSD schema for AE resource

Table 7.3.5.1‑2: Universal/Common Attributes of <AE> resource
	Attribute Name
	Request Optionality

	
	Create
	Update

	@resourceName
	NP
	NP

	resourceType
	NP
	NP

	resourceID
	NP
	NP

	parentID
	NP
	NP

	accessControlPolicyIDs
	O
	O

	creationTime
	NP
	NP

	expirationTime
	O
	O

	lastModifiedTime
	NP
	NP

	labels
	O
	NP

	announceTo
	O
	O

	announcedAttribute
	O
	O

Table 7.3.5.1‑3: Resource Specific Attributes of <AE> resource
	Attribute Name
	Request Optionality
	Data Type
	Default Value and Constraints

	
	Create
	Update
	
	

	appName
	O
	O
	xs:string
	No default

	App-ID
	M
	NP
	xs:string
	No default

	AE-ID
	NP
	NP
	m2m:ID
	No default

	pointOfAccess
	O
	O
	m2m:pOAList
	No default

	ontologyRef
	O
	O
	xs:anyURI
	No default

	nodeLink
	NP
	NP
	xs:anyURI
	No default

Table 7.3.5.1‑4: Child resources of <AE> resource
	Child Resource Type
	Child Resource Name
	Multiplicity
	Ref. to Resource Type Definition

	<subscription>
	[variable]
	0..n
	Clause 7.3.8

	<container>
	[variable]
	0..n
	Clause 7.3.6

	<group>
	[variable]
	0..n
	Clause 7.3.13

	<accessControlPolicy>
	[variable]
	0..n
	Clause 7.3.2

	<pollingChannel>
	[variable]
	0..n
	Clause 7.3.21

7.3.5.2 <AE> resource specific procedure on CRUD+N operations

This sub-clause describes AE resource specific behaviour for CRUD+N operations.
The entire AE registration procedure including <AE> resource creation procedure below is defined in clause 10.1.1.2.2 of the oneM2M TS-0001 [6] (“Application Entity registration procedure”).
7.3.5.2.1 Create

Originator:

No change from the generic procedures in clause 7.1.2.1 with the with the following exception:
· A CSE shall not originate a Create <AE> resource request.
Receiver:

Primitive specific operation on Recv-1.0 "Check the syntax of received message":

1. If the request is received over Mcc or Mcc’ reference point, the Receiver CSE shall execute the following steps in order.
a) "Create an unsuccessful Response primitive" with the Response Status Code ‘OPERATION_NOT_ALLOWED’.
b) "Send the Response primitive".
NOTE:Determination of the reference point is to the discretion of the Receiver CSE implementation.
2. Otherwise,

a) No change from the generic procedures in clause 7.1.2.2.

7.3.5.2.2 Retrieve

Originator:

No change from the generic procedures in clause 7.1.2.1.

Receiver:

No change from the generic procedures in clause 7.1.2.2.

7.3.5.2.3 Update

Originator:

No change from the generic procedures in clause 7.1.2.1.

Receiver:

No change from the generic procedures in clause 7.1.2.2.

7.3.5.2.4 Delete

Originator:

No change from the generic procedures in clause 7.1.2.1.

Receiver:

No change from the generic procedures in clause 7.1.2.2.

7.3.5.2.5 Notify

Originator:

No change from the generic procedures in clause 7.1.2.1.

Receiver:

No change from the generic procedures in clause 7.1.2.2.
7.3.6 Resource Type <container>
7.3.6.1 Introduction

This resource represents a container for data instances. It is used to share information among other entities and potentially to track the data. A <container> resource has no associated content, only attributes and child resources.

The detailed description can be found in clause 9.6.6 in TS-0001 Functional Architecture [6].

Table 7.3.6.1‑1: Data type definition of <container> resource
	Data Type ID
	File Name
	Note

	Container
	CDT-container-V1_0_0.xsd
	

Table 7.3.6.1‑2: Universal/Common Attributes of <container> resource
	Attribute Name
	Request Optionality

	
	Create
	Update

	@resourceName
	NP
	NP

	resourceType
	NP
	NP

	resourceID
	NP
	NP

	parentID
	NP
	NP

	accessControlPolicyIDs
	O
	O

	creationTime
	NP
	NP

	expirationTime
	O
	O

	lastModifiedTime
	NP
	NP

	stateTag
	NP
	NP

	labels
	O
	NP

	announceTo
	O
	O

	announcedAttribute
	O
	O

Table 7.3.6.1‑3: Resource Specific Attributes of <contianer> resource
	Attribute Name
	Request Optionality
	Data Type
	Default Value and Constraints

	
	Create
	Update
	
	

	creator
	NP
	NP
	m2m:ID
	No default

	maxNrOfInstances
	O
	O
	xs:nonNegativeInteger
	No default

	maxByteSize
	O
	O
	xs:nonNegativeInteger
	No default

	maxInstanceAge
	O
	O
	xs:nonNegativeInteger
	No default

	currentNrOfInstances
	NP
	NP
	xs:nonNegativeInteger
	No default

(This is generated by the hosting CSE and limited by the maxNrOfInstances)

	currentByteSize
	NP
	NP
	xs:nonNegativeInteger
	No default

(This is generated by the hosting CSE and limited by the maxByteSize)

	locationID
	O
	O
	xs:anyURI
	No default

	ontologyRef
	O
	O
	xs:anyURI
	No default

Table 7.3.6.1‑4: Child resources of <container> resource
	Child Resource Type
	Child Resource Name
	Multiplicity
	Ref. to in Resource Type Definition

	<contentInstance>
	[variable]
	0..n
	Clause 7.3.7

	<subscription>
	[variable]
	0..n
	Clause 7.3.8

	<container>
	[variable]
	0..n
	Clause 7.3.6

	<latest>
	latest
	1
	Clause 7.3.27

	<oldest>
	oldest
	1
	Clause 7.3.28

7.3.6.2 <container> resource specific procedure on CRUD operations

This clause describes container resource specific behaviour for CRUD operations.

7.3.6.2.1 Create

Originator:

No change from the generic procedures in clause 7.1.2.1.

Receiver:

No change from the generic procedures in clause 7.1.2.2.

7.3.6.2.2 Retrieve

Originator:

No change from the generic procedures in clause 7.1.2.1.

Receiver:

No change from the generic procedures in clause 7.1.2.2.

7.3.6.2.3 Update

Originator:

No change from the generic procedures in clause 7.1.2.1.

Receiver:

No change from the generic procedures in clause 7.1.2.2.

.

7.3.6.2.4 Delete

Originator:

No change from the generic procedures in clause 7.1.2.1.

Receiver:

No change from the generic procedures in clause 7.1.2.2.

7.3.7 Resource Type <contentInstance>
7.3.7.1 Introduction

The <contentInstance> resource represents a data instance in the container.
The detailed description can be found in clause 9.6.7 in TS-0001 Functional Architecture [6].

Table 7.3.7.1‑1: Data type definition of <contentInstance> resource
	Data Type ID
	File Name
	Note

	contentInstance
	CDT-contentInstance-v1_0_0.xsd
	

Table 7.3.7.1‑2: Universal/Common Attributes of <contentInstance> resource
	Attribute Name
	Request Optionality

	
	Create
	Update

	@resourceName
	NP
	NP

	resourceType
	NP
	NP

	resourceID
	NP
	NP

	parentID
	NP
	NP

	creationTime
	NP
	NP

	lastModifiedTime
	NP
	NP

	stateTag
	NP
	NP

	Labels
	O
	NP

	announceTo
	O
	NP

	announcedAttribute
	NP
	NP

Table 7.3.7.1‑3: Resource Specific Attributes of <contentInstance> resource
	Attribute Name
	Request Optionality
	Data Type
	Default Value and Constraints

	
	Create
	Update
	
	

	creator
	NP
	NP
	m2m:ID
	

	contentInfo
	M
	NP
	m2m:contentInfo
	 The default value of this attribute is ‘text/plain:0’.

	contentSize
	O
	NP
	xs:nonNegativeInteger
	No default

	ontologyRef
	O
	NP
	xs:anyURI
	No default

	content
	M
	NP
	xs:anySimpleType
	No default (Transfer encoding may be applied, and indicated applied encoding as part of the contentInfo attribute)

The contentInfo attribute shall provide meta information about the stored data in content. m2m:encodingType (0;plain, 1:base64 encoded string, 2:base64 encoded binary), and can be omitted when the Media Type of data is ‘text/plain’ and any transport encoding is not applied.
7.3.7.2 <contentInstance> resource specific procedure on CRUD operations

7.3.7.2.1 Create

Originator:

No change from the generic procedures in clause 7.1.2.1.

Receiver:

No change from the generic procedures in clause 7.1.2.2. The Originator may omit the name of the <contentInstance> resource unless the Originator need to refer specific content later.

7.3.7.2.2 Retrieve

Originator:

No change from the generic procedures in clause 7.1.2.1.

Receiver:

No change from the generic procedures in clause 7.1.2.2. The Originator may omit the name of the targeted <contentInstance> resource when the latest version of stored content is requested.

7.3.7.2.3 Update

Originator:

The <contentInstance> resource shall not be Updated via API.

Receiver:

Primitive specific operation on Recv-1.0 "Check the syntax of received message":

If the request is received, the Receiver CSE shall execute the following steps in order.
c) "Create an unsuccessful Response primitive" with the Response Status Code indicating “OPERATION_NOT_ALLOWED” error.
d) "Send the Response primitive".
7.3.7.2.4 Delete

Originator:

No change from the generic procedures in clause 7.1.2.1.

Receiver:

No change from the generic procedures in clause 7.1.2.2.

7.3.8 Resource Type <subscription>
7.3.8.1 Introduction

The <subscription> resource contains subscription information for its subscribed-to resource. The subscription resource is a child of the subscribed to resource.

The detailed description can be found in clause 9.6.8 in TS-0001 Functional Architecture [6].

Table 7.3.8.1‑1: Data type definition of <subscription> resource
	Data Type ID
	File Name
	Note

	subscription
	CDT-subscription-v1_0_0.xsd
	

Table 7.3.8.1‑2: Universal/Common Attributes of <subscription> resource
	Attribute Name
	Request Optionality

	
	Create
	Update

	@resourceName
	NP
	NP

	resourceType
	NP
	NP

	resourceID
	NP
	NP

	parentID
	NP
	NP

	accessControlPolicyIDs
	O
	O

	creationTime
	NP
	NP

	expirationTime
	O
	O

	lastModifiedTime
	NP
	NP

	labels
	O
	O

Table 7.3.8.1‑3: Resource Specific Attributes of <subscription> resource
	Attribute Name
	Request Optionality
	Data Type
	Default Value and Constraints

	
	Create
	Update
	
	

	eventNotificationCriteria
	O
	O
	m2m:eventNotificationCriteria
	No default

	expirationCounter
	O
	O
	xs:positiveInteger
	No default

	notificationURI
	M
	O
	list of xs:anyURI
	No default

	groupID
	O
	O
	xs:anyURI
	No default

	notificationForwardingURI
	O
	O
	xs:anyURI
	No default

	batchNotify
	O
	O
	m2m:batchNotify
	No default

	rateLimit
	O
	O
	m2m:rateLimit
	No default

	preSubscriptionNotify
	O
	NP
	xs:positiveInteger
	No default

	pendingNotification
	O
	O
	m2m:pendingNotification
	No default

	notificationStoragePriority
	O
	O
	xs:positiveInteger
	No default

	latestNotify
	O
	O
	xs:boolean
	No default

	notificationContentType
	O
	O
	m2m:notificationContentType
	No default

	notificationEventCat
	O
	O
	m2m:eventCat
	No default

	creator
	O
	O
	m2m:ID
	No default

	subscriberURI
	O
	NP
	xs:anyURI
	No default

Table 7.3.8.1‑4: Reference of child resources

	Child Resource Type
	Child Resource Name
	Multiplicity
	Ref. to in Resource Type Definition

	<schedule>
	notificationSchedule
	0..1
	Clause 7.3.9

7.3.8.2 <subscription> resource specific procedure on CRUD operations

7.3.8.2.1 Create

Originator:
No change from the generic procedures in clause 7.1.2.1.
Receiver:
The following are additional Hosting CSE procedures to the generic resource handling procedures (Figure 7.1.2.2‑1 in clause 7.1.2.2). The additional procedures shall be inserted from Recv-6.2 to Recv-6.8 as below.

The resource handling procedure for the Hosting CSE which receives <subscription> CREATE request shall perform the following procedures in order:

1. Recv-6.2
2. Recv-6.3
3. Check if the subscribed-to resource, addressed in To parameter in the Request, is subscribable. Subscribable resource types are defined in TS-0001 Functional Architecture [6], they have <subscription> resource types as their child resources.

If it is not subscribable, the Hosting CSE shall return the Notify response primitive with a Response Status Code indicating “TARGET_NOT_SUBSCRIBABLE” error.

4. Check if the Originator has privileges for retrieving the subscribed-to resource.

If the Originator does not have the privilege, the Hosting CSE shall return the Notify response primitive with Response Status Code indicating “NO_PRIVILEGE” error.

5. If the notificationURI is not the Originator, the Hosting CSE should send a Notify request primitive to the notificationURI with verificationRequest parameter set as TRUE (See clause 7.4.1.2.2).

a. If the Hosting CSE cannot send the Notify request primitive, the Hosting CSE shall return the Notify response primitive with a Response Status Code indicating “SUBSCRIPTION_VERIFICATION_INITIATION_FAILED” error.

b. If the Hosting CSE sent the primitive, the Hosting CSE shall check if the Notify response primitive contains a Response Status Code indicating “SUBSCRIPTION_CREATOR_HAS_NO_PRIVILEGE” or “SUBSCRIPTION_HOST_HAS_NO_PRIVILEGE error. If so, the Hosting CSE shall return the Create response primitive with a Response Status Code indicating the same error from the Notify response primitive to the Originator.

6. Recv-6.4
7. Recv-6.5
If the notificationURI is not the Originator, the Hosting CSE shall store Originator ID to creator attribute.

8. Recv-6.6
9. Recv-6.7
10. Recv-6.8
7.3.8.2.2 Retrieve

Originator:

No change from the generic procedures in clause 7.1.2.1.

Receiver:

No change from the generic procedures in clause 7.1.2.2.

7.3.8.2.3 Update

Originator:

No change from the generic procedures in clause 7.1.2.1.

Receiver:

No change from the generic procedures in clause 7.1.2.2.

7.3.8.2.4 Delete

Originator:

No change from the generic procedures in clause 7.1.2.1.

Receiver:

No change from the generic procedures in clause 7.1.2.2.

7.3.9 Resource Type <schedule>
7.3.9.1 Introduction

The <schedule> resource shall represent scheduling information in the context of its parent resource. If a <schedule> resource is not present as a child resource then there are no time-constraints on the context of its parent resource. An Originator shall have the same access control privileges to the <schedule> resource as it has to its parent resource.

The detailed <schedule> resource description can be found in clause 9.6.9 of the TS-0001 Functional Architecture [6].

Table 7.3.9.1‑1: Data type definition of <schedule> resource
	Data Type ID
	File Name
	Note

	schedule
	CDT-schedule-V1_0_0.xsd
	

Table 7.3.9.1‑2: Universal/Common Attributes of <schedule> resource
	Attribute Name
	Request Optionality

	
	Create
	Update

	@resourceName
	NP
	NP

	resourceType
	NP
	NP

	resourceID
	NP
	NP

	parentID
	NP
	NP

	accessControlPolicyIDs
	O
	O

	creationTime
	O
	NP

	expirationTime
	O
	O

	lastModifiedTime
	NP
	NP

	labels
	O
	NP

	announceTo
	O
	O

	announcedAttribute
	O
	O

Table 7.3.9.1‑3: Resource Specific Attributes of <schedule> resource
	Attribute Name
	Request Optionality
	Data Type
	Default Value and Constraints

	
	Create
	Update
	
	

	scheduleElement
	M
	O
	m2m:scheduleEntries
	No Default and shall not be blank.

The scheduleElement attribute represents the list of scheduled tasks with the time of the execution.

The each entry of the scheduleElelement attribute shall consist of a line with 6 field values (See Table 7.3.8.1-4).

The time to be matched with the schedule pattern shall be interpreted in UTC timezone.

Table 7.3.9.1‑4: Definition of m2m:scheduleEntry string format

	Field Name
	Range of values
	Note

	Second
	0 to 59
	

	Minute
	0 to 59
	

	Hour
	0 to 23
	

	Day of the month
	1 to 31
	

	Month of the year
	1 to 12
	

	Day of the week
	0 to 6
	0 means Sunday

Each field value can be either an asterisk ('*': matching all valid values), an element, or an elements separated by commas(',').

An element shall be either a number or two numbers separated by a hyphen ('-': matching between two values).

The task which shall be executed is depending on the parent resource of the <schedule> resource (see Table 7.3.8.1-5).

Table 7.3.8.1-5: The task to be executed

	Parent resource
	Task to be executed
	Note

	<remoteCSE>
	Establish connection to the remoteCSE
	Timing of disconnection is up to implementation in present release.

	<subscription>
	Flash spooled notifications
	

EXAMPLE 1:

EXAMPLE: * 0-5 2,6,10 * * *
In case of parent resource was <remoteCSE>, the CSE will be establish connection on 2:00-2:05, 6:00-6:05, and 10:00-10:05 every day.

End of EXAMPLE 1:

EXAMPLE 2:

EXAMPLE: * * 8-20 * * *

In case of the parent resource was <subscription>, the notification for the subscribed event will be suspended between from 20:00 to 8:00 on weekend.

End of EXAMPLE 2:

Table 7.3.9.1‑5: Child resources of <schedule > resource
	Child Resource Type
	Child Resource Name
	Multiplicity
	Ref. to in Resource Type Definition

	Subscription
	[variable]
	0..n
	Clause 7.3.8

7.3.9.2 <schedule> resource specific procedure on CRUD operations
This sub-clause describes <schedule> resource specific behaviour for CRUD operations.

7.3.9.2.1 Create

Originator:

No change from the generic procedures in clause 7.1.2.1.

If <schedule> is created then scheduleElement (L) shall be created.

Receiver:

No change from the generic procedures in clause 7.1.2.2.

7.3.9.2.2 Retrieve

Originator:

No change from the generic procedures in clause 7.1.2.1.

Receiver:

No change from the generic procedures in clause 7.1.2.2.

7.3.9.2.3 Update
Originator:

No change from the generic procedures in clause 7.1.2.1.

Receiver:

No change from the generic procedures in clause 7.1.2.2.

7.3.9.2.4 Delete
Originator:

No change from the generic procedures in clause 7.1.2.1.

If <schedule> is deleted then scheduleElement (L) shall be deleted.

Receiver:

No change from the generic procedures in clause 7.1.2.2.

7.3.10 Resource Type <locationPolicy>
7.3.10.1 Introduction

The <locationPolicy> resource represents the method for obtaining and managing geographical location information of an M2M Node. The detailed description can be found in the clause 9.6.10 in TS-0001 Functional Architecture [6] .

Table 7.3.10.1‑1: Data type definition of <locationPolicy> resource
	Data Type ID
	File Name
	Note

	locationPolicy
	CDT-locationPolicy-v1_0_0.xsd
	

Table 7.3.10.1‑2: Universal/Common Attributes of <locationPolicy> resource
	Attribute Name
	Request Optionality

	
	Create
	Update

	@resourceName
	NP
	NP

	resourceType
	NP
	NP

	resourceID
	NP
	NP

	parentID
	NP
	NP

	expirationTime
	O
	O

	accessControlPolicyIDs
	O
	O

	creationTime
	NP
	NP

	lastModifiedTime
	NP
	NP

	labels
	O
	O

	announceTo
	O
	O

	announcedAttribute
	O
	O

Table 7.3.10.1‑3: Resource Specific Attributes of <locationPolicy> resource
	Attribute Name
	Request Optionality
	Data Type
	Default Value and Constraints

	
	Create
	Update
	
	

	locationSource
	M
	NP
	m2m:locationSource
	No default

	locationUpdatePeriod
	O
	O
	xs:duration
	No default

	locationTargetID
	O
	NP
	m2m:nodeID
	No default

	locationServer
	O
	NP
	xs:anyURI
	No default

	locationContainerID
	NP
	NP
	xs:anyURI
	No default

	locationContainerName
	O
	O
	xs:string
	No default

	locationStatus
	NP
	NP
	xs:string
	No default

Table 7.3.10.1‑4: Child resources of <locationPolicy> resource
	Child Resource Type
	Child Resource Name
	Multiplicity
	Ref. to Resource Type Definition

	<subscription>
	[variable]
	0..n
	Clause 7.3.8

7.3.10.2 <locationPolicy> resource specific procedure on CRUD Operations
This clause describes <locationPolicy> resource specific primitive behaviour for CRUD operations.

7.3.10.2.1 Create
Originator:
No change from the generic procedures in clause 7.1.2.1.

Receiver:
The following <locationPolicy> resource type specific procedures shall be performed after Recv-6.5 and before Recv-6.6 generic procedures.

39) After the successful creation of <locationPolicy> resource, the Hosting CSE shall create <container> resource where the actual location information will be stored and the resource shall contain cross-references for the both resources, locationContainerID attribute for the <locationPolicy> resource and locationID attribute for the <container> resource. The name of the created <container> resource shall be determined by the locationContainerID attribute if it is applicable.

40) Check the locationSource and locationUpdatePeriod attributes:

e) If the locationSource attribute is set by 'Network Based' and locationUpdatePeriod attribute is set by any duration value (higher than 0 second), then continue with the step 3.
g) If the locationSource attribute is set by 'Device Based' and locationUpdatePeriod attribute is set by any duration value (higher than 0 second), then continue with the step 4.
h) If the locationSource attribute is set by 'Sharing Based' and locationUpdatePeriod attribute is set by any duration value (higher than 0 second), then continue with the step 5.
41) The Hosting CSE shall retrieve the locationTargetID and locationServer attributes from the stored <location Policy> resource.
In case either the locationTargetID or locationServer attribute cannot be obtained, the hosting CSE shall reject the request with the Response Status Code indicating “BAD_REQUEST” error. Then, the Hosting CSE shall transform the location-acquisition request into Location Server request [28], using the attributes stored in <locationPolicy> resource. The Hosting CSE shall also provide default values for other required parameters (e.g. quality of position) in the Location Server request according to local policies.

The Hosting CSE shall send this Location Server request to the location server using, for example, OMA Mobile Location Protocol [i.4] and OMA RESTful NetAPI for Terminal Location [28]. The location server performs positioning procedure based upon the Location Server request. Then continue with step 6.

Based on the period information, locationUpdatePeriod attribute, this step can be periodically repeated or the location server can only notify the Hosting CSE of location information that performs periodically.

NOTE 1:
The location server performs the privacy control and only responds successfully if the positioning procedure is permitted.

NOTE 2:
The detail information on how the Location Server request message is converted into OMA RESTful NetAPI for Terminal Location message is described in Annex G.
42) The Hosting CSE shall perform positioning procedure using location determination modules and technologies (e.g. GPS). Then continue with step 6.

Based on the period information, locationUpdatePeriod attribute, this step can be periodically repeated.

NOTE 3:
The Hosting CSE can utilize the internal interface (e.g. System Call) to communicate with the modules and technologies. The detailed procedure is out of scope.
43) The Hosting CSE shall collect information of topology of M2M Area Network using <node> resource and find the closest Node from the Originator that has registered with the Hosting CSE and has location information. The closest Node is determined by the minimum hop based on the collected topology information.
f) If the Hosting CSE can find the closest Node from the Originator, the location information of the closest Node shall be stored as the location information of the Originator into a <contentInstance> resource under the created <container> resource.

i) If the Hosting CSE cannot find the closest Node from the Originator, the location information of the Hosting CSE shall be stored as the location information of the Originator into a <contentInstance> resource under the created <container> resource.
44) The Hosting CSE shall receive the corresponding response and transform it into a Response primitive.

g) If the positioning procedure is failed, the Hosting CSE shall store a statusCode based on the error code in the locationStatus attribute in the created <locationPolicy> resource.

j) If the positioning procedure is successfully complete which means that the Hosting CSE acquires the location information, The Hosting CSE shall store the acquired location information into a <contentInstance> resource under the created <container> resource.

7.3.10.2.2 Retrieve
Originator:
No change from the generic procedures in clause 7.1.2.1.

Receiver:
No change from the generic procedures in clause 7.1.2.2.

7.3.10.2.3 Update

Originator:
No change from the generic procedures in clause 7.1.2.1.

Receiver:
No change from the generic procedures in clause 7.1.2.2.

7.3.10.2.4 Delete

Originator:
No change from the generic procedures in clause 7.1.2.1.

Receiver:
The procedure of the Receiver written in the clause 7.1.2.2 (from Rcv-D-1.0 to Rcv-D-10.0) shall be the same as initial steps. A following step is the <locationPolicy> resource type specific procedure for DELETE operation.

45) Once the <locationPolicy> resource is deleted, the Receiver shall delete the associated resources (e.g. <container>, <contentInstance> resources). If the locationSource attribute and the locationUpdatePeriod attribute of the <locationPolicy> resource has been set with appropriate value, the Receiver shall tear down the session. The specific mechanism used to tear down the session depends on the support of the Underlying Network and other factors.

7.3.11 Resource Type <delivery>
7.3.11.1 Introduction

In order to be able to initiate and manage the execution of data delivery in a resource-based manner, resource type delivery is defined. This resource type shall be used for forwarding requests from one CSE to another CSE when the Delivery Aggregation parameter in the request is set to ON. The detailed description can be found in clause 9.6.11 in TS-0001 Functional Architecture [6].

Table 7.3.11.1‑1: Data type definition of <delivery> resource
	Data Type ID
	File Name
	Note

	delivery
	CDT-delivery-v1_0_0.xsd
	

Table 7.3.11.1‑2: Universal/Common Attributes of <delivery> resource
	Attribute Name
	Request Optionality

	
	Create
	Update

	@resourceName
	NP
	NP

	resourceType
	NP
	NP

	resourceID
	NP
	NP

	expirationTime
	O
	O

	parentID
	NP
	NP

	creationTime
	NP
	NP

	lastModifiedTime
	NP
	NP

	accessControlPolicyIDs
	O
	O

	labels
	O
	O

	stateTag
	NP
	NP

Table 7.3.11.1‑3: Resource Specific Attributes of <delivery> resource
	Attribute Name
	Request Optionality
	Data Type
	Default Value and Constraints

	
	Create
	Update
	
	

	source
	M
	NP
	m2m:ID
	No default

	target
	M
	NP
	m2m:ID
	No default

	lifespan
	M
	O
	m2m:timestamp
	No default

	eventCat
	M
	O
	m2m:eventCat
	No default

	deliveryMetaData
	M
	O
	m2m: deliveryMetaData
	No default

	aggregatedRequest
	O
	O
	m2m:aggregatedRequest
	No default

Table 7.3.11.1‑4: Child resources of <delivery> resource
	Child Resource Type
	Child Resource Name
	Multiplicity
	Ref. to Resource Type Definition

	<subscription>
	variable
	0..n
	Clause 7.3.8

7.3.11.2 <delivery> resource specific procedure on CRUD operations

This clause describes <delivery> resource specific behaviour for CRUD operations.

7.3.11.2.1 Create

Originator:
An AE shall not originate a Create <delivery> resource request.
Primitive specific operation on Orig-1.0 "Compose Request primitive":

1) The Originator shall use a blocking request (i.e. Response Type=blockingRequest).
2) The Originator shall provide the content of the <delivery> resource.
No change for the remaining steps from the generic procedures in clause 7.1.2.1.

Receiver:
Primitive specific operation on Recv-1.0 "Check the syntax of received message":

46) If the request is received over Mca reference point, the Receiver CSE shall execute the following steps in order.

a. "Create an unsuccessful Response primitive" with a Response Status Code indicating ‘OPERATION_NOT_ALLOWED’ error.

b. "Send the Response primitive".

47) Otherwise,
a. No change from the generic procedures in clause 7.1.2.2.

NOTE: Determination of the reference point is to the discretion of the Receiver CSE implementation.

7.3.11.2.2 Retrieve

Originator:
Primitive specific operation on Orig-1.0 "Compose Request primitive":

1) The Originator shall use a blocking request (i.e. Response Type=blockingRequest).
No change for the remaining steps from the generic procedures in clause 7.1.2.1.

Receiver:
No change from the generic procedures in clause 7.1.2.2.

7.3.11.2.3 Update

Originator:
An AE shall not originate a Create <delivery> resource request.
Primitive specific operation on Orig-1.0 "Compose Request primitive":

1) The Originator shall use a blocking request (i.e. Response Type=blockingRequest).
2) The Originator shall provide the content of the <delivery> resource.
No change for the remaining steps from the generic procedures in clause 7.1.2.1.

Receiver:
Primitive specific operation on Recv-1.0 "Check the syntax of received message":

48) If the request is received over Mca reference point, the Receiver CSE shall execute the following steps in order.

a. "Create an unsuccessful Response primitive" with a Response Status Code indicating ‘OPERATION_NOT_ALLOWED’ error.

b. "Send the Response primitive".

49) Otherwise,

a. No change from the generic procedures in clause 7.1.2.2.
NOTE: Determination of the reference point is to the discretion of the Receiver CSE implementation.
7.3.11.2.4 Delete

 Originator:
An AE shall not originate a Create <delivery> resource request.

Primitive specific operation on Org-1.0 "Compose Request primitive":

1) The Originator shall use a blocking request (i.e. Response Type=blockingRequest).
No change for the remaining steps from the generic procedures in clause 7.1.2.1.

Receiver:
Primitive specific operation on Recv-1.0 "Check the syntax of received message":

50) If the request is received over Mca reference point, the Receiver CSE shall execute the following steps in order.

a. "Create an unsuccessful Response primitive" with a Response Status Code indicating ‘OPERATION_NOT_ALLOWED’ error.

b. "Send the Response primitive".

51) Otherwise,

a. No change from the generic procedures in clause 7.1.2.2
NOTE: Determination of the reference point is to the discretion of the Receiver CSE implementation.
7.3.12 Resource Type <request>
7.3.12.1 Introduction

The <request> resource is used to represent information on locally issued requests (i.e. issued by an AE or CSE internal). This allows for robust synchronous and asynchronous request processing coping with various constraints on maximum blocking time. When an AE or CSE issues a request for targeting any other resource type or requesting a notification in non-blocking mode , i.e. the Response Type parameter of the request is set to either 'nonBlockingRequestSynch' or 'nonBlockingRequestAsynch', and if the Registrar CSE of the Originator supports the <request> resource type as indicated by the supportedResourceType attribute of the <CSEBase> resource representing the Registrar CSE of the Originator, the Registrar CSE of the Originator shall create an instance of <request> to capture and expose the context of the associated non-blocking request. The detailed description can be found in clause 9.6.12 in oneM2M TS-0001 Architecture TS[6].
Table 7.3.12.1‑1: Data type definition of <request> resource
	Data Type ID
	File Name
	Note

	request
	CDT-request-v1_0_0.xsd
	

Table 7.3.12.1‑2: Universal/Common Attributes of <request> resource
	Attribute Name
	Request Optionality

	
	Create
	Update

	@resourceName
	NP
	NP

	resourceType
	NP
	NP

	resourceID
	NP
	NP

	expirationTime
	NP
	NP

	parentID
	NP
	NP

	creationTime
	NP
	NP

	lastModifiedTime
	NP
	NP

	accessControlPolicyIDs
	NP
	NP

	labels
	NP
	NP

	stateTag
	NP
	NP

Table 7.3.12.1‑3: Resource Specific Attributes of <request> resource
	Attribute Name
	Request Optionality
	Data Type
	Default Value and Constraints

	
	Create
	Update
	
	

	operation
	NP
	NP
	m2m:operation
	No default

	target
	NP
	NP
	xs:anyURI
	No default

	originator
	NP
	NP
	m2m:ID
	No default

	requestID
	NP
	NP
	m2m:requestID
	No default

	metaInformation
	NP
	NP
	m2m:metaInformation
	No default

	content
	NP
	NP
	m2m:primitiveContent
	No default

	requestStatus
	NP
	NP
	m2m:requestStatus
	No default

	operationResult
	NP
	NP
	m2m:operationResult
	No default

Table 7.3.12.1‑4 : Reference of child resources

	Child Resource Type Name
	Child Resource Name
	Multiplicity
	Ref. to in Resource Type Definition

	<subscription>
	[variable]
	0..n
	Clause 7.3.8

7.3.12.2 <request> resource specific procedure on CRUD operations

This clause describes request resource specific procedure on Resource Hosting CSE for CRUD operations.

7.3.12.2.1 Create

Originator:

The <request> resource shall not be created via API. See clause 7.2.2.2 Create <request> resource locally.
Receiver:
Primitive specific operation on Recv-1.0 "Check the syntax of received message":

52) "Create an unsuccessful Response primitive" with a Response Status Code indicating ‘OPERATION_NOT_ALLOWED’ error.

53) "Send the Response primitive".

7.3.12.2.2 Retrieve

Originator: the procedure of the Originator is the same as the clause 7.1.2.1.

Receiver: the procedure of the Receiver is the same as the clause 7.1.2.2.

7.3.12.2.3 Update

Originator:
The <request> resource shall not be updated via API. See clause 7.2.2.5 Update <request> resource.
Receiver:
Primitive specific operation on Recv-1.0 "Check the syntax of received message":

54) "Create an unsuccessful Response primitive" with a Response Status Code indicating ‘OPERATION_NOT_ALLOWED’ error.

55) "Send the Response primitive".

7.3.12.2.4 Delete

Originator: the procedure of the Originator is the same as the clause 7.1.2.1
Receiver: the procedure of the Receiver is the same as the clause 7.1.2.2.
7.3.13 Resource Type <group>
7.3.13.1 Introduction

The <group> resource represents a group of resources of the same or mixed types. The <group> resource can be used to do bulk manipulations on the resources represented by the membersID attribute. The <group> resource contains an attribute that represents the members of the group and a virtual resource (the <fanOutPoint>) that allows operations to be applied to the resources represented by those members. The detailed description can be found in clause 9.6.13 in TS-0001 Functional Architecture [6].

Table 7.3.13.1‑1: Data type definition of <group> resource
	Data Type ID
	File Name
	Note

	group
	CDT-group-v1_0_0.xsd
	

Table 7.3.13.1‑2: Universal/Common Attributes of <group> resource
	Attribute Name
	Request Optionality

	
	Create
	Update

	@resourceName
	NP
	NP

	resourceType
	NP
	O

	resourceID
	NP
	O

	parentID
	NP
	NP

	accessControlPolicyIDs
	O
	NP

	creationTime
	NP
	NP

	expirationTime
	O
	O

	lastModifiedTime
	NP
	NP

	Labels
	O
	O

	announceTo
	O
	O

	announcedAttribute
	O
	O

Table 7.3.13.1‑3: Resource Specific Attributes of <group> resource
	Attribute Name
	Request Optionality
	Data Type
	Default Value and Constraints

	
	Create
	Update
	
	

	creator
	O
	NP
	m2m:ID
	

	memberType
	M
	O
	m2m:memberType
	Default value is set to ‘MIXED’

	currentNrOfMembers
	NP
	NP
	xs:integer
	No default

(This is generated by the hosting CSE and limited by the maxNrOfMembers attribute of the <group> resource)

	maxNrOfMembers
	M
	O
	xs:integer
	No default

	memberID
	M
	O
	list ofxs:anyURI
	No default

	membersAccessControlPolicyIDs
	O
	O
	xs:anyURI
	No default

	memberTypeValidated
	NP
	NP
	xs:boolean
	No default

(This is generated by the hosting CSE)

	consistencyStrategy
	O
	NP
	m2m:consistencyStrategy
	Default value is set to ‘ABANDON_MEMBER’

	groupName
	O
	O
	xs:string
	No default

Table 7.3.13.1‑4: Child resources of <group> resource
	Child Resource Type
	Child Resource Name
	Multiplicity
	Ref. to in Resource Type Definition

	<subscription>
	[variable]
	0..n
	Clause 7.3.8

	<fanOutPoint>
	fanOut
	1
	Clause 7.3.14

7.3.13.2 <group> resource specific procedure on CRUD operations

This clause describes <group> resource specific procedure on Resource Hosting CSE for CRUD operations.

7.3.13.2.1 Create
Primitive specific operation after Recv-C-6.4 "Check validity of resource representation for the given resource type" and before Recv-C-6.5 "Create/Update/Retrieve/Delete/Notify operation is performed ". See clause 7.1.2.2.

56) Primitive specific operation: Validate the provided attributes. It shall also check whether the number of URIs present in the memberIDt attribute of the group resource representation does not exceed the maximum as specified by the attribute maxNrOfMembers. If the maximum is exceeded, the request shall be rejected with a Response Status Code indicating “MAX_NUMBER_OF_MEMBER_EXCEEDED” error.
If the memberType attribute of the <group> resource is not "MIXED", the hosting CSE shall also verify that all the member URIs including sub-groups in the attribute memberID of the <group> resource representation provided in the request shall conform to the memberType of the group resource.

57) In the case that the <group> resource contains sub-group member resources, the receiver shall retrieve the memberType of the sub-group member resources to validate the memberType. If the memberType cannot be retrieved due to lack of privilege, the request shall be rejected with a Response Status Code indicating “NO_PRIVILEGE” error. If the sub-group member resources are temporarily unreachable, the receiver shall set the memberTypeValidated attribute of the <group> resource to FALSE and return the result to the originator in the response of the request. As soon as any unreachable sub-group resource becomes reachable, the receiver shall perform the memberType validation procedure. The originator may get to know the validation result by subscribe to the created resource if the memberTypeValidated attribute is FALSE. Upon unsuccessful validation, the receiver shall delete the <group> resource if the consistencyStrategy of the <group> resource is ABANDON_GROUP, or remove the inconsistent members from the <group> resource if the consistencyStrategy attribute is ABANDON_MEMBER, or set the memberType attribute of the <group> resource to "MIXED" if the consistencyStrategy attribute is SET_MIXED.
The memberTypeValidated attribute shall be set to TRUE if all the members have been validated successfully.

7.3.13.2.2 Retrieve
No primitive specific operations.
7.3.13.2.3 Update
58) Primitive specific operation after Recv-6.4 "Check validity of resource representation for the given resource type" and before Recv-6.5 “Create/Update/Retrieve/Delete/Notify operation is performed ". See clause 7.1.2.2.Primitive specific operation: If the memberType attribute of the <group> resource is not "MIXED", the hosting CSE shall verify that all the member URIs including sub-groups in the attribute memberID of the <group> resource representation provided in the request shall conform to the memberType of the <group> resource.
59) In the case that the <group> resource contains sub-group member resources, the receiver shall retrieve the memberType of the sub-group member resource to validate the memberType. If the memberType cannot be retrieved due to lack of privilege, the request shall be rejected with a Response Status Code indicating “NO_PRIVILEGE” error. If the sub-group member resources are temporarily unreachable, the receiver shall set the memberTypeValidated attribute of the <group> resource to FALSE and return the result to the originator in the response of the request. As soon as any unreachable sub-group resource becomes reachable, the receiver shall perform the memberType validation procedure. The originator may get to know the validation result by subscribe to the created resource if the memberTypeValidated attribute is FALSE. Upon unsuccessful validation, the receiver shall delete the <group> resource if the consistencyStrategy of the <group> resource is ABANDON_GROUP, or remove the inconsistent members from the <group> resource if the consistencyStrategy attribute is ABANDON_MEMBER, or set the memberType attribute of the <group> resource to "MIXED" if the consistencyStrategy attribute is SET_MIXED.
The memberTypeValidated attribute shall be set to TRUE if all the members have been validated successfully.

60) Primitive specific operation: The hosting CSE shall check whether the number of provided memberID in the attribute members exceeds the limitation of maxNrOfMembers. If it exceeds, the hosting CSE shall reject the request with Response Status Code indicating “NOT_ALLOWED”. error
7.3.13.2.4 Delete
No primitive specific operations.

7.3.14 Resource Type <fanOutPoint>
7.3.14.1 Introduction

The <fanOutPoint> resource is a virtual resource because it does not have a representation. It is the child resource of a <group> resource. Whenever the request is sent to the <fanOutPoint> resource, the request is fanned out to each of the members of the <group> resource indicated by the memberID attribute of the <group> resource. The responses (to the request) from each member are then aggregated and returned to the Originator. The detailed description can be found in clause 9.6.14 in TS-0001 Functional Architecture [6].

There is no common attributes, resource specific attributes or xsd file to <fanOutPoint> resource because it’s a virtual resource.

7.3.14.2 <fanOutPoint> operations

7.3.14.2.1 Validate the member types

Validate the provided attributes. If the memberType attribute of the addressed parent resource is not "MIXED", the group hosting CSE may check whether the type of resource to be created is consistent with the addressed parent resource. i.e. if the To parameter was …/fanOutPoint without any suffix, then the memberType attribute of the parent group resource determines the type of the addressed resource. Otherwise it is determined by the combination of the memberType and the child resources addressed in the To parameter after the fanOutPoint element in the path. If they are not consistent, the request shall be rejected with a Response Status Code indicating “MEMBER_TYPE_INCONSISTENT” error.
7.3.14.2.2 Sub-group creation for members residing on the same CSE

The group hosting CSE shall obtain URIs of addressed resources from the attribute memberID of the parent <group> resource. The group hosting CSE may determine that multiple member resources belong to the same remote member hosting CSE, and may perform as an Originator to request to create a sub-group containing the specific multiple member resources in that member hosting CSE. This sub-group is created in the member hosting CSE as described in clause 7.3.13.2.1. The To parameter of this group Create request may be <memberHosting cseBase>/ <groupHosting remoteCse>/ or <memberHosting cseBase>/ etc. The group hosting CSE shall also provide From parameter (i.e. group hosting CSE) and sub-group resource representation that contains a memberIDattribute with all the members residing on the addressed member Hosting CSE. The sub-group representation may include the attribute accessControlPolicyIDs, so that the group hosting CSE has the access right to this sub-group. The ID of the sub-group may be proposed by the group hosting CSE and determined by the member hosting CSE or it may be given by the member hosting CSE.
If there is already a sub-group resource defined in the remote member hosting CSE, then the group hosting CSE may utilize the existing sub-group resource.
7.3.14.2.3 Assign URI for aggregation of notification

In the case the created resource is <subscription> resource, the group hosting CSE shall validate if the subscription resource in the received request contains an notificationForwardingURI attribute. On successful validation, the group hosting CSE shall assign a new notificationForwardingURI to the attribute for receiving the notifications. The group hosting CSE shall locally maintain the mapping of the new notificationForwardingURI and the former notificationForwardingURI if it exists.

7.3.14.2.4 Fanout Request to each member

For each member hosting CSE, the group hosting CSE shall perform the following steps:

a)
The primitive parameters From and To shall be mapped to the primitive parameters of the corresponding Request to be sent out to each member of the group. The primitive parameter From shall be directly used. The prefix of primitive parameter To i.e. <URI of group resource>/fanOutPoint shall be replaced by each URI of member resources derived from the attribute memberID of the group resource, but excluding the member resources which construct a sub-group. For these members resources contained in a sub-group, the primitive To of the composed Request shall be <URI of sub-group resource>/fanOutPoint. The group hosting CSE shall execute "Compose Request primitives". In addition, the group hosting CSE shall generate a unique group request identifier, add it as a primitive parameter to the Request and locally store the group request identifier as per the local policy.

b)
"Send the Request to the receiver CSE".

c)
"Wait for Response primitives".

The procedures between group hosting CSE and member hosting CSEs shall comply with the corresponding creation procedures as described in clause 7. The detailed procedures are according to the type of Resource provided in the Request primitive. During fanOutPoint manipulation, the member hosting CSE receiving a Request send from the group hosting CSE shall check if the Request contains a Group Request Identifier parameter. If the Request contains a Group Request Identifier parameter, the member hosting CSE shall compare the Group Request Identifier parameter to the Group Request Identifier locally stored. If a match is found, the member hosting CSE shall reject the request with the Response Status Code indicating “GROUP_REQUEST_IDENTIFIER_EXISTS” error in the Response primitive. Otherwise, the member hosting CSE shall continue with the operations according to the Request and locally store the Group Request Identifier parameter.

7.3.14.3 <fanOutPoint> resource specific procedure on CRUD operations

This sub-clause describes <fanOutPoint> resource specific behaviour for CRUD operations.

7.3.14.3.1 Create

The primitives create the content of all member resources belonging to an existing <group> resource.

Originator:
Primitive specific operation after Orig-1.0 "Compose Request primitive" and before Orig-2.0 “Send the Request to the receiver CSE": In the case the Originator wants to subscribe to all the member resources of the group and the originator wants the group hosting CSE to aggregate all the notifications come from its member hosting CSEs, the Originator shall include notificationForwardingURI attribute in the <subscription> resource.
Receiver:

Primitive specific operation after Recv-6.2 "Check existence of the addressed resource" and before Recv-6.3 “Check authorization of the Originator": The to parameter consists of the URI of the group resource plus a suffix marked by /fanOutPoint or /fanOutPoint/.....

Primitive specific operation additional to Recv-6.3 “Check authorization of the Originator": The Group Hosting CSE shall check the authorization of the Originator based on the membersAccessControlPolicyIDs of the parent <group> resource. In the case the membersAccessControlPolicyIDs is not provided, the accessControlPolicyIDs of the parent <group> resource shall be used.

Primitive specific operation to replace Recv-6.5“Create/Update/Retrieve/Delete/Notify operation is performed” and Recv-6.6“Announce/De-announce the resource” in the generic procedure:

1) Validate the member types, refer to 7.3.12.2.1

2) Sub-group creation for members residing on the same CSE, refer to 7.3.12.2

3) Assign URI for aggregation of notification, refer to 7.3.12.3

4) Fanout Request to each member, refer to 7.3.12.4

5)
The group hosting CSE shall aggregate the Responses after receiving responses from its member resources and sub-groups and aggregate the Responses into a single Response:

Primitive specific operation additional to Recv-6.7 "Create a success response", the Response shall include the aggregated Responses.

7.3.14.4
Retrieve

The primitives retrieve the content of all <member> resources belonging to an existing <group> resource.

Originator:

No primitive specific operations.
Receiver:

Primitive specific operation after Recv-6.2 "Check existence of the addressed resource" and before Recv-6.3 "Check authorization of the Originator": The To parameter consists of the URI of the <group> resource plus a suffix marked by /fanOutPoint or /fanOutPoint/.....

Primitive specific operation additional to Recv-6.3 "Check authorization of the Originator": The Group Hosting CSE shall check the authorization of the Originator based on the membersAccessControlPolicyIDs of the parent group resource. In the case the membersAccessControlPolicyIDs is not provided, the accessControlPolicyIDs of the parent group resource shall be used.

Primitive specific operation to replace Recv-6.5“Create/Update/Retrieve/Delete/Notify operation is performed” and Recv-6.6 “Announce/De-announce the resource” in the generic procedure:

1) Sub-group creation for members residing on the same CSE, refer to 7.3.12.2

2) Fanout Request to each member, refer to 7.3.12.4

3)
The group hosting CSE shall aggregate the Responses after receiving responses from its member resources and sub-groups and aggregate the Responses into a single Response:

Primitive specific operation additional to Recv-6.7 "Create a success response", the Response shall include the aggregated Responses.

7.3.14.4.1 Update

The primitives update the content of all member resources belonging to an existing <group> resource.

Originator:

No primitive specific operations.
Receiver:

Primitive specific operation after Recv-6.2 "Check existence of the addressed resource" and before Recv-6.3 "Check authorization of the Originator": The To parameter consists of the URI of the <group> resource plus a suffix marked by /fanOutPoint or /fanOutPoint/.....

Primitive specific operation additional to Recv-6.3 "Check authorization of the Originator": The Group Hosting CSE shall check the authorization of the Originator based on the membersAccessControlPolicyIDs of the parent group resource. In the case the membersAccessControlPolicyIDs is not provided, the accessControlPolicyIDs of the parent group resource shall be used.

Primitive specific operation to replace Recv-6.5 “Create/Update/Retrieve/Delete/Notify operation is performed” and Recv-6.6“Announce/De-announce the resource” in the generic procedure:

61) Validate the member types ., refer to 7.3.12.1

62) Sub-group creation for members residing on the same CSE , refer to 7.3.13.2
3)
Fanout Request to each member. See Clause 7.3.14.2.4
4)
The group hosting CSE shall aggregate the Responses after receiving responses from its <member> resources and sub-groups and aggregate the Responses into a single Response:

Primitive specific operation additional to Recv-6.7 "Create a success response", the Response shall include the aggregated Responses.

7.3.14.4.2 Delete

The primitives delete the content of all member resources belonging to an existing <group> resource.

Originator:

No primitive specific operations.
Receiver:

Primitive specific operation after Recv-6.2 "Check existence of the addressed resource" and Recv-6.3 "Check authorization of the Originator": The To parameter consists of the URI of the group resource plus a suffix marked by /fanOutPoint or /fanOutPoint/.....

Primitive specific operation additional to Recv-6.3 "Check authorization of the Originator": The Group Hosting CSE shall check the authorization of the Originator based on the membersAccessControlPolicyIDs of the parent group resource. In the case the membersAccessControlPolicyIDs is not provided, the accessControlPolicyIDs of the parent group resource shall be used.

Primitive specific operation to replace Recv-6.5“Create/Update/Retrieve/Delete/Notify operation is performed” and Recv-6.6“Announce/De-announce the resource” in the generic procedure:

63) Validate the member types , refer to 7.3.12.1

64) Sub-group creation for members residing on the same CSE , refer to 7.3.14.2.2
3)
Fanout Request to each member. See Clause 7.3.14.2.4
4)
The group hosting CSE shall aggregate the Responses after receiving responses from its <member> resources and sub-groups and aggregate the Responses into a single Response:

Primitive specific operation additional to Recv-6.7 "Create a success response", the Response shall include the aggregated Responses.

7.3.15 Resource Type <mgmtObj>
7.3.15.1 Introduction

The <mgmtObj> resource contains management data which represents individual M2M management functions. It represents a general structure to map to external management technology data models. There are multiple specializations of <mgmtObj>; these are defined in the Annex D. Each of these specializations has its own schema file. There is no separate schema file just for <mgmtObj>, however the XML schema types for the specializations all conform to the pattern described in this clause.
Table 7.3.15.1‑1: Universal/Common Attributes of <mgmtObj> resource
	Attribute Name
	Request Optionality

	
	Create
	Update

	@resourceName
	NP
	NP

	resourceType
	NP
	O

	resourceID
	NP
	O

	parentID
	NP
	NP

	accessControlPolicyIDs
	O
	NP

	creationTime
	NP
	NP

	expirationTime
	O
	O

	lastModifiedTime
	NP
	NP

	labels
	O
	O

Table 7.3.15.1‑2: Resource Specific Attributes of <mgmtObj> resource
	Attribute Name
	Request Optionality
	Data Type
	Default Value and Constraints

	
	Create
	Update
	
	

	mgmtDefinition
	O
	NP
	m2m:mgmtDefinition
	No default

	objectIDs
	O
	NP
	list of xs:anyURI
	No default

	objectPaths
	O
	NP
	list of xs:anyURI
	No default

	description
	O
	O
	xs:string
	No default

	mgmtLink
	O
	O
	m2m:mgmtLinkRef
	No default

Table 7.3.15.1‑3: Child resources of <mgmtObj> resource
	Child Resource Type
	Child Resource Name
	Multiplicity
	Ref. to Resource Type Definition

	<subscription>
	[variable]
	0..n
	Clause 7.3.8

7.3.15.2 <mgmtObj> resource specific procedure on CRUD operations

This clause describes <mgmtObj> resource specific procedure on resource Hosting CSE for CRUD operations.

The procedures are defined for management when external management technologies are used. When service layer management is performed, generic procedures defined in clause 7.1.2 shall comply for resource creation, update, retrieval and deletion. Procedures additional to resource manipulations to perform the management are further defined in Annex D.
7.3.15.2.1 Create
Primitive specific operation before Orig-C-1.0 “Compose Request primitive”:

65) Primitive specific operation: If the originator is the managed entity, it shall generate the <mgmtObj> resource representation based on the external management object information of the managed entity to be exposed. The objectIDs and objectPaths attributes may be set with the Request.

Primitive specific operation after Recv-6.5 “Create/Update/Retrieve/Delete/Notify operation is performed” and before Recv-6.6 “Announce/De-announce the resource” if the originator is an IN-AE:

66) "Identify the managed entity and the management protocol ".

Primitive specific operation: the receiver shall generate the external management object to be added to the managed entity based on the <mgmtObj> resource representation provided in the Request primitive. The receiver may determine the target location on the managed entity where the generated external management object shall be added based on the objectIDs and objectPaths provided in the request primitive and the protocol specific data model being used. The receiver may also choose to let the managed entity decide the target location where the generated external management object shall be added using protocol specific mechanism.
67) "Establish a management session with the managed entity".
68) "Send the management request(s) to the managed entity corresponding to the received Request primitive ". If the receiver receives an error response from the managed entity because the external management object to be added already exists on the managed entity, the receiver shall check (by using e.g. OMA-DM Get command or TR069 GetParameterValues/GetParameterAttributes command) if the existing external management object is the same as the one to be added, then it shall consider the requested primitive as successfully performed instead of sending an error response primitive; otherwise, it shall reject the request with the Response Status Code indicating “ALREADY_EXISTS” error in the Response primitive. The receiver shall also record the location where the external management object is added to the managed entity in the successful case. The objectIDs and objectPaths attributes may be set with the Request.
69) The receiver may repeat Step 4 in order to add to the managed entity the external management objects that are mapped from the mandatory sub-resources (including any descendants) that are required to be created automatically with the default attribute values.

7.3.15.2.2 Retrieve
Primitive specific operation after Recv-6.5 “Create/Update/Retrieve/Delete/Notify operation is performed” and before Recv-6.6 “Announce/De-announce the resource” if the originator is an IN-AE:

70) "Identify the managed entity and the management protocol".
71) "Locate the external management objects to be managed on the managed entity".
72) "Establish a management session with the managed entity".

73) "Send the management request(s) to the managed entity corresponding to the received Request primitive". The receiver may also update the <mgmtObj> resource representation with the retrieved external management object information if required according to the local policy.
7.3.15.2.3 Update
The Update primitive is used for the update of the resource as well as the execution of a management procedure. The execution is performed using an Update primitive which without any content as the payload part of the primitive by addressing specific attribute to start the management procedure.

Primitive specific operation after Recv-6.5 “Create/Update/Retrieve/Delete/Notify operation is performed” and before Recv-6.6 “Announce/De-announce the resource” if the originator is IN-AE.

74) "Identify the managed entity and the management protocol".
75) "Locate the external management objects to be managed on the managed entity".
76) "Establish a management session with the managed entity".
77) "Send the management request(s) to the managed entity corresponding to the received Request primitive". The receiver may also update the <mgmtObj> resource representation with the retrieved external management object information if required according to the local policy.

7.3.15.2.4 Delete
Primitive specific operation after Recv-6.5 “Create/Update/Retrieve/Delete/Notify operation is performed” and before Recv-6.6 “Announce/De-announce the resource” if the originator is IN-AE.

78) "Identify the managed entity and the management protocol".
79) "Locate the external management objects to be managed on the managed entity".
80) "Establish a management session with the managed entity".
81) "Send the management request(s) to the managed entity corresponding to the received Request primitive". The receiver may also update the <mgmtObj> resource representation with the retrieved external management object information if required according to the local policy.

7.3.16 Resource Type <mgmtCmd>
7.3.16.1 Introduction

The <mgmtCmd> resource shall contain the following attributes and child resource as illustrated in Table 7.3.16.1‑2, Table 7.3.16.1‑3, and Table 7.3.16.1‑4. The data type and default value of these attributes and child resources are included in the tables.
Table 7.3.16.1‑1: Data type definition of <mgmtCmd> resource
	Data Type ID
	File Name
	Note

	mgmtCmd
	CDT-mgmtCmd-v1_0_0.xsd
	

Table 7.3.16.1‑2: Universal/Common Attributes of <mgmtCmd> resource
	Attribute Name
	Request Optionality

	
	Create
	Update

	@resourceName
	NP
	NP

	resourceType
	NP
	NP

	resourceID
	NP
	NP

	parentID
	NP
	NP

	accessControlPolicyIDs
	O
	NP

	creationTime
	NP
	NP

	expirationTime
	O
	O

	lastModifiedTime
	NP
	NP

	labels
	O
	O

Table 7.3.16.1‑3: Resource Specific Attributes of <mgmtCmd> resource
	Attribute Name
	Request Optionality
	Data Type
	Default Value and Constraints

	
	Create
	Update
	
	

	description
	O
	O
	xs:string
	size: 256

No default

	cmdType
	M
	O
	m2m:cmdType
	RESET,

REBOOT,

UPLOAD,

DOWNLOAD,
SOFTWAREINSTALL,

SOFTWAREUPDATE,
SOFTWAREUNINSTALL

No default

	execReqArgs
	O
	O
	m2m:execReqArgsListType
	A list of entries which are dependent on cmdType:

If cmdType=RESET, execReqArgsList=resetArgsType.

If cmdType=REBOOT, execReqArgsList=rebootArgsType.

If cmdType=UPLOAD, execReqArgsList=uploadArgsType.

If cmdType=DOWNLOAD, execReqArgsList=downloadArgsType.

If cmdType=SOFTWAREINSTALL, execReqArgsList=softwareInstallArgsType.

If cmdType=SOFTWAREUPDATE, execReqArgsList=softwareUpdateArgsType.

If cmdType= SOFTWAREUNINSTALL, execReqArgsList=softwareUninstallArgsType.

No default

	execEnable
	O
	O
	xs:boolean
	No default

	execTarget
	M
	O
	m2m:nodeID
	No default

	execMode
	M
	O
	m2m:execModeType
	IMMEDIATEONCE,
IMMEDIATEREPEAT,
RANDOMONCE,
RANDOMREPEAT

Default=IMMEDIATEONCE

	execFrequency
	O
	O
	xs:duration
	No default

	execDelay
	O
	O
	xs:duration
	Default=0

	execNumber
	O
	O
	xs:nonNegativeInteger
	Default=1

Table 7.3.16.1‑4: Child resources of <mgmtCmd> resource
	Child Resource Type
	Child Resource Name
	Multiplicity
	Ref. to Resource Type Definition

	<subscription>
	[variable]
	0..n
	clause 7.3.8

	<execInstance>
	[variable]
	1
	clause 7.3.17

The <mgmtCmd> shall be executed for the following modes:
· If execMode is IMMEDIATEONCE, <mgmtCmd> shall be executed immediately and only once. In this mode, execFrequency, execDelay, and execNumber shall not be used.

· If execMode is IMMEDIATEREPEAT, <mgmtCmd> shall be executed immediately and repeated multiple times as determined by execNumber and the time interval between each execution is specified by execFrequency. In this mode, execDelay shall not be used.

· If execMode is RANDOMONCE, <mgmtCmd> shall be executed only once at a delayed time which is specified by execDelay. In this mode, execFrequency and execNumber shall not be used.

· If execMode is RANDOMREPEAT, <mgmtCmd> shall be executed multiple times as specified by execNumber but the first execution shall be executed at a delayed time. execDelay specifies the delayed time. The time interval between each execution is specified by execFrequency.

7.3.16.2 <mgmtCmd> resource specific procedure on CRUD oerations
This clause describes <mgmtCmd> resource specific procedures for CRUD operations.

7.3.16.2.1 Create
This procedure shall use the Create common operations detailed in clause 7.1.2.1 without primitive specific actions. The Originator shall use the steps Orig-C-1.0, Orig-C-2.0, and Orig-C-3.0 as described in clause 7.1.2.1. The Receiver shall use the steps Rcv-C-1.0 to Rcv-C-11.0 as described in clause 7.1.2.1.

The Originator shall provide the <mgmtCmd> resource representation to the Receiver (e.g. IN-CSE). The Receiver may generate one of the following status codes and send it to the Originator.
If the Originator provides an invalid cmdType value in the Create primitive, the Receiver shall generate a Response Status Code indicating “INVALID_CMDTYPE” error.

 If the name/value entry in execReqArgs does not match the value of cmdType in the Create primitive, the Receiver shall generate a Response Status Code indicating “INVALID_ARGUMENTS” error.
If the name/value entries in execReqArgs do not contain mandatory arguments as required by cmdType, the Receiver shall generate a Response Status Code indicating “INSUFFICIENT_ARGUMENTS” error.
7.3.16.2.2 Retrieve
This procedure shall use the Retrieve common operations detailed in clause 7.2 without primitive specific actions. The Originator shall use the steps Orig-R-1.0, Orig-R-2.0, and Orig-R-3.0 as described in clause 7.2. The Receiver shall use the steps Rcv-R-1.0 to Rcv-R-9.0 as described in clause 7.2.

7.3.16.2.3 Update
7.3.15.2.3.1
Update (Normal)

If the Update primitive does not address the execEnable attribute of the <mgmtCmd>, it results in update of all or part of the information of an existing <mgmtCmd> resource with the new attribute values. The procedure uses the common Update operations detailed in clause 7.2, without primitive specific actions.
The Originator shall use the steps Orig-U-1.0, Orig-U-2.0, and Orig-U-3.0 as described in clause 7.2. The Receiver shall use the steps Rcv-U-1.0 to Rcv-U-11.0 as described in clause 7.2.
If the Originator attempts to update attributes resourceType, resourceID or cmdType, the Receiver shall generate a Response Status Code indicating “NO_PRIVILEGE” error..
If the Originator attempts to update attributes execTarget, execMode, but the <mgmtCmd> has child resource <execInstance> already created, the Receiver shall generate a Response Status Code indicating “CONTENTS_UNACCEPTABLE” error.
If the Originator attempts to update attributes any attribute with a value which is not allowed, the Receiver shall generate a Response Status Code indicating “CONTENTS_UNACCEPTABLE” error.

If the Update primitive for <mgmtCmd> does address the execEnable attribute of the <mgmtCmd>, it effectively triggers an Execute <mgmtCmd> procedure, see clause 7.3.15.2.3.2.

7.3.15.2.3.2
Update (Execute)

The execute operation is triggered by an Update primitive, if the primitive addresses the execEnable attribute of the <mgmtCmd>. The procedure uses the Update common operations detailed in clause 7.2 with the following primitive specific operation after Rcv-U-4.0 and before Rcv-U-5.0:

82) The Receiver shall identify the managed entity and the management protocol. The execTarget attribute of <mgmtCmd> indicates the managed entity.
The Receiver shall automatically create an <execInstance> based on the <mgmtCmd> resource. If the execTarget attribute addresses a <group> resource, the Receiver shall create multiple <execInstance> sub-resources based on the value of currentNrOfMembers attribute.

The Receiver shall copy the following attributes from <mgmtCmd> to each <execInstance> created: execMode, execFrequency, execDelay, execNumber, and execReqArgs. The execStatus of <execInstance> is set as INITIATED. The Receiver shall set the execTarget attribute of each <execInstance> sub-resource to the URI of each target <node> resource.
The Receiver shall determine if the <mgmtCmd> shall be executed immediately or postponed according to the combination of execMode, execFrequency, execDelay, and execNumber. If the <mgmtCmd> shall be executed immediately (e.g. execMode is IMMEDIATEONCE), the following steps shall be performed; otherwise the following steps shall be postponed and skipped until the delay is expired (e.g. as indicated by execDelay).

The Receiver shall establish a management session with the identified managed entity.
The Receiver shall perform management command conversion and execution and set the execStatus attribute of <execInstance> to PENDING. If the Receiver cannot perform the command conversion successfully (e.g. execReqArgs does not have sufficient name/value pairs), the Receiver shall generate a Response Status Code indicating “MGMT_CONVERSION_ERROR” error.

After receiving completion response from the managed entity, the Receiver shall set execStatus attribute of corresponding <execInstance> to FINISHED.

If the Update primitive for <mgmtCmd> does not address the execEnable attribute of the <mgmtCmd>, it effectively triggers an Update <mgmtCmd> procedure, see clause 7.3.16.2.3.

7.3.16.2.4 Delete
This procedure is based on the Delete common operations detailed in clause 7.2.
The Receiver shall determine:

· If there are related management operations pending on the managed entity by checking if the execStatus attribute of all <execInstance> sub-resources are PENDING.

· If the related management operations are cancellable by checking the cmdType attribute of <mgmtCmd>.

If there are no management commands pending on the remote entity the Receiver shall delete the addressed <mgmtCmd> resource and send a success response to the Originator.
If there are cancellable management commands still pending on any remote entity, the Receiver shall perform the following steps:

83) The Receiver shall identify the managed entity and the management protocol. The execTarget attribute of each <execInstance> sub-resource which has execStatus of PENDING indicates the managed entity.

84) The Receiver shall establish a management session with each managed entity.

85) The Receiver shall perform management command conversion and execution resulting in cancellation of the commands which are pending on the managed entity.

86) For each successful cancellation RPC the execStatus attribute of the corresponding <execInstance> is set to CANCELLED. For each un-successful cancellation RPCs the execStatus attribute of the corresponding <execInstance> is determined from the reported fault codes for the unsuccessful RPCs.

87) Upon completion of all the cancellation operations, if any fault codes are returned by the managed entity, an error response to the Delete primitive with a Response Status Code indicating “CANCELLATION_FAILED” error is returned, and the <mgmtCmd> resource is not deleted. If all cancellation operations are successful on the managed entity, a success response to the Delete primitive is returned and the <mgmtCmd> resource is deleted.

If there are non-cancellable management commands still pending on the remote entity, the Receiver shall send an error response to the Delete request to the Originator, with a Response Status Code indicating “MGMT_COMMAND_NOT_CANCELLABLE” error. The execStatus attribute of the specific <execInstance> sub-resource is changed to STATUS_NON_CANCELLABLE.
7.3.17 Resource Type <execInstance>
7.3.17.1 Introduction

The <execInstance> resource shall contain the following child resource and attributes.
Table 7.3.17.1‑1: Data type definition of <execInstance> resource
	Data Type ID
	File Name
	Note

	execInstance
	 CDT-execInstance-v1_0_0.xsd
	

Table 7.3.17.1‑2: Universal/Common Attributes of <execInstance> resource
	Attribute Name
	Request Optionality

	
	Create
	Update

	@resourceName
	NP
	NP

	resourceType
	NP
	NP

	resourceID
	NP
	NP

	parentID
	NP
	NP

	accessControlPolicyIDs
	O
	NP

	creationTime
	NP
	NP

	expirationTime
	O
	O

	lastModifiedTime
	NP
	NP

	labels
	O
	O

Table 7.3.17.1‑3: Resource Specific Attributes of <execInstance> resource
	Attribute Name
	Request Optionality
	Data Type
	Default Value and Constraints

	
	Create
	Update
	
	

	execStatus
	NP
	O
	m2m:execStatusType
	INITIATED,
PENDING,
FINISHED,
CANCELLING,
CANCELLED
STATUS_NON_CANCELLABLEL
Default=INITIATED

	execResult
	NP
	O
	xs:execResultType
	No default

	execDisable
	NP
	O
	xs:boolean
	No default

	execTarget
	O
	O
	m2m:nodeID
	No default

	execMode
	O
	O
	m2m:execModeType
	IMMEDIATEONCE,
IMMEDIATEREPEAT,
RANDOMONCE,
RANDOMREPEAT

Default=IMMEDIATEONCE

	execFrequency
	O
	O
	xs:duration
	No default

	execDelay
	O
	O
	xs:duration
	Default=0

	execNumber
	O
	O
	xs:nonNegativeInteger
	Default=1

	execReqArgs
	O
	O
	m2m:execReqArgsListType

	No default

Table 7.3.17.1‑4: Child Resources of <execInstance> resource
	Child Resource Type
	Child Resource Name
	Multiplicity
	Ref. to Resource Type Definition

	<subscription>
	[variable]
	0..n
	Clause 7.3.8

7.3.17.2 <execInstance> resource specific procedure on CRUD oerations
This clause describes <execInstance> resource specific procedures for CRUD operations.

7.3.17.2.1 Update (Cancel)
The <execInstance> Cancel operation is triggered by an Update primitive, if the primitive addresses the execDisable attribute. The procedure is based on Update common operations detailed in clause 7.2.
The Receiver shall determine:

· If there are related management operations pending on the managed entity by checking the execStatus attribute of the addressed <execInstance> sub-resource is PENDING.

· If the related management operations are cancellable by checking the cmdType attribute of the parent <mgmtCmd> resource.

If there are no management commands still pending on the remote entity, an error response to the Update primitive with a Response Status Code indicating “ALREADY_COMPLETE” error is returned to the Originator.
If there are cancellable management commands still pending on the remote entity, the Receiver shall perform the following steps:

88) The Receiver shall identify the managed entity and the management protocol. The execTarget attribute of the addressed <execInstance> indicates the managed entity.

89) The Receiver shall establish a management session with the managed entity.

90) The Receiver shall perform management command conversion and execution resulting in cancellation of the commands which are pending on the managed entity.

91) If the cancellation is successfully executed on the managed entity, the Receiver shall return a success response to the Originator and shall set execStatus of <execInstance> to CANCELLED.

92) If the cancellation is unsuccessful on the managed entity, the Receiver shall return an error response to the Originator with a Response Status Code indicating “CANCELLATION_FAILED” error. The execStatus attribute is determined from the fault codes reported by the managed entity.

If there are non-cancellable management commands still pending on the remote entity, the Receiver shall return an error response to the Originator with a Response Status Code indicating “NOT_CANCELLABLE_COMMAND” error, and the execStatus attribute is changed to STATUS_NON_CANCELLABLE.

7.3.17.2.2 Retrieve
This procedure shall use the Retrieve common operations detailed in clause 7.2, without primitive specific actions. The Originator shall use the steps Orig-R-1.0, Orig-R-2.0, and Orig-R-3.0 as described in clause 7.1.2.1. The Receiver shall use the steps Rcv-R-1.0 to Rcv-R-9.0 as described in clause 7.2.

7.3.17.2.3 Delete
This procedure is based on the Delete common operations detailed in clause 7.2.
The Receiver shall determine:

· If there are related management operations pending on the managed entity by checking the execStatus attribute of the addressed <execInstance> sub-resource is PENDING.

· If the related management operations are cancellable by checking the cmdType attribute of the parent <mgmtCmd> resource.

If there are no management commands still pending on the remote entity, the Receiver shall delete the addressed resource and send a success response to the Originator.

If there are cancellable management commands still pending on the remote entity, the Receiver shall perform the following steps:

93) The Receiver shall identify the managed entity and the management protocol. The execTarget attribute of the addressed <execInstance> indicates the managed entity.

94) The Receiver shall establish a management session with the managed entity.

95) The Receiver shall perform management command conversion and execution resulting in cancellation of the commands which are pending on the managed entity.

96) If the cancellation is successfully executed on the managed entity, the Receiver shall return a success response to the Delete request to the Originator and shall delete the <execInstance> resource.

97) If the cancellation is unsuccessful on the managed entity, the Receiver shall return an error response to the Delete request to the Originator with a Response Status Code indicating “CANCELLATION_FAILED” error. The execStatus attribute is determined from the fault codes reported by the managed entity.
If there are non-cancellable management commands still pending on the remote entity, the Receiver shall return an error response to the Delete request to the Originator with a Response Status Code indicating “NOT_CANCELLABLE_COMMAND”. The execStatus attribute is set to STATUS_NOT_CANCELLABLE.

7.3.18 Resource Type <node>
7.3.18.1 Introduction

The <node> resource represents specific information that provides properties of an oneM2M Node that can be utilized by other oneM2M operations. The <node> resource has <mgmtObj> as its child resources.
Table 7.3.18.1‑1: Data type definition of <node> resource
	Data Type ID
	File Name
	Note

	node
	CDT-node-v1_0_0.xsd
	

Table 7.3.18.1‑2: Universal/Common Attributes of <node> resource
	Attribute Name
	Request Optionality

	
	Create
	Update

	@resourceName
	NP
	NP

	resourceType
	NP
	NP

	resourceID
	NP
	NP

	parentID
	NP
	NP

	accessControlPolicyIDs
	O
	NP

	creationTime
	NP
	NP

	expirationTime
	O
	O

	lastModifiedTime
	NP
	NP

	labels
	O
	O

Table 7.3.18.1‑3: Resource Specific Attributes of <node> resource
	Attribute Name
	Request Optionality
	Data Type
	Default Value and Constraints

	
	Create
	Update
	
	

	nodeID
	M
	O
	m2m:nodeID
	

	hostedCSELink
	O
	NP
	m2m:ID
	

Table 7.3.18.1‑4: Child resources of <node> resource
	Child Resource Type
	Child Resource Name
	Multiplicity
	Ref. to Resource Type Definition

	<mgmtObj>
	[variable]
	0..n
	7.3.15,

See Annex D

	<subscription>
	[variable]
	0..n
	7.3.8

7.3.18.2 <node> resource specific procedure on CRUD operations

7.3.18.2.1 Create
Originator:

No change from the generic procedures in clause 7.1.2.1.

Receiver:

No change from the generic procedures in clause 7.1.2.2.

7.3.18.2.2 Retrieve
Originator:

No change from the generic procedures in clause 7.1.2.1.

Receiver:

No change from the generic procedures in clause 7.1.2.2.

7.3.18.2.3 Update
Originator:

No change from the generic procedures in clause 7.1.2.1.

Receiver:

No change from the generic procedures in clause 7.1.2.2
7.3.18.2.4 Delete
Originator:

No change from the generic procedures in clause 7.1.2.1.

Receiver:

No change from the generic procedures in clause 7.1.2.2.

7.3.19 Resource Type <m2mServiceSubscriptionProfile>
7.3.19.1 Introduction

The <m2mServiceSubscriptionProfile> resource represents an M2M Service Subscription Profile. It is used to represent all data pertaining to the M2M Service Subscription Profile, i.e., the technical part of the contract between an M2M Application Service Provider and an M2M Service Provider.

The detailed description can be found in clause 9.6.19 in TS-0001 Functional Architecture [6].

Table 7.3.19.1‑1: Data type definition of <m2mServiceSubscriptionProfile> resource
	Data Type ID
	File Name
	Note

	m2mServiceSubscriptionProfile
	CDT-m2mServiceSubscriptionProfile-V1_0_0.xsd
	

Table 7.3.19.1‑2: Universal/Common Attributes of <m2mServiceSubscriptionProfile>
	Attribute Name
	Request Optionality

	
	Create
	Update

	@resourceName
	NP
	NP

	resourceType
	NP
	NP

	resourceID
	NP
	NP

	parentID
	NP
	NP

	expirationTime
	O
	O

	accessControlPolicyIDs
	O
	O

	creationTime
	NP
	NP

	labels
	O
	O

	lastModifiedTime
	NP
	NP

Table 7.3.19.1‑3: Resource Specific Attributes of <m2mServiceSubscriptionProfile>
	Attribute Name
	Request Optionality
	Data Type
	Default Value and Constraints

	
	Create
	Update
	
	

	serviceRoles
	O
	O
	m2m:serviceRoles
	

Table 7.3.19.1‑4: Child resources of <m2mServiceSubscriptionProfile>
	Child Resource Type
	Child Resource Name
	Multiplicity
	Ref. to Resource Type Definition

	<subscription>
	[variable]
	0..n
	Clause 7.3.8

	<serviceSubscribedNode >
	[variable]
	0..n
	Clause 7.3.20

7.3.19.2 <m2mServiceSubscriptionProfile> resource specific procedure on CRUD operations

This clause describes <m2mServiceSubscriptionProfile> resource specific behaviour for CRUD operations.
7.3.19.2.1 Create

Originator:

No change from the generic procedures in clause 7.1.2.1.

Receiver:

No change from the generic procedures in clause 7.1.2.2.

7.3.19.2.2 Retrieve

Originator:

No change from the generic procedures in clause 7.1.2.1.

Receiver:

No change from the generic procedures in clause 7.1.2.2.
7.3.19.2.3 Update

Originator:

No change from the generic procedures in clause 7.1.2.1.

Receiver:

No change from the generic procedures in clause 7.1.2.2.
7.3.19.2.4 Delete

Originator:

No change from the generic procedures in clause 7.1.2.1.

Receiver:

No change from the generic procedures in clause 7.1.2.2.
7.3.20 Resource Type <serviceSubscribedNode>
7.3.20.1 Introduction

The <serviceSubscribedNode> resource represents M2M Node information that is needed as part of the M2M Service Subscription resource. It shall contain information about the M2M Node as well as application identifiers of the Applications running on that Node.

The detailed description can be found in clause 9.6.20 in TS-0001 Functional Architecture [6].

Table 7.3.20.1‑1: Data type definition of <serviceSubscribedNode> resource
	Data Type ID
	File Name
	Note

	serviceSubscribedNode
	CDT-serviceSubscribedNode-V1_0_0.xsd
	

Table 7.3.20.1‑2: Universal/Common Attributes of <serviceSubscribedNode> resource
	Attribute Name
	Request Optionality

	
	Create
	Update

	@resourceName
	NP
	NP

	resourceType
	NP
	NP

	resourceID
	NP
	NP

	parentID
	NP
	NP

	expirationTime
	O
	O

	accessControlPolicyIDs
	O
	O

	creationTime
	NP
	O

	labels
	O
	O

	lastModifiedTime
	NP
	NP

Table 7.3.20.1‑3: Resource Specific Attributes of <serviceSubscribedNode> resource
	Attribute Name
	Request Optionality
	Data Type
	Default Value and Constraints

	
	Create
	Update
	
	

	nodeID
	M
	O
	m2m:nodeID
	

	CSE-ID
	O
	O
	m2m:ID
	

	deviceIdentifier
	O
	O
	list of m2m:deviceID
	

	ruleLinks
	O
	O
	list of xs:anyURI
	

Table 7.3.20.1‑4: Child resources of <serviceSubscribedNode> resource
	Child Resource Type
	Child Resource Name
	Multiplicity
	Ref. to Resource Type Definition

	<subscription>
	[variable]
	0..n
	7.3.8

7.3.20.2 <serviceSubscribedNode> resource specific procedure on CRUD operations

This clause describes <serviceSubscribedNode> resource specific behaviour for CRUD operations.
7.3.20.2.1 Create

Originator:

No change from the generic procedures in clause 7.1.2.1.

Receiver:

No change from the generic procedures in clause 7.1.2.2.

7.3.20.2.2 Retrieve

Originator:

No change from the generic procedures in clause 7.1.2.1.

Receiver:

No change from the generic procedures in clause 7.1.2.2.
7.3.20.2.3 Update

Originator:

No change from the generic procedures in clause 7.1.2.1.

Receiver:

No change from the generic procedures in clause 7.1.2.2.
7.3.20.2.4 Delete

Originator:

No change from the generic procedures in clause 7.1.2.1.

Receiver:

No change from the generic procedures in clause 7.1.2.2.
7.3.21 Resource Type <pollingChannel>
7.3.21.1 Introduction

The <pollingChannel> resource is used to perform service layer long polling when an AE/CSE cannot receive a request from other entities, however it can get a request as a response to a long polling request. Actual long polling can be performed on the <pollingChannelURI> resource which is the child resource of the <pollingChannel> resource.

The detailed description can be found in clause 9.6.21 in TS-0001 Functional Architecture [6].

Table 7.3.21.1‑1: Data type definition of <pollingChannel> resource
	Data Type ID
	File Name
	Note

	pollingChannel
	CDT-pollingChannel-V1_0_0.xsd
	

Table 7.3.21.1‑2: Universal/Common Attributes of <pollingChannel> resource
	Attribute Name
	Request Optionality

	
	Create
	Update

	@resourceName
	NP
	NP

	resourceType
	NP
	NP

	resourceID
	NP
	NP

	parentID
	NP
	NP

	creationTime
	NP
	NP

	lastModifiedTime
	NP
	NP

	expirationTime
	O
	O

	accessControlPolicyIDs
	O
	NP

	labels
	O
	O

Table 7.3.21.1‑3: Child resources of <pollingChannel> resource
	Child Resource Type
	Name
	Multiplicity
	Ref. to Resource Type Definition

	<pollingChannelURI>
	pollingChannelURI
	1
	Clause 7.3.22

7.3.21.2 <pollingChannel> resource specific procedure on CRUD operations

This clause describes <pollingChannel> resource specific behaviour for CRUD operations.
7.3.21.2.1 Create

Originator:

No change from the generic procedures in clause 7.1.2.1.

Receiver:

Same as the generic procedures in clause 7.1.2.2 except one addition:
· After Recv-6.3 procedure, the Hosting CSE shall check if the Originator ID is the same as the AE-ID or CSE-ID of the target <AE> resource or <remoteCSE> resource, respectively. If the check is failed, then the Hosting CSE shall return response primitive with a Response Status Code indicating “NO_PRIVILEGE” error.
7.3.21.2.2 Retrieve

Originator:

No change from the generic procedures in clause 7.1.2.1.

Receiver:

No change from the generic procedures in clause 7.1.2.2.

7.3.21.2.3 Update

Originator:

No change from the generic procedures in clause 7.1.2.1.

Receiver:

No change from the generic procedures in clause 7.1.2.2.

7.3.21.2.4 Delete

Originator:

No change from the generic procedures in clause 7.1.2.1.

Receiver:

No change from the generic procedures in clause 7.1.2.2.

7.3.22 Resource Type <pollingChannelURI>
7.3.22.1 Introduction

The <pollingChannelURI> resource is the virtual child resource which is automatically generated during the parent <pollingChannel> resource creation. The detailed description can be found in clause 9.6.22 in TS-0001 Functional Architecture [6].

There is no data type definition for <pollingChannelURI> resource because it’s a virtual resource type.
7.3.22.2 <pollingChannelURI> resource specific procedure on CRUD operations

This clause describes <pollingChannelURI> resource specific behaviour for the Retrieve operation as a service layer long polling request. CUDN requests to the <pollingChannelURI> resource shall be rejected.

7.3.22.2.1 Create

The present document does not define Create operation on a <pollingChannelURI> resource. A Create request for the resource shall be rejected.
A <pollingChannelURI> virtual resource shall only be created during its parent <pollingChannel> resource creation procedure.

7.3.22.2.2 Retrieve

Originator: shall execute Originator actions in clause 7.1.2.1 as a service layer long polling request. It's the Originator's responsibility to initiate this procedure after it gets long polling response either successful or unsuccessful. The Originator shall send this Retrieve request as blocking request (clause 8.2.1 in TS-0001 Functional Architecture [6]).

Receiver: shall execute the following steps in order and these are modifications to the generic procedure from Recv-6.3 to Recv-6.5 in clause 7.1.2.2:

Recv-6.3 Check if the request Originator is the creator of the parent <pollingChannel> resource. If it is not the creator, the Hosting CSE shall send response primitive with a Response Status Code indicating “ACCESS_DENIED” error.
Recv-6.4
No change from the generic procedure.
Recv-6.5
If there is a pending request(s) to be sent to the Originator

Create a Response primitive by setting the Content parameter with pending request(s).

Else

Wait for a request for the Originator until t he Request Expiration Timestamp of the Originator's request. If a request is available before the Request Expiration Timestamp timeout, create a Response primitive including Pending Requests primitive parameter. Otherwise, create a response primitive with a Response Status Code indicating “REQUEST_TIMEOUT” error..

7.3.22.2.3 Update

The present document does not define Update operation on a <pollingChannelURI> resource. An Update request for the resource shall be rejected.
7.3.22.2.4 Delete

The present document does not define Delete operation on a <pollingChannelURI> resource. A Delete request for the resource shall be rejected.

7.3.23 Resource Type <statsConfig>
7.3.23.1 Introduction

The <statsConfig> resource is used to store configuration data for collecting statistics for AEs. The <eventConfig> child resource is a mechanism for defining events that trigger statistics collection activity. Additional description of the <statsConfig> resource is contained in clauses 9.6.22 and 10.2.15 of TS-0001 Functional Architecture [6].

Table 7.3.23.1‑1: Data type definition of <statsConfig>

	Data Type ID
	File Name
	Note

	statsConfig
	CDT-statsConfig-v1_0_0.xsd
	

Table 7.3.23.1‑2: Universal/Common Attributes of <stateConfig> resource
	Attribute Name
	Request Optionality

	
	Create
	Update

	@resourceName
	NP
	NP

	resourceType
	NP
	NP

	resourceID
	NP
	NP

	parentID
	NP
	NP

	accessControlPolicyIDs
	O
	O

	creationTime
	NP
	NP

	expirationTime
	O
	O

	lastModifiedTime
	NP
	NP

	labels
	O
	O

Table 7.3.23.1‑3: Resource Specific Attributes of <stateConfig> resource
	Attribute Name
	Request Optionality
	Data Type
	Default Value and Constraints

	
	Create
	Update
	
	

	creator
	NP
	NP
	m2m:ID
	

Table 7.3.23.1‑4: Child resources of <statsConfig> resource
	Child Resource Type
	Child Resource Name
	Multiplicity
	Ref. to Resource Type Definition

	<eventConfig>
	[variable]
	0..n
	7.3.24

	<subscription>
	[variable]
	0..n
	7.3.8

7.3.23.2 <statsConfig> resource-specific procedure on CRUD operations

7.3.23.2.1 Create

Originator:

No change from the generic procedure in clause 7.1.2.1
Receiver:

This procedure follows the Generic Request Procedure for Receiver specified in clause 7.1.2.1 with the following <statsConfig> resource-specific updates.

Resource-specific operation before Recv-6.2:

98) If the To primitive parameter addresses a receiver CSE that is not an IN-CSE, then the request shall be rejected with a Response Status Code indicating "BAD_REQUEST" error.

7.3.23.2.2 Retrieve

Originator:

No change from the generic procedures in clause 7.1.2.1.

Receiver:

No change from the generic procedures in clause 7.1.2.2.
7.3.23.2.3 Update

Originator:

No change from the generic procedures in clause 7.1.2.1.

Receiver:

No change from the generic procedures in clause 7.1.2.2.
7.3.23.2.4 Delete

Originator:

No change from the generic procedures in clause 7.1.2.1.

Receiver:

No change from the generic procedures in clause 7.1.2.2.
7.3.24 Resource Type <eventConfig>
7.3.24.1 Introduction

The <eventConfig> resource defines events that trigger statistics collection activity on an IN-CSE. Additional description of the <eventConfig> resource is contained in clauses 9.6.23 and 10.2.15 of TS-0001 Functional Architecture [6].

Table 7.3.24.1‑1: Data type definition of <eventConfig>

	Data Type ID
	File Name
	Note

	eventConfig
	CDT-eventConfig-v1_0_0.xsd
	

Table 7.3.24.1‑2: Universal/Common Attributes of <eventConfig> resource
	Attribute Name
	Request Optionality

	
	Create
	Update

	@resourceName
	NP
	NP

	resourceType
	NP
	NP

	resourceID
	NP
	NP

	parentID
	NP
	NP

	accessControlPolicyIDs
	O
	O

	creationTime
	NP
	NP

	expirationTime
	O
	O

	lastModifiedTime
	NP
	NP

	labels
	O
	O

Table 7.3.24.1‑3: Resource Specific Attributes of <eventConfig> resource
	Attribute Name
	Request Optionality
	Data Type
	Default Value and Constraints

	
	Create
	Update
	
	

	creator
	NP
	NP
	m2m:ID
	No default

	eventID
	NP
	NP
	xs:string
	Uniquely identifies a configurable event

No default

	eventType
	M
	O
	m2m:eventType
	DATAOPERATION

STORAGEBASED

TIMERBASED

No default

	eventStart
	O
	O
	m2m:timestamp
	No default

(present only when eventType is set to TIMERBASED)

	eventEnd
	O
	O
	m2m:timestamp
	No default

(present only when eventType is set to TIMERBASED)

	operationType
	O
	O
	list of m2m:operation
	CREATE

RETRIEVE

UPDATE

DELETE

NOTIFY

No default

(present only when eventType is set to DATAOPERATION)

	dataSize
	O
	O
	xs:nonNegativeInteger
	No default

(present only when eventType is set to STORAGEBASED)

Table 7.3.24.1‑4: Child Resources of <eventConfig> resource
	Child Resource Type
	Child Resource Name
	Multiplicity
	Ref. to Resource Type Definition

	<subscription>
	[variable]
	0..n
	Clause 7.3.8

7.3.24.2 <eventConfig> resource-specific procedure on CRUD operations

7.3.24.2.1 Create

Originator:
This procedure follows the Generic Resource Request Procedure for Originator specified in clause 7.1.2.1, with the following <eventConfig> resource-specific updates.

Resource-specific operation before Orig-1.0 "Compose Request primitive":

99) If event-based statistics collection will be used, the Originator shall generate the representation of the <eventConfig> child resource instance to produce the desired trigger condition for the intended event. For example, one representation of <eventConfig> could have eventType set to DATA OPERATION and operationType set to Retrieve. In another example, a representation could have eventType set to TIMER-BASED, eventStart set to midnight tomorrow and eventEnd set to midnight of the day after tomorrow. See Table 7.3.24.1‑3 for value restrictions and default settings pertaining to the attributes of <eventConfig>.

Receiver:
No change from the generic procedure in clause 7.1.2.2.
7.3.24.2.2 Retrieve

Originator:
No change from the generic procedure in clause 7.1.2.1.
Receiver:
No change from the generic procedure in clause 7.1.2.2.
7.3.24.2.3 Update

Originator:
No change from the generic procedure in clause 7.1.2.1.
Receiver:
No change from the generic procedure in clause 7.1.2.2.
7.3.24.2.4 Delete

Originator:
No change from the generic procedure in clause 7.1.2.1.
Receiver:
No change from the generic procedure in clause 7.1.2.2.
7.3.25 Resource Type <statsCollect>
7.3.25.1 Introduction

The <statsCollect> resource controls the collection of statistics information on an IN-CSE. Information in an associated <eventConfig> resource shall be used by the IN-CSE or IN-AE to define specific event-related triggers. Additional description of the <statsCollect> resource is contained in clauses 9.6.24 and 10.2.15 of TS-0001 Functional Architecture [6].

Table 7.3.25.1‑1: Data type definition of <statsCollect>

	Data Type ID
	File Name
	Note

	statsCollect
	CDT-statsCollect-v1_0_0.xsd
	

Table 7.3.25.1‑2: Universal/Common Attributes of <statsCollect> resource
	Attribute Name
	Request Optionality

	
	Create
	Update

	@resourceName
	NP
	NP

	resourceType
	NP
	NP

	resourceID
	NP
	NP

	parentID
	NP
	NP

	accessControlPolicyIDs
	O
	O

	creationTime
	NP
	NP

	expirationTime
	O
	O

	lastModifiedTime
	NP
	NP

	labels
	O
	O

Table 7.3.25.1‑3: Resource Specific Attributes of <statsCollect> resource
	Attribute Name
	Request Optionality
	Data Type
	Default Value and Constraints

	
	Create
	Update
	
	

	creator
	NP
	NP
	m2m:ID
	No default

	statsCollectID
	NP
	NP
	xs:string
	Unique ID (within SP domain) for each instance of collected statistics

No default

	collectingEntityID
	M
	NP
	m2m:ID
	Unique ID of entity (e.g., IN-AE, IN-CSE) requesting the collection of statistics

No default

	collectedEntityID
	M
	NP
	m2m:ID
	Unique ID of entity (e.g., AE, CSE) for which statistics will be collected

No default

	statsRuleStatus
	M
	O
	m2m:statsRuleStatusType
	ACTIVE

INACTIVE

No default

	statModel
	M
	O
	m2m:statModelType
	EVENTBASED

Default=EVENTBASED

	collectPeriod
	O
	O
	m2m:scheduleEntries
	No default

(see Table 7.3.9.1‑3 for string format)

	eventID
	O
	O
	xs:string
	Uniquely identifies a configurable event

No default

(present when statModel is set to EVENTBASED; corresponds to an eventID attribute in an <eventConfig> resource that defines a specific event for collection)

Table 7.3.25.1‑4: Child Resources of <statsCollect> resource
	Child Resource Type
	Child Resource Name
	Multiplicity
	Ref. to Resource Type Definition

	<subscription>
	[variable]
	0..n
	Clause 7.3.8

7.3.25.2 <statsCollect> resource-specific procedure on CRUD operations

7.3.25.2.1 Create

Originator:
This procedure follows the Generic Resource Request Procedure for Originator specified in clause 7.1.2.1, with the following <statsCollect> resource-specific updates.
Resource-specific operation before Orig-1.0:

100) The Originator shall generate and populate a representation of the <statsCollect> resource to produce the desired collection scenario, with the exception of statsCollectID (which is populated by the IN-CSE). If statModel is set to EVENT-BASED then the Originator shall provide a value for eventID that corresponds to an eventID value stored in an <eventConfig> resource (which defines the event triggers to be used). See Table 7.3.25.1‑3 for value restrictions and default settings pertaining to the attributes of <statsCollect>.

Receiver:
This procedure follows the Generic Request Procedure for Receiver specified in clause 7.1.2.2, with the following <statsCollect> resource-specific updates.

Resource-specific operation before Recv-6.2:

101) If the to primitive parameter addresses a receiver CSE that is not an IN-CSE, then the request shall be rejected with a Response Status Code indicating "BAD_REQUEST" error.

Resource-specific operation before Recv-6.6 and after Recv-6.5:

102) The receiver IN-CSE shall generate and store a unique (within the Service Provider domain) value for statsCollectID.

103) If status is set to ACTIVE, the IN-CSE shall begin monitoring the conditions defined by the <statsCollect> resource and generating Service Statistics Collection Records as the conditions are met.

7.3.25.2.2 Retrieve
Originator:
This procedure follows the Generic Resource Request Procedure for Originator specified in clause 7.1.2.1.

Receiver:
This procedure follows the Generic Request Procedure for Receiver specified in clause 7.1.2.2.

7.3.25.2.3 Update

Originator:
This procedure follows the Generic Resource Request Procedure for Originator specified in clause 7.1.2.1.

Receiver:

This procedure follows the Generic Request Procedure for Receiver specified in clause 7.1.2.2, with the following <statsCollect> resource-specific updates.

Resource-specific operation before Recv-6.6 and after Recv-6.5:

104) If status is set to ACTIVE, the IN-CSE shall begin monitoring the conditions defined by the <statsCollect> resource and generating Service Statistics Collection Records as the conditions are met.

105) If status is set to INACTIVE, the IN-CSE shall stop monitoring the conditions defined by the <statsCollect> resource.

7.3.25.2.4 Delete
Originator:
This procedure follows the Generic Resource Request Procedure for Originator specified in clause 7.1.2.1.

Receiver:
This procedure follows the Generic Request Procedure for Receiver specified in clause 7.1.2.1.

7.3.26 Announced resource type
7.3.26.1 Introduction

A resource can be announced to one or more remote CSEs to inform the remote CSEs of the existence of the original resource. An announced resource can have a limited set of attributes and a limited set of child resources from the original resource. The announced resource includes a link to the original resource hosted by the original resource-hosting CSE.

All announced resources have the same procedures regardless of the announced resource types.

Table 7.3.26.1‑1: Data type definition of announced Resource

	Data Type ID
	File Name
	Note

	Actual Data Type ID
	CDT-accessControlPolicy-v1_0_0.xsd
CDT-remoteCSE-v1_0_0.xsd
CDT-AE-v1_0_0.xsd
CDT-container-v1_0_0.xsd
CDT-contentInstance-v1_0_0.xsd
CDT-schedule-v1_0_0.xsd
CDT-locationPolicy-v1_0_0.xsd
CDT-group-v1_0_0.xsd
CDT-node-V1_0_0.xsd
	

Table 7.3.26.1‑2: Universal/Common Attributes of announcedResource
	Attribute Name
	Request Optionality

	
	Create
	Update

	resourceType
	NP
	NP

	resourceID
	NP
	NP

	parentID
	NP
	NP

	accessControlPolicyIDs
	O
	O

	creationTime
	NP
	NP

	expirationTime
	O
	O

	lastModifiedTime
	NP
	NP

	labels
	O
	O

	link
	M
	O

Each announced resource type has the resource specific attributes that is the subset of the original resource.
Table 7.3.26.1‑3: Resource Specific Attributes of announcedResource
	Attribute Name
	Request Optionality
	Data Type
	Default Value and Constraints

	
	Create
	Update
	
	

	Name of attribute specified as MA
	M
	O
	the same data type defined at the original resource
	this attribute shall be set to the same value with the attribute at the original resource

	Name of attribute specified as OA
	O
	O
	the same data type defined at the original resource
	this attribute shall be set to the same value with the attribute at the original resource

7.3.26.2 Resource specific procedure on CRUD operations

This clause describes announced resource specific procedure for CRUD operations.

The original resource hosting CSE shall create/update/delete the announced resource as specified at the clause 7.2.3.9 and clause 7.1.2.2.

7.3.26.2.1 Create

.

Originator:

No change from the generic procedures in clause 7.1.2.1.

Receiver:

No change from the generic procedures in clause 7.1.2.2.

7.3.26.2.2 Retrieve

Originator:

No change from the generic procedures in clause 7.1.2.1.

Receiver:

No change from the generic procedures in clause 7.1.2.2.

In case of the Result Content information is set to the "original-resource", the Rcv-R-6.5 shall be changed as follows:

Rcv-R-6.5
"Read the original resource whose address is provided by the link attribute of the announced resource"

7.3.26.2.3 Update

Originator:

No change from the generic procedures in clause 7.1.2.1.

Receiver:

No change from the generic procedures in clause 7.1.2.2.
7.3.26.2.4 Delete

Originator:

No change from the generic procedures in clause 7.1.2.1.

Receiver:

No change from the generic procedures in clause 7.1.2.2.
7.3.27 Resource Type latest
7.3.27.1 Introduction
The <latest> resource is a virtual resource because it does not have a representation. It is a child resource of the <container> resource. Whenever a request addresses the <latest> resource, the Hosting CSE shall apply the request to the latest <contentInstance> resource among all existing <contentInstance> resources of the <container> resource.
7.3.27.2 <latest> Resource Specific Procedure on CRUD Operations

This sub-clause describes <latest> resource specific behaviour for operations. Among operations, only Retrieve and Delete operations shall be allowed for the <latest> resource.
7.3.27.2.1 Create

Originator:
The <latest> resource shall not be created via API.

Receiver:

Primitive specific operation on Recv-1.0 "Check the syntax of received message":

106) If the request is received, the Receiver CSE shall execute the following steps in order.
h) "Create an unsuccessful Response primitive" with the Response Status Code indicating “OPERATION_NOT_ALLOWED” error.
k) "Send the Response primitive".
7.3.27.2.2 Retrieve
Originator:

No change from the generic procedures in clause 7.1.2.1.
Receiver:
No change from the generic procedures in clause 7.1.2.1 except the following modification:
Recv-6.2
Check the existence of the latest <contentInstance> resource among all existing <contentInstance> resources in the parent <container> resource. If the resource exists, the subsequent procedures of the Receiver (i.e., after Recv-6.2) shall be performed for the resource. If the resource does not exist, the Hosting CSE shall reject the request with a Response Status Code indicating “NOT_FOUND” error.
7.3.27.2.3 Update

Originator:

The <latest> resource shall not be updated via API.

Receiver:
Primitive specific operation on Recv-1.0 "Check the syntax of received message":

107) If the request is received, the Receiver CSE shall execute the following steps in order.
i) "Create an unsuccessful Response primitive" with the Response Status Code indicating ”OPERATION_NOT_ALLOWED” error.
l) "Send the Response primitive".
7.3.27.2.4 Delete
Originator:

No change from the generic procedures in clause 7.1.2.1.
Receiver:
No change from the generic procedures in clause 7.1.2.1 except the following modification:
Recv-6.2
Check the existence of the latest <contentInstance> resource among all existing <contentInstance> resources in the parent <container> resource. If the resource exists, the subsequent procedures of the Receiver (i.e., after Recv-6.2) shall be performed for the resource. If the resource does not exist, the Hosting CSE shall reject the request with a Response Status Code indicating “NOT_FOUND” error.
7.3.28 Resource Type oldest
7.3.28.1 Introduction
The <oldest> resource is a virtual resource because it does not have a representation. It is a child resource of the <container> resource. Whenever a request addresses the <oldest> resource, the Hosting CSE shall apply the request to the oldest <contentInstance> resource among all existing <contentInstance> resources of the <container> resource.
7.3.28.2 <oldest> Resource Specific Procedure on CRUD Operations

Among operations, only Retrieve and Delete operations shall be allowed for the <oldest> resource.
7.3.28.2.1 Create

Originator:
The <oldest> resource shall not be created via API.

Receiver:

Primitive specific operation on Recv-1.0 "Check the syntax of received message":

108) If the request is received, the Receiver CSE shall execute the following steps in order.
j) "Create an unsuccessful Response primitive" with the Response Status Code indicating ”OPERATION_NOT_ALLOWED” error.
k) "Send the Response primitive".
7.3.28.2.2 Retrieve
Originator:

No change from the generic procedures in clause 7.1.2.1.
Receiver:

No change from the generic procedures in clause 7.1.2.1 except the following modification:
Recv-6.2
Check the existence of the oldest <contentInstance> resource among all existing <contentInstance> resources in the parent <container> resource. If the resource exists, the subsequent procedures of the Receiver (i.e., after Recv-6.2) shall be performed for the resource. If the resource does not exist, the Hosting CSE shall reject the request with a Response Status Code indicating “NOT_FOUND” error.
7.3.28.2.3 Update

Originator:

The <oldest> resource shall not be updated via API.

Receiver:
Primitive specific operation on Recv-1.0 "Check the syntax of received message":

109) If the request is received, the Receiver CSE shall execute the following steps in order.
l) "Create an unsuccessful Response primitive" with the Response Status Code indicating “OPERATION_NOT_ALLOWED” error.
m) "Send the Response primitive".
7.3.28.2.4 Delete
Originator:

No change from the generic procedures in clause 7.1.2.1.
Receiver:
No change from the generic procedures in clause 7.1.2.1 except the following modification:
Recv-6.2
Check the existence of the oldest <contentInstance> resource among all existing <contentInstance> resources in the parent <container> resource. If the resource exists, the subsequent procedures of the Receiver (i.e., after Recv-6.2) shall be performed for the resource. If the resource does not exist, the Hosting CSE shall reject the request with a Response Status Code indicating “NOT_FOUND” error.

7.3.29 Resource Type <serviceSubscribedAppRule>
7.3.29.1 Introduction

The <serviceSubscribedAppRule> resource represents a rule that defines allowed App-ID and AE-ID combinations that are acceptable for registering an AE on a Registrar CSE. The detailed description can be found in the clause 9.6.29 in TS-0001 Functional Architecture [6].
Table 7.3.29.1‑1: Data type definition of <serviceSubscribedAppRule> resource
	Data Type ID
	File Name
	Note

	serviceSubscribedAppRule
	CDT-serviceSubscribedAppRule-v1_0_0.xsd
	

Table 7.3.29.1‑2: Universal/Common Attributes of <serviceSubscribedAppRule> resource
	Attribute Name
	Request Optionality
	Resource Specific Note

	
	Create
	Update
	

	resourceType
	NP
	NP
	

	resourceID
	NP
	NP
	

	parentID
	NP
	NP
	

	expirationTime
	O
	O
	

	accessControlPolicyIDs
	O
	O
	

	creationTime
	NP
	NP
	

	lastModifiedTime
	NP
	NP
	

	labels
	O
	O
	

Table 7.3.29.1‑3: Resource Specific Attributes of <serviceSubscribedAppRule> resource
	Attribute Name
	Request Optionality
	Data Type
	Default Value and Constraints

	
	Create
	Update
	
	

	applicableCredIDs
	O
	O
	m2m:listOfM2MID
	

	allowedApp-IDs
	O
	O
	m2m:listOfM2MID
	

	allowedAEs
	O
	O
	m2m:listOfM2MID
	

Table 7.3.29.1‑4: Child resources of <serviceSubscribedAppRule> resource
	Child Resource Type
	Child Resource Name
	Multiplicity
	Ref. to Resource Type Definition

	<subscription>
	[variable]
	0..n
	Clause 7.3.8

7.3.29.2 <serviceSubscribedAppRule> resource specific procedure on CRUD operations

This clause describes <serviceSubscribedAppRule> resource specific primitive behaviour for CRUD operations.

7.3.29.2.1 Create

Originator:

No change from the generic procedures in clause 7.1.2.1.

Receiver:

No change from the generic procedures in clause 7.1.2.2.
7.3.29.2.2 Retrieve

Originator:

No change from the generic procedures in clause 7.1.2.1.

Receiver:

No change from the generic procedures in clause 7.1.2.2.
7.3.29.2.3 Update

Originator:

No change from the generic procedures in clause 7.1.2.1.

Receiver:

No change from the generic procedures in clause 7.1.2.2.
7.3.29.2.4 Delete

Originator:

No change from the generic procedures in clause 7.1.2.1.

Receiver:

No change from the generic procedures in clause 7.1.2.2.

7.4 Primitive-specific procedures and definitions

7.4.1 Notification data object and procedures
7.4.1.1 Notification data object
Notification procedures represent a special case of the generic procedures defined in clause 7.1.2, where the Operation parameter of the request primitive is set to value "N" (Notify). In this case, the request primitive is referred to as Notify request primitive, and the associated response primitive is denoted as Notify response primitive.
A Notify request primitive shall convey a special notification data object in its Content parameter. This notification data object has no resource type representation in the oneM2M TS-0001 Functional Architecture [6], since it does not represent a resource accessible by any M2M entities. The data type of the notification data object is defined in the tables below.

Table 7.4.1.1‑1: Data Type Definition of notification data object
	Data Type ID
	File Name
	Note

	notification
	CDT-notification-v1_0_0.xsd
	

Table 7.4.1‑2: Data Types for notification parameters
	Parameter Name
	Request Optionality
	Data Type
	Default Value and Constraints

	
	N
	
	

	notification
	O
	m2m:notificaiton
	

	aggregatedNotification
	O
	m2m:aggregatedNotification
	

	responsePrimitive
	O
	m2m:responsePrimitive
	

7.4.1.2 Notification procedures
Notification procedures shall be employed for the following use cases:

· to notify Receiver(s) of modifications of a resource for an associated <subscription> resource,

· to request Receiver(s) to perform resource subscription verification,

· to notify deletion of the <subscription> resource,

· to notify Receiver(s) for Asynchronous Non-blocking Request,

· to notify Receiver(s) of modifications of a resource when the subscription relationship is established through the <group> resource.
The following sub-clauses specify the notification procedures for each of the above use cases.
7.4.1.2.1 Notification for modification of subscribed resources
When the notification message is forwarded or aggregated by transit CSEs, the Originator or a transit CSE shall check whether there are notification policies to enforce between subscription resource Hosting CSE and the notification target. In that case, the transit CSE as well as the Originator shall process Notify request primitive(s) by using the corresponding policy and send processed Notify request primitive(s) to the next CSE with notification policies related to the enforcement so that the transit CSE is able to enforce the policy defined by the subscriber. The notification policies related to the enforcement at this time is verified by using the subscription reference in the Notify request primitive. In the notification policies, the latestNotify attribute is only enforced in the transit CSE as well as the Originator.

If Event Category parameter is set to ‘latest’ in the notification request primitive, the transit CSE as well as Originator shall cache the most recent Notify request. That is, if a new Notify request is received by the CSE with a subscription reference that has already been buffered for a pending Notify request, the newer Notify request will replace the buffered older Notify request.

Originator: When an event is generated, the Originator shall execute the following steps in order:

Step 1.0
Check the eventNotificationCriteria attribute of the <subscription> resource associated with the modified resource:
· If the eventNotificationCriteria attribute is set, then the Originator shall check whether the corresponding event matches with the event criteria. In that case, go to the step 2.0. Otherwise, the Originator shall discard the corresponding event

· If the eventNotificationCriteria attribute is not configured, then continue with the step 2.0

Step 2.0
The Originator shall check the notification policy as described in the below steps, but the notification policy may be checked in different order. After checking the notification policy in step 2.0 (i.e., from step 2.1to step 2.6), then continue with step 3.0

Step 2.1
The Originator shall determine the type of the notification per the notificationContentType attribute. The possible values of for notificationContentType attribute are ‘modifiedAttribute’, ‘wholeResource’ or optionally ‘referenceOnly’

· If the value of notificationContentType is set to ‘modifiedAttribute’, the Notify request primitive shall include the modified attribute(s) only

· If the value of notificationContentType is set to ‘wholeResource’, the Notify request primitive shall include the whole subscribed-to resource

· If the value of notificationContentType is set to ‘referenceOnly’, the Notify request primitive shall include an URI of a corresponding <subscription> resource
· If the notificationContentType attribute is not configured, the default value is set to ‘wholeResource’
Step 2.2
Check the notificationEventCat attribute:

· If the notificationEventCat attribute is set, the Notify request primitive shall employ the Event Category parameter as given in the notificationEventCat attribute. Then continue with the next step

· If the notificationEventCat attribute is not configured,then continue with other step
Step 2.3
Check the latestNotify attribute:

· If the latestNotify attribute is set, the Originator shall assign Event Category parameter of value ‘latest’ of the notifications generated pertaining to the subscription created. Then continue with other step
NOTE: The use of some attributes such as rateLimit, batchNotify and preSubscriptionNotify is not supported in this release of the document.
Step 3.0
The Originator shall check the notification and reachability schedules, but the notification schedules may be checked in different order.

· If the <subscription> resource associated with the modified resource includes a <notificationSchedule> child resource, the Originator shall check the time periodsgiven in the the scheduleElement attribute of the <notificationSchedule> child resource.
· Also, the Originator shall check the reachability schedule associated with the Receiver by exploring its <schedule> resource. If reachability schedules are not present in a Node then that Entity is considered to be always reachable

· If notificationSchedule and reachability schedule indicate that message transmission is allowed, then proceed with step 5.0. Otherwise, proceed with step 4.0
· In particular, if the notificationEventCat attribute is set to ‘immediate’ and the <notificationSchedule> resource does not allow transmission, then go to step 5.0 and send the corresponding Notify request primitive by temporarily ignoring the Originator’s notification schedule
Step 4.0
Check the pendingNotification attribute:

· If the pendingNotification attribute is set, then the Originator shall cache pending Notify request primitives according to the pendingNotification attribute. The possible values are ‘sendLatest’ and ‘sendAllPending’. If the value of pendingNotification is set to ‘sendLatest’, the most recent Notify request primitive shall be cached by the Originator and it shall set the Event Category parameter to ‘latest’. If pendingNotification is set to ‘sendAllPending’, all Notify request primitives shall be cached by the Originator. If the pendingNotification attribute is not configured, the Originator shall discard the corresponding Notify request primitive. The processed Notify request primitive by the pendingNotification attribute is sent to the Receiver after the reachability recovery (see the step 6.0)

Step 5.0
Check the expirationCounter attribute:

· If the expirationCounter attribute is set, then it shall be decreased by one when the Originator successfully sends the Notify request primitive. If the counter equals to zero('0'), the corresponding <subscription> resource shall be deleted. Then end the ‘Compose Notify Request Primitive’ procedure

· If the expirationCounter attribute is not configured, then end the ‘Compose Notify Request Primitive’ procedure

Originator: After reachability recovery, the Originator shall execute the following steps in order:

Step 6.0
If the pendingNotification attribute is set, the Originator shall send the processed Notify request primitive by the pendingNotification attribute and, then continue with the step 7.0

Step 7.0
Check the expirationCounter attribute:

· If the expirationCounter attribute is set, then its value shall be decreased by one when the Originator successfully sends the Notify request primitive. If the counter meets zero, the corresponding <subscription> resource shall be deleted. Then end the ‘Compose Notify Request Primitive’ procedure.
· If the expirationCounter attribute is not configured, then end the ‘Compose Notify Request Primitive’ procedure

Receiver: When the Hosting CSE receives a Notify request primitive, the Hosting CSE shall check validity of the primitive parameters. In case the Receiver is a transit CSE which forwards or aggregates Notify request primitives before sending to the subscriber or other transit CSEs, upon receiving the Notify request primitive with the Event Category parameter set to 'latest', the Receiver shall identify the latest Notify request primitive with the same subscription reference while storing Notify request primitives locally. When the Receiver as a transit CSE needs to send pending Notify request primitives, it shall send the latest Notify request primitive.
7.4.1.2.2 Subscription Verification during Subscription Creation

Originator:
When the Originator is triggered to perform subscription verification (clause 7.3.8.2.1) during <subscription> creation procedure, it performs the following steps in order.

110) Set the verificationRequest element of the notification data object as TRUE in the Notify request primitive.

111) Set the creator element of the notification data object as the Originator ID of the <subscription> creation in the primitive.

112) Set the to parameter as notificationURI in the primitive. If the notificationURI contains more than one value, then set the other value to the duplicated primitives from step 2).

113) Send the Notify request primitive(s).

Receiver:
When the Hosting CSE receives a Notify request primitive which includes verificationRequest element of the notification data object set as TRUE, the Hosting CSE shall check if the creator and the Originator have NOTIFY privilege to the notificationURI.

If it fails, the Hosting CSE shall return a Response Status Code indicating "SUBSCRIPTION_CREATOR_HAS_NO_PRIVILEGE" or "SUBSCRIPTION_HOST_HAS_NO_PRIVILEGE" error, respectively, with the Notify response primitive. Otherwise, it shall return successful response primitive.

7.4.1.2.3 Notification for Subscription Deletion

Originator:
When the <subscription> resource is deleted, the Originator shall send a Notify request primitive with subscriptionDeletion element of the notification data object set as TRUE and subscriptionReference element set as the URI of the <subscription> resource.

7.4.1.2.4 Notification for Asynchronous Non-blocking Request

Originator:

When the requested operation for a nonBlockingAsynch request is completed, the Originator (=hosting CSE of the resource) shall send a Notify request primitive to inform the final result of requested operation against the oneM2M resource.

114) The Originator shall compose a Request primitive with following parameter settings:

a. The From parameter shall be set to the ID of the Originator (i.e. hosting CSE which hosts the targeted resource in the previously received nonBlockingAsynch request).

b. The To parameter shall be set to the Originator of the previsouly received nonBlockingAsynch request if no notification target is provided in the Response Type parameter or to the notificationURI in the Response Type parameter.

c. The Response Type : This parameter shall be set to either nonBlockingSynch or nonBlockingAsynch. If the Originator selects to send the Notification in nonBlockingAsynch mode, the Originator shall include empty notification target.

d. The Content parameter shall be set to the response to the previously received nonBlockingAsynch request as m2m:responsePrimitive.

115) The Originator shall send the Request primitive. See clause 7.2.1.2 for detail.
Receiver:

No change from the generic procedure in clause 7.1.2.2.
7.4.1.2.5 Notification for subscription via group

Whenever the subscribed to resources' modification triggers a notification procedure as definedin clause 7.4.1.2.1 and the subscription relationship is established through group resource, the following procedure shall be performed.

The Member hosting CSE shall perform the steps defined in 7.4.1.2.1.

The Group hosting CSE shall perform the following steps in order:

116) Validate if the notification is sent from its own member resources when it gets a notification at the notificationURI. The group hosting CSE shall return a response primitive with the Response Status Code indicating “ACCESS_DENIED” error if the validation fails.

117) Upon successful validation, the group hosting CSE shall collect notification requests targeted at the same subscriber according to the notificationForwardingURI element of each notification data obeject. The group hosting CSE shall aggregate the notification requests into an aggregatedNotification element of the notification data object. The timing of aggregation is done as per the group hosting CSE’s local policy which is out of scope of this specification.

118) Send the aggregated notification to the notificationURI according to the notificationForwardingURI element in the notification data object. In case the group hosting CSE is member of another group hosting CSE through which the subscription is created, the notification request shall be sent according to the mapping of the notificationURI of the two group hosting CSEs. When aggregating the notification requests, the group hosting CSE may utilize the Request Expiration Timestamp parameter of the notification request primitive to determine the time by which the aggregated notifications need to be sent.
119) "Wait for Response primitive" procedure.

120) Upon receiving the response, the group hosting CSE shall send the response separately to each individual member hosting CSEs to respond their corresponding notify request.

The group hosting CSE may also stop aggregating notification requests depending on its own policy. The group hosting CSE shall not stop aggregating notification requests before the corresponding subscription expires.
The Subscriber shall perform the following steps in order:

121) Extract each notification from the aggregated notification;

122) Treat the notification as if it is sent from the original subscribed-to resource;

123) “Create a success response” procedure;
124) “Send the Response primitive” procedure.
7.4.2 Elements contained in the primitive Content

Clauses 7.1.1.1 and 7.1.1.2 enumerate the forms that the primitive Content parameter takes in various Request and Response cases. This clause details the Objects (elements) used in some of these cases. in the tables below.

The following elements are defined for use in the content parameter of a request:

Table 7.4.2‑1: Elements used for request content
	Element Name
	Applicable Operations
	Data Type
	Defined in

	m2m:notification
	N
	m2m:notification
	CDT-notification-v1_0_0.xsd

	m2m:aggregatedNotification
	N
	m2m:aggregatedNotification
	CDT-notification-v1_0_0.xsd

	m2m:attributeList
	R
	m2m:attributeList
	CDT-requestPrimitive-v1_0_0.xsd

	m2m:responsePrimitive
	N
	m2m:responsePrimitive
	CDT-responsePrimitive-v1_0_0.xsd

The following elements are defined for use in the content parameter of a response:

Table 7.4.2‑2: Elements used for response content
	Element Name
	Applicable Operations
	Data Type
	Element is Defined in

	m2m:resource
	C R U
	m2m:resourceWrapper
	CDT-responsePrimitive-v1_0_0.xsd

	m2m:URIList
	R
	m2m:listOfURIs
	CDT-responsePrimitive-v1_0_0.xsd

	m2m:aggregatedResponse
	C R U D
	m2m:aggregatedResponse
	CDT-responsePrimitive-v1_0_0.xsd

8 Representation of primitives in data transfer
8.1 Introduction

This clause defines the representation of request and response primitives as XML documents or JSON texts. The process of translating objects (i.e. primitives in the present context) into a format that can be stored or exchanged between network entities is commonly denoted as serialization or marshalling.

The serialization described here is used it two places:
125) It can be used when transmitting primitives over communication protocols such as HTTP, CoAP or MQTT. When applying a particular protocol binding, it is permitted to adapt the serialization approach, in order to make use of protocol-specific features. For example, a particular protocol binding may require that one or more primitive parameters be mapped to protocol-specific header fields rather than being included in the protocol-specific serialized JSON or XML which represents the message body.
126) Certain instances of resource types, e.g. instances of the <delivery> resource, include serialized primitives embedded in one of their resource attributes.
In order to enable efficient communication, the short names introduced in clause 8.2 shall be applied in XML and JSON serializations to identify primitive parameters and resource attribute names. This implies that short names are applied in any communication over the Mca, Mcc and Mcc’ reference points.

8.2 Short names

8.2.1 Introduction

XML and JSON representations require the explicit encoding of the names of primitive parameters, resource attributes, (in the case of XML) resource types and complex data types members. Whenever a protocol binding transfers such a name over a oneM2M reference point, it shall use a shortened form of that name, rather than the full name that is used elsewhere in this and other oneM2M specifications. Short names enable payload reduction on involved telecommunication interfaces.

The mapping between the full names and their shortened form is given in the clauses that follow.

8.2.2 Primitive parameters

In protocol bindings primitive parameter names shall be translated into short names of Table 8.2.2‑1.

Table 8.2.2‑1: Primitive parameter short names

	Parameter Name
	Occurs in
	Short Name

	Operation
	Request
	op

	To
	Request, Response
	to

	From
	Request, Response
	fr

	Request Identifier
	Request, Response
	rqi

	Resource Type
	Request
	ty

	Name
	Request
	nm

	Content
	Request, Response
	pc

	Originating Timestamp
	Request, Response
	ot

	Request Expiration Timestamp
	Request
	rqet

	Result Expiration Timestamp
	Request, Response
	rset

	Operation Execution Time
	Request
	oet

	Response Type
	Request
	rt

	Result Persistence
	Request
	rp

	Result Content
	Request
	rcn

	Event Category
	Request, Response
	ec

	Delivery Aggregation
	Request
	da

	Group Request Identifier
	Request
	gid

	Filter Criteria
	Request
	fc

	createdBefore
	Request
	crb

	createdAfter
	Request
	cra

	modifiedSince
	Request
	ms

	unmodifiedSince
	Request
	us

	stateTagSmaller
	Request
	sts

	stateTagBigger
	Request
	stb

	expireBefore
	Request
	exb

	expireAfter
	Request
	exa

	labels
	Request
	lbl

	resourceType
	Request
	rty

	sizeAbove
	Request
	sza

	sizeBelow
	Request
	szb

	contentType
	Request
	cty

	limit
	Request
	lim

	attribute
	Request
	atr

	filterUsage
	Request
	fu

	Discovery Result Type
	Request
	drt

	Response Status Code
	Response
	rsc

XML serialized representations of primitives employ root element names to differentiate between request and response primitive types (see clause 8.3). These root element names shall be translated into short names as in Table 8.2.2‑2.
Table 8.2.2‑2: Primitive root element short names

	Root Element Name
	Occurs in
	Short Name

	requestPrimitive
	Request
	req

	responsePrimitive
	Response
	rsp

8.2.3 Resource attributes

In protocol bindings resource attributes names shall be translated into short names of Table 8.3-1.
Table 8.2.3‑1: Resource attribute short names (1/5)
	Attribute Name
	Occurs in
	Short Name

	accessControlPolicyIDs
	All except accessControlPolicy, contentInstance
	acpi

	announcedAttribute
	accessControlPolicy, AE, container, contentInstance, group, locationPolicy, mgmtObj, node, remoteCSE, schedule
	aa

	announceTo
	accessControlPolicy, AE, container, contentInstance, group, locationPolicy, mgmtObj, node, remoteCSE, schedule
	at

	creationTime
	All
	ct

	expirationTime
	All except contentInstance, CSEBase
	et

	lastModifiedTime
	All
	lt

	parentID
	All except CSEBase
	pi

	resourceID
	All
	ri

	stateTag
	container, contentInstance, delivery, request
	st

	resourceName
	All
	rn

	privileges
	accessControlPolicy
	pv

	selfPrivileges
	accessControlPolicy
	pvs

	App-ID
	AE
	api

	AE-ID
	AE
	aei

	appName
	AE
	apn

	pointOfAccess
	AE, CSEBase, remoteCSE
	poa

	ontologyRef
	AE, container, contentInstance
	or

	nodeLink
	AE, CSEBase, remoteCSE
	nl

	creator
	container, contentInstance,eventConfig, group, pollingChannel, statsCollect, statsConfig, subscription
	cr

	maxNrOfInstances
	container
	mni

	maxByteSize
	container
	mbs

	maxInstanceAge
	container
	mia

	currentNrOfInstances
	container
	cni

Table 8.2.3‑2: Resource attribute short names (2/5)

	Attribute Name
	Occurs in
	Short Name

	currentByteSize
	container
	cbs

	latest
	container
	la

	locationID
	container
	li

	contentInfo
	contentInstance
	cnf

	contentSize
	contentInstance
	cs

	content
	contentInstance
	con

	cseType
	CSEBase, remoteCSE
	cst

	CSE-ID
	CSEBase, remoteCSE, service SubscribedNode
	csi

	supportedResourceType
	CSEBase
	srt

	notificationCongestionPolicy
	CSEBase
	ncp

	source
	delivery
	sr

	target
	delivery, request
	tg

	lifespan
	delivery
	ls

	eventCat
	delivery
	ec*

	deliveryMetaData
	delivery
	dmd

	aggregatedRequest
	delivery
	arq

	eventID
	eventConfig, statsCollect
	evi

	eventType
	eventConfig
	evt

	evenStart
	eventConfig
	evs

	eventEnd
	eventConfig
	eve

	operationType
	eventConfig
	opt

	dataSize
	eventConfig
	ds

	execStatus
	execInstance
	exs

	execResult
	execInstance
	exr

	execDisable
	execInstance
	exd

	execTarget
	execInstance, mgmtCmd
	ext

	execMode
	execInstance, mgmtCmd
	exm

	execFrequency
	execInstance, mgmtCmd
	exf

	execDelay
	execInstance, mgmtCmd
	exy

	execNumber
	execInstance, mgmtCmd
	exn

	execReqArgs
	execInstance, mgmtCmd
	exra

	execEnable
	mgmtCmd
	exe

	memberType
	group
	mt

	currentNrOfMembers
	group
	cnm

	maxNrOfMembers
	group
	mnm

	memberID
	group
	mid

	membersAccessControlPolicyIDs
	group
	macp

	memberTypeValidated
	group
	mtv

	consistencyStrategy
	group
	csy

	groupName
	group, subscription
	gn

	locationSource
	locationPolicy
	los

	locationUpdatePeriod
	locationPolicy
	lou

	locationTargetId
	locationPolicy
	lot

	locationServer
	locationPolicy
	lor

	locationContainerID
	locationPolicy
	loi

	locationContainerName
	locationPolicy
	lon

	locationStatus
	locationPolicy
	lost

	serviceRoles
	m2mServiceSubscriptionProfile
	svr

	description
	mgmtCmd, mgmtObj, all management resources from firmware
	dc

	cmdType
	mgmtCmd
	cmt

	mgmtDefinition
	mgmtObj, all management resources from firmware
	mgd

	objectIDs
	mgmtObj
	obis

Table 8.2.3‑3: Resource attribute short names (3/5)
	Attribute Name
	Occurs in
	Short Name

	objectPaths
	mgmtObj
	obps

	nodeID
	node
	ni

	hostedCSELink
	node
	hcl

	CSEBase
	remoteCSE
	cb

	M2M-Ext-ID
	remoteCSE
	mei

	Trigger-Recipient-ID
	remoteCSE
	tri

	requestReachability
	remoteCSE
	rr

	originator
	request
	og

	metaInformation
	request
	mi

	requestStatus
	request
	rs

	operationResult
	request
	ol

	operation
	request
	opn

	requestID
	request
	rid

	scheduleElement
	schedule
	se

	deviceIdentifier
	serviceSubscribedNode
	di

	statsCollectID
	statsCollect
	sci

	collectingEntityID
	statsCollect
	cei

	collectedEntityID
	statsCollect
	cdi

	status
	areaNwkDeviceInfo
	ss

	statsRuleStatus
	statsCollect
	srs

	statModel
	statsCollect
	sm

	collectPeriod
	statsCollect
	cp

	eventNotificationCriteria
	subscription
	enc

	expirationCounter
	subscription
	exc

	notificationURI
	subscription
	nu

	notificationForwardingURI
	subscription
	nfu

	batchNotify
	subscription
	bn

	rateLimit
	subscription
	rl

	preSubscriptionNotify
	subscription
	psn

	pendingNotification
	subscription
	pn

	notificationStoragePriority
	subscription
	nsp

	latestNotify
	subscription
	ln

	notificationContentType
	subscription
	nct

	notificationEventCat
	subscription
	nec

	subscriberURI
	subscription
	su

	version
	firmware, software
	vr

	URL
	firmware, software
	url

	update
	firmware
	ud

	updateStatus
	firmware
	uds

	install
	software
	in

	uninstall
	software
	un

	installStatus
	software
	ins

	activate
	software
	act

	deactivate
	software
	dea

	activateStatus
	software, areaNwkInfo
	acts

	memAvailable
	memory
	mma

	memTotal
	memory
	mmt

Table 8.2.3‑4: Resource attribute short names (4/5)

	Attribute Name
	Occurs in
	Short Name

	areaNwkType
	areaNwkInfo
	ant

	listOfDevices
	areaNwkInfo
	ldv

	devId
	areaNwkDeviceInfo
	dvd

	devType
	areaNwkDeviceInfo
	dvt

	areaNwkId
	areaNwkDeviceInfo
	awi

	sleepInterval
	areaNwkDeviceInfo
	sli

	sleepDuration
	areaNwkDeviceInfo
	sld

	listOfNeighbors
	areaNwkDeviceInfo
	lnh

	batteryLevel
	battery
	btl

	batteryStatus
	battery
	bts

	deviceLabel
	deviceInfo
	dlb

	manufacturer
	deviceInfo
	man

	model
	deviceInfo
	mod

	deviceType
	deviceInfo
	dty

	fwVersion
	deviceInfo
	fwv

	swVersion
	deviceInfo
	swv

	hwVersion
	deviceInfo
	hwv

	capabilityName
	deviceCapability
	can

	attached
	deviceCapability
	att

	capabilityActionStatus
	deviceCapability
	cas

	enable
	deviceCapability
	ena

	disable
	deviceCapability
	dis

	currentState
	deviceCapability
	cus

	reboot
	reboot
	rbo

	factoryReset
	reboot
	far

	logTypeId
	eventLog
	lgt

	logData
	eventLog
	lgd

	logActionStatus
	eventLog
	lgs

	logStart
	eventLog
	lga

	logStop
	eventLog
	lgo

	name
	cmdhPolicy, firmware, software
	nam

	mgmtLink
	cmdhPolicy, activeCmdhPolicy, cmdhDefaults, cmdhNetworkAccessRules, cmdhNwAccessRule
	cmlk

	order
	cmdhDefEcValue, cmdhLimits
	od

	defEcValue
	cmdhDefEcValue
	dev

	requestOrigin
	cmdhDefEcValue, cmdhLimits
	ror

	requestContext
	cmdhDefEcValue, cmdhLimits
	rct

	requestContextNotification
	cmdhDefEcValue, cmdhLimits
	rcn

	requestCharacteristics
	cmdhDefEcValue, cmdhLimits
	rch

	applicableEventCategories
	cmdhNetworkAccessRules
	aecs

	applicableEventCategory
	cmdhEcDefParamValues, cmdhBuffer
	aec

	defaultRequestExpTime
	cmdhEcDefParamValues
	dqet

	defaultResultExpTime
	cmdhEcDefParamValues
	dset

	defaultOpExecTime
	cmdhEcDefParamValues
	doet

	defaultRespPersistence
	cmdhEcDefParamValues
	drp

	defaultDelAggregation
	cmdhEcDefParamValues
	dda

	limitsEventCategory
	cmdhLimits
	lec

	limitsRequestExpTime
	cmdhLimits
	lqet

	limitsResultExpTime
	cmdhLimits
	lset

	limitsOpExecTime
	cmdhLimits
	loet

	limitsRespPersistence
	cmdhLimits
	lrp

	limitsDelAggregation
	cmdhLimits
	lda

	targetNetwork
	cmdhNwAccessRule
	ttn

Table 8.2.3‑5: Resource attribute short names (5/5)

	Attribute Name
	Occurs in
	Short Name

	minReqVolume
	cmdhNwAccessRule
	mrv

	backOffParameters
	cmdhNwAccessRule
	bop

	otherConditions
	cmdhNwAccessRule
	ohc

	maxBufferSize
	cmdhBuffer
	mbfs

	storagePriority
	cmdhBuffer
	sgp

	applicableCredIDs
	serviceSubscribedAppRule
	aci

	allowedApp-IDs
	serviceSubscribedAppRule
	aai

	allowedAEs
	serviceSubscribedAppRule
	aae

	NOTE: marked short names have been already assigned in primitive Table 8.2.2-1.

8.2.4 Resource types

In protocol bindings resource type names shall be translated into short names of Table 8.2.4‑1.

Table 8.2.4‑1: Resource and specialization type short names

	Resource Type Name
	Short Name

	accessControlPolicy
	acp

	accessControlPolicyAnnc
	acpA

	AE
	ae

	AEAnnc
	aeA

	container
	cnt

	containerAnnc
	cntA

	contentInstance
	cin

	contentInstanceAnnc
	cinA

	CSEBase
	csb

	delivery
	dlv

	eventConfig
	evcg

	execInstance
	exin

	fanOutPoint
	fopt

	group
	grp

	groupAnnc
	grpA

	locationPolicy
	lcp

	locationPolicyAnnc
	lcpA

	m2mServiceSubscriptionProfile
	mssp

	mgmtCmd
	mgc

	mgmtObj
	mgo

	mgmtObjAnnc
	mgoA

	node
	nod

	nodeAnnc
	nodA

	pollingChannel
	pch

	pollingChannelURI
	pcu

	remoteCSE
	csr

	remoteCSEAnnc
	csrA

	request
	req

	schedule
	sch

	scheduleAnnc
	schA

	serviceSubscribedAppRule
	asar

	serviceSubscribedNode
	svsn

	statsCollect
	stcl

	statsConfig
	stcg

	subscription
	sub

	firmware
	fwr

	software
	swr

	memory
	mem

	areaNwkInfo
	ani

	areaNwkDeviceInfo
	andi

	battery
	bat

	deviceInfo
	dvi

	deviceCapability
	dvc

	reboot
	rbt

	eventLog
	evl

	cmdhPolicy
	cmp

	activeCmdhPolicy
	acmp

	cmdhDefaults
	cmdf

	cmdhDefEcValue
	cmdv

	cmdhEcDefParamValues
	cmpv

	cmdhLimits
	cml

	cmdhNetworkAccessRules
	cmnr

	cmdhNwAccessRule
	cmwr

	cmdhBuffer
	cmbf

8.2.5 Complex data types members

In protocol bindings complex data types member names shall be translated into short names of Table 8.2.5-1.

Table 8.2.5‑1: Complex data types members short names

	Parameter Name
	Occurs in
	Short Name

	createdBefore
	filterCriteria, eventNotificationCriteria
	crb

	createdAfter
	filterCriteria, eventNotificationCriteria
	cra

	modifiedSince
	filterCriteria, eventNotificationCriteria
	ms

	unmodifiedSince
	filterCriteria, eventNotificationCriteria
	us

	stateTagSmaller
	filterCriteria, eventNotificationCriteria
	sts

	stateTagBigger
	filterCriteria, eventNotificationCriteria
	stb

	expireBefore
	filterCriteria, eventNotificationCriteria
	exb

	expireAfter
	filterCriteria, eventNotificationCriteria
	exa

	labels
	filterCriteria, eventNotificationCriteria
	lbl

	resourceType
	filterCriteria
	rty

	sizeAbove
	filterCriteria, eventNotificationCriteria
	sza

	sizeBelow
	filterCriteria, eventNotificationCriteriay
	szb

	contentType
	filterCriteria
	cty

	limit
	filterCriteria
	lim

	attribute
	filterCriteria, eventNotificationCriteria
	atr

	resourceStatus
	eventNotificationCriteria, notificationEvent
	rss

	operationMonitor
	eventNotificationCriteria, notificationEvent
	om

	filterUsage
	filterCriteria
	fu

	eventCatType
	eventCat
	ect

	eventCatNo
	eventCat
	ecn

	number
	batchNotify
	num

	duration
	batchNotify
	dur

	notification
	aggregatedNotification
	sgn

	notificationEvent
	notification
	nev

	verificationRequest
	notification
	vrq

	subscriptionDeletion
	notification
	sud

	subscriptionReference
	notification
	sur

	creator
	notification
	cr*

	notificationForwardingURI
	notification
	nfu*

	operation
	operationMonitor
	opr

	originator
	operationMonitor
	org

	accessId
	externalID
	aci

	MSISDN
	externalID
	msd

	action
	actionStatus
	acn

	status
	actionStatus
	sus

	childResource
	All except execInstance, announced resource, management resources from firmware
	ch

	aggregatedNotification
	Primitive Content
	agn

	aggregatedResponse
	Primitive Content
	agr

NOTE: * marked short names have been already assigned in attribute Table 8.2.3-1.
8.3 XML serialization
8.3.1 Method
XML serialization of request or response primitives refers to the process of representing the primitive as an XML document.
The XML document shall be a well-formed XML document compliant with W3C XML 1.0 [1]. It shall be restricted to Unicode characters and encoded using UTF-8 as described in RFC 3629 [21].
The structure and data types of XML serialized request and response primitives shall be consistent with the XSD defined in CDT-requestPrimitive-v1_0_0.xsd and CDT-responsePrimitive-v1_0_0.xsd, respectively. The data types used in these XSD files comply with the definitions in clause 6 and clause 7 of this specification.

Note that the XSD files included in the present release employ the long names for primitive parameters and other XML elements and attributes, but the primitive serialization is required to use the corresponding short names (as defined clause 8.2 of this specification).

NOTE: XML Schema files that use short names might be made available at a future date.
The primitive Content parameter is serialized just like any other element of complex type. Generally, the Content parameter may include only a partial set of attributes specified for the resource type as indicated in the Resource Type parameter, e.g. for partial Update or Retrieve Request procedures. For Notification Request primitives, the Content parameter includes a Notification data object as defined in clause 7.4.1.1 and the datatype definition given in CDT-notification-v1_0_0.xsd.

8.3.2 Examples
An example that shows a request primitive serialized into an XML document is shown below. This example shows the create request for an instance of a <contentInstance> resource. Only mandatory primitive parameters and resource attributes are shown.

<?xml version="1.0" encoding="UTF-8"?>
<m2m:req xmlns:m2m="http://www.onem2m.org/xml/protocols"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.onem2m.org/xml/protocols CDT-requestPrimitive-v1_0_0.xsd">
 <op>1</op>
 <to>//cse1.mym2msp.org/</to>
 <fr>//cse1234/app567</fr>
 <ri>0002bf63</ri>
 <ty>4</ty>
 <pc>
 <cin rn="temp754">
 <cnf>application/xml:1</cnf>
 <con>PHRpbWU+MTc4ODkzMDk8L3RpbWU+PHRlbXA+MjA8L3RlbXA+DQo=</con>
 </cin>
 </pc>
</m2m:req>

The XML elements have the following meaning:

· req: Root element of the Request primitive, which includes a reference to an XSD file which defines its datatype.

· op:
Operation parameter of datatype m2m:operation: in this example value = 1 indicates a “Create” operation.

· to:
To parameter of type m2m:anyURI: URI of the target resource.

· fr:
From parameter of type m2m:ID: ID of the Originator (either AE-ID or CSE-ID).

· ri:
Request Identifier parameter of type m2m:requestID: this could e.g. represent a counter number.

· ty:
Resource Type parameter of datatype m2m:resourceType: indicating type of the resource to be created (value = 4 indicates that a <contentInstance> resource shall be created).

· pc:
Content parameter of datatype m2m:primitiveContent: the attributes of the resource to be provided by the Originator.

· cin: Root element of the <contentInstance> resource of datatype m2m:contentInstance: this includes the mandatory attributes (and optional attributes not shown in this example) supplied by the request Originator. The instance name is given in the XML name attribute, here rn="temp754". In this example, the cn parameter includes an instance of a <contentInstance> resource which consists of two attributes: contentInfo (cnf) – which specifies base64 encoding - and the content (con) itself.

8.4 JSON serialization
8.4.1 Terminology
The following conventions are used in the clause that follows.

· The italicized terms object, member, name, array, number, string, boolean and null are to be interpreted as in RFC 7159 [19]

· The italicized term element is to be interpreted to encompass oneM2M Primitive Parameters, Resource Attributes and other elements or attributes used inside oneM2M complex type definitions

8.4.2 Method
The primitive shall be encoded as a JSON object, conforming to the requirements of RFC 7159 [19]. This JSON object shall be restricted to Unicode characters defined in The Unicode Standard and encoded using UTF-8 as described in RFC 3629 [21]. The names in each object in the JSON shall be unique.
The structure of the top-level primitive object shall be determined by the data type definitions in clause 6 and clause 7 of this specification, as follows:

1. All member’s names shall be the short name defined in clause 8.2.

2. If an element is defined in this specification as having a complex type, then it is serialized in the JSON member as an object and its children are recursively serialized as members of that object, using short names as defined in clause 8.2.

3. The membership of each nested object shall respect the cardinality constraints from the corresponding XSD complex type definition,

4. If an element is defined in this specification as having an atomic data type that is numeric in nature (e.g. xs:integer or a type derived from it) then its value is serialized into the JSON member as a number.

5. If an element is defined as having an atomic data type that is non-numeric then its value is serialized into the JSON member as a string.

6. If an element is defined as xs:boolean (or a type derived from xs:boolean) then it is serialized in the JSON member as a boolean.

7. If an element is defined as having an xs:list type in the corresponding XSD then it is serialized in the JSON member as an array.

8. If an element instance has a null value then it is serialized into the JSON member as a null, regardless of the data type that it has in the corresponding XSD.

9. If an element is defined as having maxOccurs > 1 in the corresponding XSD then its parent JSON member is serialized as an array.
10. If an element has an XSD data type that is a simple type with XML attributes, then it is serialized in the JSON member as an object. The XML attributes appear as members of that object (using their short names) and the value of the element is serialized as a member of that object with the special name “val”.

11. The members (at each level) may be serialized in any order. The order in which they appear in the corresponding XSD file is immaterial.

The Content parameter is treated just like any other parameter of complex type. It is serialized as an object and its members are the attributes and/or child resource references of the Resource that is being transferred. The Content parameter is not required to contain all the attributes of the Resource.

8.4.3 Examples

Here is an example that shows the payload of a request message serialized using JSON:

{“op”: “1”, “fr”: “//xxxxx/2345”, “to”: “//xxxxx/99”, “ri”: “A1234”, “pc”: {“se”: “* 0-5 2,6,10 * * *”}, “ty”: 20}

· op: operation (in this case it’s Create)

· fr: ID of the Originator (either the AE or CSE)

· to: URI of the target resource

· ri: request identifier (this is a string)

· pc: attributes of the resource to be provided by Originator. This is serialized as a nested JSON object

· ty: type of resource to be created (in this case a Schedule resource). This is a number.
Note that the Operation (op) parameter is present only in Request primitives. The presence of this parameter in JSON serialized primitive representations allows to differentiate Request primitives from Response primitives.
Annex A (void):

Annex B (normative):
Device triggering

B.1. Providing device triggering service by means of 3GPP networks

B.1.1. Introduction

3GPP Underlying Network has defined a dedicated interface for requesting device triggering. The normative references for applicable interfaces are as follows: 3GPP TS 23.682 [15]. The specification for the interface Tsp is described in 3GPP TS 29.368 [16]. Tsp interface uses Diameter Base Protocol as specified in IETF RFC 3588 [13], in order to use such an interface the CSE shall act as a Diameter client as described in IETF RFC 6733 [14].

Editor’s Note: IETF RFC 3588 Reference needs to be checked to determine that it is current.

Before the CSE initiates the device triggering, the CSE and MTC-IWF shall execute the procedures once as specified in 3GPP TS29.368 [16].
B.1.2. Device action request command

When a CSE needs to issue a device triggering request to the MTC-IWF, the CSE shall send a Device-Action-Request (DAR) command (for detail, see TS 29.368 [16]). The following list provides the parameters mapping between the oneM2M and 3GPP.
Either External-Id or MSISDN: the CSE maps it to the M2M-Ext-ID, see clause 6.2.
SCS identifier: the CSE maps it to the CSE-ID, see clause 6.2.
Application Port Identifier: the CSE maps it to Trigger-Recipient-ID, see clause 6.2.

B.1.3. Device action answer command

As a result of device triggering request to MTC-IWF, the CSE receives a Device-Action-Answer (DAA) command (for detail, see TS 29.368 [16]).

B.1.4. Device notification request command

As a report of the result for device triggering delivery by 3GPP network, the CSE receives a Device-Notification-Request (DNR) command (for detail, see TS 29.368 [16]).
B.1.5. Device notification answer command

As a result of device notification request to MTC-IWF, the CSE sends a Device-Notification-Answer (DNA) command (for detail, see TS 29.368 [16]).
Annex C (informative):
XML examples

C.1. XML schema for container resource type
<?xml version="1.0" encoding="UTF-8"?>

<!--

Copyright Notification

The oneM2M Partners authorize you to copy this document, provided that you retain all copyright and other proprietary notices

contained in the original materials on any copies of the materials and that you comply strictly with these terms.

This copyright permission does not constitute an endorsement of the products or services, nor does it encompass the granting of

any patent rights. The oneM2M Partners assume no responsibility for errors or omissions in this document.

© 2014, oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TTA, TTC). All rights reserved.

Notice of Disclaimer & Limitation of Liability

The information provided in this document is directed solely to professionals who have the appropriate degree of experience to understand

and interpret its contents in accordance with generally accepted engineering or other professional standards and applicable regulations.

No recommendation as to products or vendors is made or should be implied.

NO REPRESENTATION OR WARRANTY IS MADE THAT THE INFORMATION IS TECHNICALLY ACCURATE OR SUFFICIENT OR CONFORMS TO ANY STATUTE,

GOVERNMENTAL RULE OR REGULATION, AND FURTHER, NO REPRESENTATION OR WARRANTY IS MADE OF MERCHANTABILITY OR FITNESS FOR ANY

PARTICULAR PURPOSE OR AGAINST INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS.

NO oneM2M PARTNER TYPE 1 SHALL BE LIABLE, BEYOND THE AMOUNT OF ANY SUM RECEIVED IN PAYMENT BY THAT PARTNER FOR THIS DOCUMENT, WITH RESPECT TO

ANY CLAIM, AND IN NO EVENT SHALL oneM2M BE LIABLE FOR LOST PROFITS OR OTHER INCIDENTAL OR CONSEQUENTIAL DAMAGES.

oneM2M EXPRESSLY ADVISES ANY AND ALL USE OF OR RELIANCE UPON THIS INFORMATION PROVIDED IN THIS DOCUMENT IS AT THE RISK OF THE USER.

-->

<xs:schema xmlns="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www.onem2m.org/xml/protocols" xmlns:m2m="http://www.onem2m.org/xml/protocols"

elementFormDefault="unqualified"

<xs:include schemaLocation="CDT-commonTypes-v1_0_0.xsd" />

<xs:include schemaLocation="CDT-contentInstance-v1_0_0.xsd" />

<xs:include schemaLocation="CDT-subscription-v1_0_0.xsd" />

<xs:element name="container">

<xs:complexType>

<xs:complexContent>

<!-- Inherit Common Attributes from announceableResource -->

<xs:extension base="m2m:announceableResource">

<!-- Resource Specific Attributes -->

<xs:sequence>

<xs:element name="stateTag" type="xs:nonNegativeInteger" />

<xs:element name="creator" type="m2m:ID" />

<xs:element name="maxNrOfInstances" type="xs:nonNegativeInteger"

minOccurs="0" />

<xs:element name="maxByteSize" type="xs:nonNegativeInteger"

minOccurs="0" />

<xs:element name="maxInstanceAge" type="xs:nonNegativeInteger"

minOccurs="0" />

<xs:element name="currentNrOfInstances" type="xs:nonNegativeInteger" />

<xs:element name="currentByteSize" type="xs:nonNegativeInteger" />

<xs:element name="locationID" type="xs:anyURI"

minOccurs="0" />

<xs:element name="ontologyRef" type="xs:anyURI"

minOccurs="0" />

<!-- Child Resources -->

<xs:element name="latest" type="xs:anyURI" minOccurs="0" />

<xs:element name="oldest" type="xs:anyURI" minOccurs="0" />

<xs:choice minOccurs="0" maxOccurs="1" >

 <xs:element name="childResource" type="m2m:childResourceRef"

 minOccurs="1" maxOccurs="unbounded" />

 <xs:choice minOccurs="1" maxOccurs="unbounded" >
<xs:element ref="m2m:container" />
<xs:element ref="m2m:contentInstance" />
<xs:element ref="m2m:subscription" />

 </xs:choice>

</xs:choice>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

</xs:element>

</xs:schema>

C.2. Container resource that conforms to the Schema given above (see Annex. C.1)
<?xml version="1.0" encoding="UTF-8"?>

<m2m:container xmlns:m2m="http://www.onem2m.org/xml/protocols"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation=

"http://www.onem2m.org/xml/protocols CDT-container-v1_0_0.xsd"

 name="12xx">

 <resourceType>3</resourceType>

 <resourceID>//IN-CSEID.m2m.myoperator.org/96719</resourceID>

 <parentID>//IN-CSEID.m2m.myoperator.org/96734</parentID>

 <creationTime>2013-12-31T12:00:00</creationTime>

 <lastModifiedTime>2013-12-31T12:00:00</lastModifiedTime>

 <labels>label1 label2</labels>
 <accessControlPolicyIDs >
 <accessControlPolicyID>l//IN-CSEID.m2m.myoperator.org/93405</accessControlPolicyID>
 </accessControlPolicyID/>
 <expirationTime>2013-12-31T12:30</labels>
 <stateTag>0 </labels>
 <creator>//IN-CSEID.m2m.myoperator.org/9125</creator>
 <maxNrOfInstances>5</maxNrOfInstances>

 <maxByteSize>104857600</maxByteSize>

 <maxInstanceAge>3600</maxInstanceAge>

 <currentNrOfInstances>2</currentNrOfInstances>

 <currentByteSize>6</currentByteSize>

 <latest>//IN-CSEID.m2m.myoperator.org/96739</latest>

 <locationID>//IN-CSEID.m2m.myoperator.org/1112</locationID>

 <ontologyRef>http://tempuri.org/ontologies/xyz</ontologyRef>

 <latest>//IN-CSEID.m2m.myoperator.org/96739</latest>

 <oldest>//IN-CSEID.m2m.myoperator.org/34722</oldest>

 <childResource name="instance1234" type="4">//IN-CSEID.m2m.myoperator.org/1722</childResource>

 <childResource name="instance1235" type="4">//IN-CSEID.m2m.myoperator.org/34722</childResource>

 <childResource name="1923" type="23">//IN-CSEID.m2m.myoperator.org/2323</childResource>

</m2m:container>
Annex D (Normative): <mgmtObj> Resource specializations
D.1. Introduction
The Annex defines the structure and procedure for the <mgmtObj> resource specializations. The resource specializations specified in the following sub-clauses of this Annex shall be created on the IN-CSE when the management request is performed using external management protocols. The IN-CSE further interacts with the management server to perform management requests towards the managed entity. If the management request is performed solely over the M2M Service Layer, the <mgmtObj> resource specializations are created on the managed entity if the managed entity is equipped with a CSE. If the managed entities are non-oneM2M Nodes, the resources are created on the MN-CSE of the managed entity. The details can be found in the oneM2M TS-0001 Functional Architecture [6].

D.2. Resource [firmware]

D.2.1. Introduction

The detailed description of the [firmware] resource can be found in clause D.2 of the oneM2M TS-0001 Functional Architecture [6].

Table D.2.1‑1: Data Type Definition of [firmware]
	Data Type ID
	File Name
	Note

	firmware,
firmwareAnnc
	CDT-firmware-v1_0_0.xsd
	

Table D.2.1‑2: Resource specific attributes of [firmware]
	Attribute Name
	Request Optionality
	Data Type
	Default Value and Constraints

	
	Create
	Update
	
	

	mgmtDefinition
	M
	NP
	See clause 7.3.15
	1001 (firmware)

	objectID
	O
	NP
	See clause 7.3.15
	

	objectPaths
	O
	NP
	See clause 7.3.15
	

	description
	O
	O
	See clause 7.3.15
	

	version
	M
	O
	xs:string
	

	name
	M
	O
	xs:string
	

	URL
	M
	O
	xs:anyURI
	

	update
	M
	O
	xs:boolean
	

	updateStatus
	NP
	O
	m2m:actionStatus
	

D.2.2. Resource specific procedure on CRUD operations
When management is performed using external management technologies, the procedures defined in 7.3.15.2 <mgmtObj> specific procedures shall be used. The following clauses define additional procedures besides the generic procedure defined in 7.1.2.

D.2.2.1. Create

Originator:

No change from the generic procedures in clause 7.1.2.1.

Receiver:

Primitive specific step after generic procedure defined in clause 7.1.2.2.

May start to download the firmware image from the location indicated by attribute URL in the firmware resource.

D.2.2.2. Update
Originator:

No change from the generic procedures in clause 7.1.2.1.

Receiver:

Primitive specific operation additional to Recv-6.5 “Create/Update/Retrieve/Delete/Notify operation is performed”:

When the attribute update of the firmware resource is updated to TRUE, use the downloaded firmware image to update the current using firmware. The Receiver may need to update the fwVersion attribute of the [deviceInfo] resource if needed.

D.2.2.3. Retrieve
Originator:

No change from the generic procedures in clause 7.1.2.1.

Receiver:

No change from the generic procedures in clause 7.1.2.2.
D.2.2.4. Delete

Originator:

No change from the generic procedures in clause 7.1.2.1.

Receiver:

Primitive specific step after generic procedure defined in clause 7.1.2.2:
Delete the downloaded firmware image locally.
D.3. Resource [software]

D.3.1. Introduction

The detailed description of the [software] resource can be found in clause D.3 of TS-0001 Functional Architecture [6].

Table D.3.1‑1: Data Type Definition of [software]
	Data Type ID
	File Name
	Note

	software, softwareAnnc
	CDT-software-v1_0_0.xsd
	

Table D.3.1‑2: Resource specific attributes of [software]
	Attribute Name
	Request Optionality
	Data Type
	Default Value and Constraints

	
	Create
	Update
	
	

	mgmtDefinition
	M
	NP
	See clause 7.3.15
	1002 (software)

	objectID
	O
	NP
	See clause 7.3.15
	

	objectPaths
	O
	NP
	See clause 7.3.15
	

	description
	O
	O
	See clause 7.3.15
	

	version
	M
	O
	xs:string
	

	name
	M
	O
	xs:string
	

	URL
	M
	O
	xs:anyURI
	

	install
	NP
	O
	xs:boolean
	

	uninstall
	NP
	O
	xs:boolean
	

	installStatus
	NP
	NP
	m2m:actionStatus
	

	activate
	NP
	O
	xs:boolean
	

	deactivate
	NP
	O
	xs:boolean
	

	activeStatus
	NP
	NP
	m2m:actionStatus
	

D.3.2. Resource specific procedure on CRUD operations

When management is performed using external management technologies, the procedures defined in 7.3.15.2 <mgmtObj> resource specific procedures shall be used. The following clauses define additional procedures besides the generic procedure defined in 7.1.2.

D.3.2.1. Create

Originator:

No change from the generic procedures in clause 7.1.2.1.

Receiver:

No change from the generic procedures in clause 7.1.2.2.

May start to download the software package from the location indicated by attribute URL in the software resource.
D.3.2.2. Update
Originator:

No change from the generic procedures in clause 7.1.2.1.

Receiver:

Primitive specific operation additional to Recv-6.5 “Create/Update/Retrieve/Delete/Notify operation is performed”:

When the attribute install of the [software] resource is updated to TRUE, install the software package downloaded from the address indicated by attribute URL of the [software] resource.

When the attribute uninstall of the [software] resource is updated to TRUE, uninstall the corresponding software of the [software] resource.

When the attribute activate of the [software] resource is updated to TRUE, activate the corresponding software of the [software] resource.

When the attribute deactivate of the [software] resource is updated to TRUE, deactivate the corresponding software of the [software] resource.

The Receiver may need to update the swVersion attribute of the [deviceInfo] resource if needed.

D.3.2.3. Retrieve
Originator:

No change from the generic procedures in clause 7.1.2.1.

Receiver:

No change from the generic procedures in clause 7.1.2.2.

D.3.2.4. Delete

Originator:

No change from the generic procedures in clause 7.1.2.1.

Receiver:

Primitive specific step after generic procedure defined in clause 7.1.2.2.

Delete the downloaded software package locally.
D.4. Resource [memory]

D.4.1. Introduction

The detailed description of the [memory] resource can be found in clause D.4 of TS-0001 Functional Architecture [6].

Table D.4.1‑1: Data Type Definition of [memory]
	Data Type ID
	File Name
	Note

	memory, memoryAnnc
	CDT-memory-v1_0_0.xsd
	

Table D.4.1‑2: Resource specific attributes of [memory]
	Attribute Name
	Request Optionality
	Data Type
	Default Value and Constraints

	
	Create
	Update
	
	

	mgmtDefinition
	M
	NP
	See clause 7.3.15
	1003 (memory)

	objectID
	O
	NP
	See clause 7.3.15
	

	objectPaths
	O
	NP
	See clause 7.3.15
	

	description
	O
	O
	See clause 7.3.15
	

	memAvailable
	M
	O
	xs:unsignedLong
	Unit: Byte.

	memTotal
	M
	O
	xs:unsignedLong
	Unit: Byte.

D.4.2. Resource specific procedure on CRUD operations

When management is performed using external management technologies, the procedures defined in 7.3.15.2 <mgmtObj> specific procedures shall be used. The following clauses define additional procedures besides the generic procedure defined in 7.1.2.

D.4.2.1. Create

.Originator:

No change from the generic procedures in clause 7.1.2.1.

Receiver:

No change from the generic procedures in clause 7.1.2.2.

D.4.2.2. Update

Originator:

No change from the generic procedures in clause 7.1.2.1.

Receiver:

No change from the generic procedures in clause 7.1.2.2.

D.4.2.3. Retrieve

Originator:

No change from the generic procedures in clause 7.1.2.1.

Receiver:
No change from the generic procedures in clause 7.1.2.2.
D.4.2.4. Delete

Originator:

No change from the generic procedures in clause 7.1.2.1.

Receiver:

No change from the generic procedures in clause 7.1.2.2.
D.5. Resource [areaNwkInfo]

D.5.1. Introduction

The detailed description of the [areaNwkInfo] resource can be found in clause D.5 of TS-0001 Functional Architecture [6].

Table D.5.1‑1: Data Type Definition of [areaNwkInfo]
	Data Type ID
	File Name
	Note

	areaNwkInfo, areaNwkInfoAnnc
	CDT-areaNwkInfo-v1_0_0.xsd
	

Table D.5.1‑2: Resource specific attributes of [areaNwkInfo]
	Attribute Name
	Request Optionality
	Data Type
	Default Value and Constraints

	
	Create
	Update
	
	

	mgmtDefinition
	M
	NP
	See clause 7.3.15
	1004 (areaNwkInfo)

	objectID
	O
	NP
	See clause 7.3.15
	

	objectPaths
	O
	NP
	See clause 7.3.15
	

	description
	O
	O
	See clause 7.3.15
	

	areaNwkType
	M
	O
	xs:string
	

	listOfDevices
	M
	O
	list of xs:anyURI
	

D.5.2. Resource specific procedure on CRUD operations

When management is performed using external management technologies, the procedures defined in 7.3.15.2 <mgmtObj> specific procedures shall be used. The following clauses define additional procedures besides the generic procedure defined in 7.1.2.

D.5.2.1. Create

.Originator:

No change from the generic procedures in clause 7.1.2.1.

Receiver:

No change from the generic procedures in clause 7.1.2.2.

D.5.2.2. Update
Originator:

No change from the generic procedures in clause 7.1.2.1.

Receiver:

No change from the generic procedures in clause 7.1.2.2.

D.5.2.3. Retrieve
Originator:

No change from the generic procedures in clause 7.1.2.1.

Receiver:

No change from the generic procedures in clause 7.1.2.2.
D.5.2.4. Delete

Originator:

No change from the generic procedures in clause 7.1.2.1.

Receiver:

No change from the generic procedures in clause 7.1.2.2.
D.6. Resource [areaNwkDeviceInfo]

D.6.1. Introduction

The detailed description of the [areaNwkDeviceInfo] resource can be found in clause D.6 of TS-0001 Functional Architecture [6].

Table D.6.1‑1: Data Type Definition of [areaNwkDeviceInfo]
	Data Type ID
	File Name
	Note

	areaNwkDeviceInfo,
areaNwkDeviceInfoAnnc
	CDT-areaNwkDeviceInfo-v1_0_0.xsd
	

Table D.6.1‑2: Resource specific attributes of [areaNwkDeviceInfo]
	Attribute Name
	Request Optionality
	Data Type
	Default Value and Constraints

	
	Create
	Update
	
	

	mgmtDefinition
	M
	NP
	See clause 7.3.15
	1005 (areaNwkDeviceInfo)

	objectID
	O
	NP
	See clause 7.3.15
	

	objectPaths
	O
	NP
	See clause 7.3.15
	

	description
	O
	O
	See clause 7.3.15
	

	devID
	M
	O
	xs:string
	

	devType
	M
	O
	xs:string
	

	areaNwkId
	M
	O
	xs:anyURI
	

	sleepInterval
	O
	O
	xs:nonNegativeInteger
	Unit: second

	sleepDuration
	O
	O
	xs:nonNegativeInteger
	Unit: second

	status
	O
	O
	xs:string
	

	listOfNeighbors
	M
	O
	list of xs:anyURI
	

D.6.2. Resource specific procedure on CRUD operations

When management is performed using external management technologies, the procedures defined in 7.3.15.2 <mgmtObj> specific procedures shall be used. The following clauses define additional procedures besides the generic procedure defined in 7.1.2.

D.6.2.1. Create

.Originator:

No change from the generic procedures in clause 7.1.2.1.

Receiver:

No change from the generic procedures in clause 7.1.2.2.

D.6.2.2. Update
Originator:

No change from the generic procedures in clause 7.1.2.1.

Receiver:

Primitive specific operation additional to Recv-6.5 “Create/Update/Retrieve/Delete/Notify operation is performed”:

When the attribute listOfNeighbors of the [areaNwkDeviceInfo] resource is updated, the receiver shall modify the corresponding connection relationship among devices in the M2M Area Network by sending signals to non-oneM2M Nodes which is out of scope of oneM2M. According to the response from the non-oneM2M nodes of the modify signal, the receiver shall corresponding update the [areaNwkDeviceInfo] resource which may include the update of the listOfNeighbors and the devType attribute. The modification may include change of the attach point of the device or removal from the area network.
D.6.2.3. Retrieve
Originator:

No change from the generic procedures in clause 7.1.2.1.

Receiver:

No change from the generic procedures in clause 7.1.2.2.

D.6.2.4. Delete

Originator:

No change from the generic procedures in clause 7.1.2.1.

Receiver:

No change from the generic procedures in clause 7.1.2.2.
D.7. Resource [battery]

D.7.1. Introduction

The detailed description of the [battery] resource can be found in clause D.7 of Architecture TS-0001 [6].

Table D.7.1‑1: Data Type Definition of [battery]
	Data Type ID
	File Name
	Note

	battery, batteryAnnc
	CDT-battery-v1_0_0.xsd
	

Table D.7.1‑2: Resource specific attributes of [battery]
	Attribute Name
	Request Optionality
	Data Type
	Default Value and Constraints

	
	Create
	Update
	
	

	mgmtDefinition
	M
	NP
	See clause 7.3.15
	1006 (battery)

	objectID
	O
	NP
	See clause 7.3.15
	

	objectPaths
	O
	NP
	See clause 7.3.15
	

	description
	O
	O
	See clause 7.3.15
	

	batteryLevel
	M
	O
	xs:unsignedInt
	Range: 0-100

Unit: percent

	batteryStatus
	M
	O
	m2m:batteryStatus
	

D.7.2. Resource specific procedure on CRUD operations

When management is performed using external management technologies, the procedures defined in 7.3.15.2 <mgmtObj> specific procedures shall be used. The following clauses define additional procedures besides the generic procedure defined in 7.1.2.

D.7.2.1. Create

.Originator:

No change from the generic procedures in clause 7.1.2.1.

Receiver:

No change from the generic procedures in clause 7.1.2.2.

D.7.2.2. Update
Originator:

No change from the generic procedures in clause 7.1.2.1.

Receiver:

No change from the generic procedures in clause 7.1.2.2.

D.7.2.3. Retrieve
Originator:

No change from the generic procedures in clause 7.1.2.1.

Receiver:

No change from the generic procedures in clause 7.1.2.2.
D.7.2.4. Delete

Originator:

No change from the generic procedures in clause 7.1.2.1.

Receiver:

No change from the generic procedures in clause 7.1.2.2.
D.8. Resource [deviceInfo]

D.8.1. Introduction

The resource [deviceInfo] is used to provide information regarding the device.

The detailed description of the [deviceInfo] resource can be found in clause D.8 of Architecture TS-0001 [6].
Table D.8.1‑1: Data Type Definition of [deviceInfo]
	Data Type ID
	File Name
	Note

	deviceInfo,

deviceInfoAnnc
	CDT-deviceInfo-v1_0_0.xsd
	

Table D.8.1‑2: Resource specific attributes of [deviceInfo]
	Attribute Name
	Request Optionality
	Data Type
	Default Value and Constraints

	
	Create
	Update
	
	

	mgmtDefinition
	M
	NP
	See clause 7.3.15
	1007 (deviceInfo)

	objectID
	O
	NP
	See clause 7.3.15
	

	objectPaths
	O
	NP
	See clause 7.3.15
	

	description
	O
	O
	See clause 7.3.15
	

	deviceLabel
	M
	O
	xs:string
	

	manufacturer
	M
	O
	xs:string
	

	model
	M
	O
	xs:string
	

	deviceType
	M
	O
	xs:string
	

	fwVersion
	M
	O
	xs:string
	

	swVersion
	M
	O
	xs:string
	

	hwVersion
	M
	O
	xs:string
	

D.8.2. Resource specific procedure on CRUD operations

When management is performed using external management technologies, the procedures defined in 7.3.15.2 <mgmtObj> specific procedures shall be used. The following clauses define additional procedures besides the generic procedure defined in 7.1.2.

D.8.2.1. Create

Originator:

No change from the generic procedures in clause 7.1.2.1.

Receiver:

No change from the generic procedures in clause 7.1.2.2.

D.8.2.2. Update

Originator:

No change from the generic procedures in clause 7.1.2.1.

Receiver:

No change from the generic procedures in clause 7.1.2.2.

D.8.2.3. Retrieve

Originator:

No change from the generic procedures in clause 7.1.2.1.

Receiver:

No change from the generic procedures in clause 7.1.2.2.

D.8.2.4. Delete

Originator:

No change from the generic procedures in clause 7.1.2.1.

Receiver:

No change from the generic procedures in clause 7.1.2.2.
D.9. Resource [deviceCapability]

D.9.1. Introduction

The resource [deviceCapability] is used to provide information regarding the device.

The detailed description of the [deviceCapability] resource can be found in clause D.9 of TS-0001 Functional Architecture [6].

Table D.9.1‑1: Data Type Definition of [deviceCapability]

	Data Type ID
	File Name
	Note

	deviceCapability,
deviceCapabilityAnnc
	CDT-deviceCapability-v1_0_0.xsd
	

Table D.9.1‑2: Resource specific attributes of [deviceCapability]
	Attribute Name
	Request Optionality
	Data Type
	Default Value and Constraints

	
	Create
	Update
	
	

	mgmtDefinition
	M
	NP
	See clause 7.3.15
	1008 (deviceCapability)

	objectID
	O
	NP
	See clause 7.3.15
	

	objectPaths
	O
	NP
	See clause 7.3.15
	

	description
	O
	O
	See clause 7.3.15
	

	capabilityName
	M
	O
	xs:string
	

	attached
	M
	O
	xs:boolean
	1. true: currently attached to the device

2. false: currently detached to the device

	capabilityActionStatus
	M
	O
	m2m:actionStatus
	The action (i.e., enable, disable) and the related status. See the Table 6.3.2.3 1

	currentState
	M
	O
	xs:boolean
	· true: the device capability is enabled
· false: the device capability is disabled

	enable
	O
	O
	xs:boolean
	the value of this attribute is always “true”

	disable
	O
	O
	xs:boolean
	the value of this attribute is always “true”

D.9.2. Resource specific procedure on CRUD operations

When management is performed using external management technologies, the procedures defined in 7.3.15.2 <mgmtObj> specific procedures shall be used. The following clauses define additional procedures besides the generic procedure defined in 7.1.2.

D.9.2.1. Create

Originator:

No change from the generic procedures in clause 7.1.2.1.

Receiver:

No change from the generic procedures in clause 7.1.2.2.

D.9.2.2. Update

Originator:

No change from the generic procedures in clause 7.1.2.1.

Receiver:

Primitive specific operation additional to Recv-6.5 “Create/Update/Retrieve/Delete/Notify operation is performed”:

When the attribute enable of the [deviceCapability] resource is updated to TRUE, enable the device capability of the [deviceCapability] resource.

When the attribute disable of the [deviceCapability] resource is updated to TRUE, disable the device capability of the [deviceCapability] resource.

D.9.2.3. Retrieve

Originator:

No change from the generic procedures in clause 7.1.2.1.

Receiver:

No change from the generic procedures in clause 7.1.2.2.

D.9.2.4. Delete

Originator:

No change from the generic procedures in clause 7.1.2.1.

Receiver:

No change from the generic procedures in clause 7.1.2.2.
D.10. Resource [reboot]

D.10.1. Introduction

The resource [reboot] is used to provide information regarding the device.

The detailed description of the [reboot] resource can be found in clause D.10 of TS-0001 Functional Architecture [6].
Table D.10.1‑1: Data Type Definition of [reboot]
	Data Type ID
	File Name
	Note

	reboot,

rebootAnnc
	CDT-reboot-v1_0_0.xsd
	

Table D.10.1‑2: Resource specific attributes of [reboot]
	Attribute Name
	Request Optionality
	Data Type
	Default Value and Constraints

	
	Create
	Update
	
	

	mgmtDefinition
	M
	NP
	See clause 7.3.15
	1009 (reboot)

	objectID
	O
	NP
	See clause 7.3.15
	

	objectPaths
	O
	NP
	See clause 7.3.15
	

	description
	O
	O
	See clause 7.3.15
	

	reboot
	O
	O
	xs:boolean
	the value of this attribute is always “True”

	factoryReset
	O
	O
	xs:boolean
	the value of this attribute is always “True”

D.10.2. Resource specific procedure on CRUD operations

When management is performed using external management technologies, the procedures defined in 7.3.15.2 <mgmtObj> specific procedures shall be used. The following clauses define additional procedures besides the generic procedure defined in 7.1.2.

D.10.2.1. Create

Originator:

No change from the generic procedures in clause 7.1.2.1.

Receiver:

No change from the generic procedures in clause 7.1.2.2.

D.10.2.2. Update

Originator:

No change from the generic procedures in clause 7.1.2.1.

Receiver:

Primitive specific operation additional to Recv-6.5 “Create/Update/Retrieve/Delete/Notify operation is performed”:

When the attribute reboot of the [reboot] resource is updated to TRUE, reboot the corresponding node.

When the attribute factoryReset of the [reboot] resource is updated to TRUE, factory reset the corresponding node shall be applied..

D.10.2.3. Retrieve

Originator:

No change from the generic procedures in clause 7.1.2.1.

Receiver:

No change from the generic procedures in clause 7.1.2.2.

D.10.2.4. Delete

Originator:

No change from the generic procedures in clause 7.1.2.1.

Receiver:

No change from the generic procedures in clause 7.1.2.2.
D.11. Resource [eventLog]

D.11.1. Introduction

The Resource [eventLog] is used to provide information regarding the device.

The detailed description of the [eventLog] resource can be found in clause D.11 of TS-0001 Functional Architecture [6].

Table D.11.1‑1: Data Type Definition of [eventLog]
	Data Type ID
	File Name
	Note

	eventLog,

eventLogAnnc
	CDT-eventLog-v1_0_0.xsd
	

Table D.11.1‑2: Resource specific attributes of [eventLog]
	Attribute Name
	Request Optionality
	Data Type
	Default Value and Constraints

	
	Create
	Update
	
	

	mgmtDefinition
	M
	NP
	See clause 7.3.15
	1010 (eventLog)

	objectID
	O
	NP
	See clause 7.3.15
	

	objectPaths
	O
	NP
	See clause 7.3.15
	

	description
	O
	O
	See clause 7.3.15
	

	logTypeId
	M
	O
	m2m:logTypeId
	See Table 6.3.3.2.23‑1

	logData
	M
	O
	xs:string
	the content and format of this attribute is out of this specification.

	logStatus
	M
	O
	m2m:logStatus
	See Table 6.3.3.2.24‑1

	logStart
	O
	O
	xs:boolean
	the value of this attribute is always “True”

	logStop
	O
	O
	xs:boolean
	the value of this attribute is always “True”

D.11.2. Resource specific procedure on CRUD operations

When management is performed using external management technologies, the procedures defined in 7.3.15.2 <mgmtObj> specific procedures shall be used. The following clauses define additional procedures besides the generic procedure defined in 7.1.2.

D.11.2.1. Create

Originator:

No change from the generic procedures in clause 7.1.2.1.

Receiver:

No change from the generic procedures in clause 7.1.2.2.

D.11.2.2. Update

Originator:

No change from the generic procedures in clause 7.1.2.1.

Receiver:

Primitive specific operation additional to Recv-6.5 “Create/Update/Retrieve/Delete/Notify operation is performed”:

When the attribute logStart of the [eventLog] resource is updated to TRUE, start the logging.

When the attribute logStop of the [eventLog] resource is updated to TRUE, stop the logging.
D.11.2.3. Retrieve

Originator:

No change from the generic procedures in clause 7.1.2.1.

Receiver:

No change from the generic procedures in clause 7.1.2.2.

D.11.2.4. Delete

Originator:

No change from the generic procedures in clause 7.1.2.1.

Receiver:

No change from the generic procedures in clause 7.1.2.2.
D.12. Resource [cmdhPolicy]

The resource [cmdhPolicy] represents a set of rules associated with a specific CSE that govern the behaviour of that CSE regarding rejecting, buffering and sending request or response messages via the Mcc reference point.
The detailed description can be found in clause D.12 of TS-0001 Functional Architecture [6].

Table D.12‑1: Data Type Definition of [cmdhPolicy]

	Data Type ID
	File Name
	Note

	cmdhPolicy
	CDT-cmdhPolicy-v1_0_0.xsd
	

Note that the optional <subscription> child resources are not used for CMDH policies.

Table D.12‑2: Resource specific attributes of [cmdhPolicy]
	Attribute Name
	Request Optionality
	Data Type
	Default Value and Constraints

	
	Create
	Update
	
	

	mgmtDefinition
	M
	NP
	See clause 7.3.15
	1011 (cmdhPolicy)

	objectID
	O
	NP
	See clause 7.3.15
	

	objectPaths
	O
	NP
	See clause 7.3.15
	

	description
	O
	O
	See clause 7.3.15
	

	name
	M
	O
	xs:string

	None

	mgmtLink
	M
	O
	m2m:mgmtLinkRef
	1 link to [cmdhDefaults] resource instance,

1 or more link(s) to [cmdhLimits] resource instance(s),

1 or more link(s) to [cmdhNetworkAccessRules] resource instance(s),

1 or more link(s) to [cmdhBuffer] resource instance(s)

The Resource Specific Procedure on CRUD Operations as specified in clause 7.3.15 for the generic <mgmtObj> resource type apply.

D.12.1. Resource [activeCmdhPolicy]

The resource [activeCmdhPolicy] provides a link to the currently active set of CMDH policies.

The detailed description can be found in clause D.12.1 of TS-0001 Functional Architecture [6].

Table D.12.1‑1: Data Type Definition of [activeCmdhPolicy]

	Data Type ID
	File Name
	Note

	activeCmdPolicy
	CDT-activeCmdhPolicy-v1_0_0.xsd
	

Table D.12.1‑2: Resource specific attributes of [activeCmdhPolicy]
	Attribute Name
	Request Optionality
	Data Type
	Default Value and Constraints

	
	Create
	Update
	
	

	mgmtDefinition
	M
	NP
	See clause 7.3.15
	1012 (activeCmdhPolicy)

	objectID
	O
	NP
	See clause 7.3.15
	

	objectPaths
	O
	NP
	See clause 7.3.15
	

	description
	O
	O
	See clause 7.3.15
	

	activeCmdhPolicyLink
	M
	O
	m2m:ID
	The resource ID of the [cmdhPolicy] resource instance containing the CMDH policies that are currently active for the associated CSE.

D.12.2. Resource [cmdhDefaults]

The resource [cmdhDefaults] defines which CMDH related parameters will be used by default when a request or response message contains the Event Category parameter but not any other CMDH related parameters and which default Event Category parameter shall be used when none is given in the request or response message.. The detailed description can be found in clause D.12.2 of TS-0001 Functional Architecture [6].

Table D.12.2‑1: Data Type Definition of [cmdhDefaults]

	Data Type ID
	File Name
	Note

	cmdhDefaults
	CDT-cmdhDefaults-v1_0_0.xsd
	

Table D.12.2‑2: Resource specific attributes of [cmdhDefaults]
	Attribute Name
	Request Optionality
	Data Type
	Default Value and Constraints

	
	Create
	Update
	
	

	mgmtDefinition
	M
	NP
	See clause 7.3.15
	1013 (cmdhDefaults)

	objectID
	O
	NP
	See clause 7.3.15
	

	objectPaths
	O
	NP
	See clause 7.3.15
	

	description
	O
	O
	See clause 7.3.15
	

	mgmtLink
	M
	O
	m2m:mgmtLinkRef
	1 or more link(s) to [cmdhDefEcValue] resource instance(s)

D.12.3. Resource [cmdhDefEcValue]

The resource [cmdhDefEcValue] represents a default value for the Event Category parameter of an incoming request or response message. This default Event Category becomes applicable when certain conditions are matched which are defined by the other attributes of this resource. The detailed description can be found in clause D.12.3 of TS-0001 Functional Architecture [6].

Table D.12.3‑1: Data Type Definition of [cmdhDefEcValue]

	Data Type ID
	File Name
	Note

	cmdhDefEcValue
	CDT-cmdhDefEcValue-v1_0_0.xsd
	

Table D.12.3‑2: Resource specific attributes of [cmdhDefEcValue]
	Attribute Name
	Request Optionality
	Data Type
	Default Value and Constraints

	
	Create
	Update
	
	

	mgmtDefinition
	M
	NP
	See clause 7.3.15
	1014 (cmdhDefEcValue)

	objectID
	O
	NP
	See clause 7.3.15
	

	objectPaths
	O
	NP
	See clause 7.3.15
	

	description
	O
	O
	See clause 7.3.15
	

	order
	M
	O
	xs:positiveInteger
	None

	defEcValue
	M
	O
	m2m:eventCat
	None

	requestOrigin
	M
	O
	m2m:listOfM2MID
	None

	requestContext
	O
	O
	xs:anyType
	None

	requestContextNotification
	O
	O
	xs:boolean
	None

	requestCharacteristics
	O
	O
	xs:anyType
	None

D.12.4. Resource [cmdhEcDefParamValues]

The resource [cmdhEcDefParamValues] represents a specific set of default values for the CMDH related parameters Request Expiration Timestamp, Result Expiration Timestamp, Operational Execution Time, Result Persistence and Delivery Aggregation that are applicable for a given Event Category if these parameters are not specified in the message. The detailed description can be found in clause D.12.4 of TS-0001 Functional Architecture [6].

Table D.12.4‑1: Data Type Definition of [cmdhEcDefParamValues]

	Data Type ID
	File Name
	Note

	cmdhEcDefParamValues
	CDT-cmdhEcDefParamValues-v1_0_0.xsd
	

Table D.12.4‑2: Resource specific attributes of [cmdhEcDefParamValues]
	Attribute Name
	Request Optionality
	Data Type
	Default Value and Constraints

	
	Create
	Update
	
	

	mgmtDefinition
	M
	NP
	See clause 7.3.15
	1015 (cmdhEcDefParamValues)

	objectID
	O
	NP
	See clause 7.3.15
	

	objectPaths
	O
	NP
	See clause 7.3.15
	

	description
	O
	O
	See clause 7.3.15
	

	applicableEventCategory
	M
	O
	list of m2m:eventCatWithDef
	Exactly one instance of this [cmdhEcDefParamValues] resource shall be provisioned which contains a value “0” (default) setting for this attribute.

	defaultRequestExpTime
	M
	O
	xs:long
	-1 means infinity, unit: ms

	defaultResultExpTime
	M
	O
	xs:long
	-1 means infinity, unit: ms

	defaultOpExecTime
	M
	O
	xs:long
	-1 means infinity, unit: ms

	defaultRespPersistence
	M
	O
	xs:long
	-1 means infinity, unit: ms

	defaultDelAggregation
	M
	O
	xs:boolean
	None

D.12.5. Resource [cmdhLimits]

The resource [cmdhLimits] represents limits for CMDH related parameter values. The detailed description can be found in clause D.12.5 of TS-0001 Functional Architecture [6].

Table D.12.5‑1: Data Type Definition of [cmdhLimits]

	Data Type ID
	File Name
	Note

	cmdhLimits
	CDT-cmdhLimits-v1_0_0.xsd
	

Table D.12.5‑2: Resource specific attributes of [cmdhLimits]
	Attribute Name
	Request Optionality
	Data Type
	Default Value and Constraints

	
	Create
	Update
	
	

	mgmtDefinition
	M
	NP
	See clause 7.3.15
	1016 (cmdhLimits)

	objectID
	O
	NP
	See clause 7.3.15
	

	objectPaths
	O
	NP
	See clause 7.3.15
	

	description
	O
	O
	See clause 7.3.15
	

	order
	M
	O
	xs:positiveInteger
	None

	requestOrigin
	M
	O
	m2m:listOfM2MID
	None

	requestContext
	O
	O
	xs:string
	None

	requestContextNotification
	O
	O
	xs:boolean
	None

	requestCharacteristics
	O
	O
	xs:string
	None

	limitsEventCategory
	M
	O
	list of m2m:eventCat
	None

	limitsRequestExpTime
	M
	O
	m2m:listOfMinMax
	-1 means infinity, unit: ms

	limitsResultExpTime
	M
	O
	m2m:listOfMinMax
	-1 means infinity, unit: ms

	limitsOpExecTime
	M
	O
	m2m:listOfMinMax
	-1 means infinity, unit: ms

	limitsRespPersistence
	M
	O
	m2m:listOfMinMax
	-1 means infinity, unit: ms

	limitsDelAggregation
	M
	O
	m2m: permittedBooleanValues
	None

D.12.6. Resource [cmdhNetworkAccessRules]

The resource [cmdhNetworkAccessRules] defines the usage of underlying networks for forwarding information to other CSEs during processing of CMDH-related requests in a CSE. The detailed description can be found in clause D.12.6 of TS-0001 Functional Architecture [6].

Table D.12.6‑1: Type Definition of [cmdhNetworkAccessRules]

	Data Type ID
	File Name
	Note

	cmdhNetworkAccessRules
	CDT-cmdhNetworkAccessRules-v1_0_0.xsd
	

Table D.12.6‑2: Resource specific attributes of [cmdhNetworkAccessRules]
	Attribute Name
	Request Optionality
	Data Type
	Default Value and Constraints

	
	Create
	Update
	
	

	mgmtDefinition
	M
	NP
	See clause 7.3.15
	1017 (cmdhNetworkAccessRules)

	objectID
	O
	NP
	See clause 7.3.15
	

	objectPaths
	O
	NP
	See clause 7.3.15
	

	description
	O
	O
	See clause 7.3.15
	

	applicableEventCategories
	M
	O
	list of m2m:eventCatWithDef
	Exactly one instance of this [cmdhNetworkAccessRules] resource shall be provisioned which contains a value “0” (default) setting for this attribute.

	mgmtLink
	O
	O
	m2m:mgmtLinkRef
	Zero or more links to [cmdhNwAccessRule] resource instance(s)

D.12.7. Resource [cmdhNwAccessRule]

The resource [cmdhNwAccessRule] defines limits in usage of specific underlying networks for forwarding information to other CSEs during processing of CMDH-related requests. The detailed description can be found in clause D.12.7 of TS-0001 Functional Architecture [6].

Table D.12.7‑1: Data Type Definition of [cmdhNwAccessRule]

	Data Type ID
	File Name
	Note

	cmdhNwAccessRule
	CDT-cmdhNwAccessRule-v1_0_0.xsd
	

Table D.12.7‑2: Resource specific attributes of [cmdhNwAccessRule]
	Attribute Name
	Request Optionality
	Data Type
	Default Value and Constraints

	
	Create
	Update
	
	

	mgmtDefinition
	M
	NP
	See clause 7.3.15
	1018 (cmdhNwAccessRule)

	objectID
	O
	NP
	See clause 7.3.15
	

	objectPaths
	O
	NP
	See clause 7.3.15
	

	description
	O
	O
	See clause 7.3.15
	

	targetNetwork
	M
	O
	m2m:listOfM2MID
	None

	minReqVolume
	M
	O
	xs:nonNegativeInteger
	Unit: byte

	backOffParameters
	M
	O
	m2m: backOffParameters
	Ordered sequence of 3 values: backoffTime, backoffTimeIncrement, maximumBackoffTime, Unit: ms

	otherConditions
	O
	O
	xs:anyType
	None

	mgmtLink
	M
	O
	m2m:mgmtLinkRef
	Link to an instance “allowedSchedule” of a <schedule> resource

D.12.8. Resource [cmdhBuffer]

The resource [cmdhBuffer] represents limits in usage of buffers for temporarily storing information that needs to be forwarded to other CSEs during processing of CMDH-related requests in a CSE. The detailed description can be found in clause D.12.8 of TS-0001 Functional Architecture [6].

Table D.12.8‑1: Data Type Definition of [cmdhBuffer]

	Data Type ID
	File Name
	Note

	cmdhBuffer
	CDT-cmdhBuffer-v1_0_0.xsd
	

Table D.12.8‑2: Resource specific attributes of [cmdhBuffer]
	Attribute Name
	Request Optionality
	Data Type
	Default Value and Constraints

	
	Create
	Update
	
	

	mgmtDefinition
	M
	NP
	See clause 7.3.15
	1019 (cmdhBuffer)

	objectID
	O
	NP
	See clause 7.3.15
	

	objectPaths
	O
	NP
	See clause 7.3.15
	

	description
	O
	O
	See clause 7.3.15
	

	applicableEventCategory
	M
	O
	list of m2m:eventCatWithDef
	Exactly one instance of this [cmdhBuffer] resource shall be provisioned which contains a value “0” (default) setting for this attribute.

	maxBufferSize
	M
	O
	xs:nonNegativeInteger
	Unit: byte

	storagePriority
	M
	O
	xs:positiveInteger
	The range of storage priority is from 1 to 10.

Annex E (informative) Procedures for accessing resources
E.1. Accessing resources in CSEs – blocking requests
The result of a Request is sent back to the Originator as part of the Response of the Request.This communication mode could result in long blocking times.
The interaction employing blocking involves the following steps in this order:

[image: image10.emf]2.Results are

available

The addressed

resource is stored

here

Originator Hosting CSE

1.Request (rt:BlockingRequest)

3.Response (cn:requested results,

rsc:OK)

Figure E.1‑1: Blocking access to resource

1. The Originator sends a request to accessing a resource. The Response Type parameter of the request is set to ‘blockingRequest’. The Response Type parameter can be omitted in this case since ‘blockingRequest’ is its default value.
2. The Hosting CSE receives the request, and it completes the requested processing of resources.

3. The Hosting CSE responds to Originator, the response contains the requested results in resource content, and the Response Status Code parameter of response is set to “OK”.

E.2. Accessing Resources in CSEs - non-blocking requests

E.2.1. Non-blocking models
If the Originator chooses the Blocking mode described in annex E.1, it might have to wait a long time for a response from the Receiver. To avoid this possibility it can choose a Non-Blocking mode. In Non-blocking modes, the Receiver sends an Acknowledgement of the request, which provides a reference to the result of the requested operation. The Originator can retrieve the result at a later time.
There are two forms of Non-blocking mode: Synchronous and Asynchronous.
E.2.2. Synchronous case
The Originator asks for non-Blocking Communication by setting the Response Type parameter of the Request to 'nonBlockingRequestSynch'. The Receiver CSE responds after acceptance with an Acknowledgement confirming, that it will process the Request further. The Receiver CSE creates a local <request> resource pertaining to the Request received and returns a reference to this created <request> resource as the Content of the acknowledgement Response. Then the Receiver needs to forward the Request to the next CSE if the Receiver CSE is not the Hosting CSE of the addressed resource. Or the Hosting CSE needs to start handling the Request if the Receiver CSE is the Hosting CSE of the addressed resource.

The Originator of the Request may retrieve the <request> resource afterwards to check on the status of its Request and to inspect the final result of the Request when this is available.

Figure E.2.2‑1 illustrates the steps involved in a synchronous non-blocking interaction. In this example the Receiver CSE is the CSE that hosts the resource that is the target of the Originator’s request.

[image: image11.emf]2.If <request> resource type is

supported, <request> resource

shall be created, requestStatus

is set to “ACCEPTED” .

The addressed

resource is stored

here

Originator Hosting CSE

1.Request (rt:non-blockingRequestSynch)

3.Response (rsc: ACCEPTED,

cn:reference to <request>)

4.Requsted results is available, UPDATE

<request> resource, containing results in

operationResult attribute, updating the

values of requestStatus stateTag and

lastModificationTime

5.Request (op:RETRIEVE,

to:reference to <request>)

6.Response (rsc:OK, cn:<request>

resource)

Figure E.2.2‑1: non-Blocking access to resource in synchronous mode (no hop)

1. The originator sends a request to access a resource, setting the Response Type parameter of request to ‘nonblockingRequestSynch’.

2. If the Receiver CSE supports non-blocking synchronous interactions (this is indicated by its support for the <request> resource), it creates an instance of <request> resource. The requestStatus attribute of the <request> resource is set to “ ACCEPTED”. Please refer to Table 7.1.2.2.4-1 and Table 7.1.2.2.4-2for other attributes.

3. The Hosting CSE sends a response to the Originator, the Response Status Code parameter of its response is set to “ACCEPTED” , and a reference to the <request> resource is provided in the Content.

4. The Hosting CSE processes the resource according to the requested operation . When the requested operation has finished, the Hosting CSE will UPDATE the <request> resource, putting the results of the operation into the operationResult attribute, and updating the value of requestStatus to “COMPLETED”, also the values of stateTag and lastModifiedTime.

5. The Originator requests to RETRIEVE the original requested results by addressing the <request> resource.

6. The Hosting CSE responds to Originator. The response contains the <request> resource as its Content, and the Originator can examine the <request> resource’s requestStatus attribute to check that the operation has completed and retrieve its results from the operationResult attribute.
A variation of synchronous case is depicted in the following clauses. In this variation it is assumed that the addressed resource is not stored in the Registrar CSE, then the Registrar CSE needs to be a Transit CSE to forward the request to the Hosting CSE.

Figure E.2.2‑2 illustrates this case. :

[image: image12.emf]2.If <request> resource type is

supported, <request> resource

shall be created, requestStatus is

set to “PENDING”.

Originator

Transit CSE

(Registrar CSE)

1.Request (rt:non-blockingRequestSynch)

3.Response (rsc: Locally accepted,

cn: reference to <request>)

11.Request (op:RETRIEVE,

to: reference to <request>)

12.Response (rsc:OK, cn:

<request> resource)

5.If <request> resource type is

supported, <request> resource

shall be created, requestStatus is

set to “ACCEPTED”.

The addressed

resource is stored

here

Hosting CSE

10. Requested results is available,

UPDATE <request> resource,

containing results in operationResult

attribute, updating the values of

requestStatus stateTag and

lastModificationTime

4.Forwarding Request

7. Processing resources completes.

UPDATE <request> resource, containing

results in operationResult attribute,

updating the values of requestStatus

stateTag and lastModificationTime

8.Request (op:RETRIEVE,

to: reference to <request>)

9.Response (rsc: succesful,cn: <request>

resource)

6.Response (rsc: ACCEPTED, cn:

reference to <request>)

Figure E.2.2‑2: non-Blocking access to resource in synchronous mode (one hop)

1. The Originator sends a request to its Registrar CSE (this is aTransit CSE, not the Hosting CSE), setting the Response Type parameter of the request to ‘nonblockingRequestSynch’.2. If the Transit CSE supports non-blocking synchronouse interactions (this is indicated by its support for the <request> resource), it creates an instance of <request> resource. The requestStatus attribute of the <request> resource is set to “ACCEPTED”. The Please refer to Table 7.3.12.1‑3 for other attributes.

2. The Transit CSE sends a response to the Originator, the Response Status Code parameter of its response is set to acknowledgement, and a reference to the <request> resource is provided in the Content.

3. The Transit CSE forwards the original request to the Hosting CSE.

4. If the Hosting CSE supports non-blocking synchronouse interactions (this is indicated by its support for the <request> resource), it creates an instance of <request> resource. The requestStatus attribute of the <request> resource is set to “ACCEPTED”. Please refer to Table 7.1.2.2.4-1 and Table 7.1.2.2.4-2for other attributes..

5. The Hosting CSE sends a response to the Transit CSE, the Response Status Code parameter of its response is set to“ACCEPTED” and a reference to the <request> resource is provided in the Content.
6. The Hosting CSE processes the resource according to the requested operation. When the requested operation has finihsed, the Hosting CSE will UPDATE the <request> resource, putting the results of the operation into the operationResult attribute, and updating the values of requestStatus to “COMPLETED”, also the values of stateTag and lastModifiedTime.
7. The Transit CSE requests to RETRIEVE the original requested results by addressing the <request> resource

8. The Hosting CSE sends a response to the Transit CSE. The response contains the <request> resource as its Content.
9. The Transit CSE UPDATEs its <request> resource, copying the operationResult from the response that it received from the Hosting CSE. It also updates the values of requestStatus, stateTag and lastModifiedTime.
10. The Originator requests to RETRIEVE the original requested results by addressing the <request> resource.
11. The Transit CSE responds to Originator. The response contains the <request> resource as its Content, and the Originator can examine the <request> resource’s requestStatus attribute to check that the operation has completed and retrieve its results from the operationResult attribute.
Annex F (informative):
Guidelines for one M2M resource type XSD
This Annex contains rules to be followed when creating XML Schemas Definition (XSD files to represent the oneM2M resources). The XSD files themselves form part of the oneM2M protocol specification, but the rules used to construct them do not, hence this Annex is informative, although it contains normative language.

The purpose of these rules is:

· To keep a consistent style between the schemas for different resources

· To keep the XSD simple

· To allow individual resource schemas to be authored and maintained separately, while minimising the risk of conflict when they are all used together

127) Each XSD file should include a schema element with following namespace declaration:

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://www.onem2m.org/xml/protocols"
 xmlns:m2m=http://www.onem2m.org/xml/protocols
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 elementFormDefault="unqualified" attributeFormDefault="unqualified" >

This defines the prefix xs: for the XML Schema namespace, a target namespace http://www.onem2m.org/xml/protocols, and the prefix m2m: as equivalent for the target namespace. The xsi: namespace can be omitted if the resource has no nillable attributes (see below).
Locally declared elements and attributes shall be unqualified (elementFormDefault and attributeFormDefault declarations are not strictly required since “unqualified” is the default value setting).
128) Each Resource XSD file will contain a Global Element Declaration whose name is the name of the Resource Type in accordance with TS-0001 Functional Architecture [6] . This means that the root element of a Resource (when represented as an XML instance) contains an m2m: (or equivalent) namespace prefix. If the Resource is announceable, the XSD file will contain a second Global Element Declaration that is used for the Announced variant of the resource. The name of that element will be formed by adding the suffix Annc to the name of the first Global Element. The XSD should not contribute anything to the m2m: namespace other than these root elements.

129) The root element of each resource shall have a required attribute called “name” which gives an identifier for that particular resource instance. A URI to the resource instance can be constructed by taking the URI of its parent and appending /<name> where <name> is the value of the name attribute.

130) Each resource attribute of the Resource Type in accordance with TS-0001 Functional Architecture [6] is represented as a child element of the top level element. It shall be declared as an element that is local to the resource that contains it, and so does not have a namespace prefix in any XML instance representation of the resource.

131) Each child resource shall be represented as a child element of the top level element by referring to the global element definition of the child Resource (this allows the child Resource representation to be returned inline). The resource schemas will also include – as an alternative – an element called ‘childResource’ which is used to return a non-hierarchical URI for the associated child resource, if this has been requested. This element shall have two attributes (in XSD) : a) type; Data type ID of instances, b) name; the name of a child resource instance.

132) Each Resource attribute shall be declared to use one of the following data types:

a. A data type listed in clause 6.3.1 or 6.3.2.

b. A list of one of the data types listed in clause 6.3.1 or 6.3.2. If the list type is not already included in 6.3.2 it may be defined inside the XSD file for the resource, but if so it will be defined as an anonymous type in the attribute declaration itself.

c. A data type derived by restriction from one of the types listed in clause 6.3.1 or 6.3.2. This may be added to clause 6.3.2, or defined inside the XSD file for the resource, but in the latter case it will be defined as an anonymous type in the attribute declaration itself.

d. An anonymous complex type defined as part of the attribute declaration (inside the XSD file for the resource). The complex type should only be composed out of the types listed in clause 6.3.1 or 6.3.2.

133) If a data type is used by more than one attribute (either in the same resource or in two different resources) it will be included in 6.3.2, and referenced by each attribute that uses it. Options 6b, 6c, 6d should only be used in cases where the type is only used by one attribute.

134) All Resource types will extend one of the XML complex types described in clause 6.5 and included in the file CDT-commonTypes-v1_0_0.xsd.

135) The resource-specific attributes and child resources shall appear as a sequence of elements in the XSD file, with their order being determined by the order shown in the tables in clause 7.3.

136) Each XSD file shall include an XML comment that contains a oneM2M Copyright Notification Notice of Disclaimer & Limitation of Liability, and a change history. The change history is to be filled in only after the initial release.
137) To enable distinction between element names used for resource attributes and their data types in the m2m: namespace, it shall be avoided to use identical names. It is recommended to use the text suffix ‘Type’ in data type names. Example:
<xs:element name="status" type="m2m:statusType />
138) In cases where a Resource has an optional read/write attribute, that attribute should be marked as xsi:nillable in the schema. This is to allow a requester to delete the attribute by supplying a nil value for it. If the resource is subsequently retrieved, the deleted attribute will no longer be included in the resource.

139) Each mgmtLink shall be represented as a child element ‘mgmtLink’ which is used to return a non-hierarchical URI for the associated management resource. This element has two attributes (in XSD): a) type; Data type ID of instances, b) name; the name of a child resource instance.
Annex G (Normative): Location request

Location Request is a means by which a CSE requests the geographical or physical location information of a target Node to the location server located in the Underlying Network over Mcn reference point. This annex describes only the case of location request when the attribute locationSource of <locationPolicy> resource type is set to Network Based. Please see clause 7.3.10.

The specific interface used for this request depends on the capabilities of the Underlying Network and other factors. This annex provides the interfaces for location request used for the communication between the CSE and the location server.

G.1. Location request by means of OMA-REST-NetAPI-TerminalLocation interface

G.1.1. Introduction

This OMA REST Network API for Terminal Location specification v1.0 [28] is generally used to open up service capabilities, especially location capability, in the underlying network toward applications. This clause introduces the resources structure and procedures to handle the oneM2M-specified location request. In addition, since this OMA Network API uses only HTTP as underlying message protocol, some binding mapping are mentioned in the procedures in the clause G.1.3. .
G.1.2. Resource structure of OMA NetAPI for terminal location

When a CSE needs to request the geographical or physical location information of a target CSE or AE hosted in a M2M Node toward a location server located in the Underlying Network over Mcn reference point. The CSE shall request Terminal Location Query following Procedures for Terminal Location (see G.1.3.).

The OMA REST NetAPI for Terminal Location allows CSE to obtain information about geographical location of a terminal (e.g. Node in oneM2M architecture TS-0001 Functional Architecture [6]). In order to obtain location information, CSE shall use one of two services of the Terminal Location API:

· request the current Terminal Location in a single query toward a Location Server

· subscribe to notifications of periodic Terminal Location updates.

Additionally, in order to track the terminal’s movement in relation to the geographic area (circle), crossing in and out (more detail usage is defined in the annex E of TS-0003) it is also proposed to use a service of the Terminal Location API:
· subscribe to notification of area updates

Since oneM2M system utilizes the three services mentioned above, this clause introduces the capabilities that is related to the services from OMA REST NetAPI for Terminal Location [28].

A CSE and a Node shall act as an application and a terminal respectively as described in [28].

[image: image13.emf]/queries

//{serverRoot}/location/{apiVersion}

/subscriptions

/location

/periodic /periodic

/area/circle

Figure G.1.2‑1: Resource Structure defined by NetAPI for Terminal Location
The two capabilities used for oneM2M system location request are ‘Terminal location’. ‘Periodic location notification subscriptions’ and ‘area notification subscriptions’. The table below describes the URL structure, data structure and mapping with CRUD operation of each resource.

Table G.1.2‑3: Applicable NetAPI for Terminal Location
	Capability
	URL
Base URL:
	Resource Type
	Operations

	
	
	
	C
	R
	U
	D

	Terminal location
	/location

	TerminalLocation
	no
	return current location of the terminal
	no
	no

	Periodic location notification subscriptions
	/periodic
	PeriodicNotificationSubscription (used for CREATE)
	create new subscription
	return all subscriptions

	no
	No

	Area notification subscription
	/area/circle
	CircleNotificationSubscription (used for CREATE)
	create a new subscription
	return all subscriptions
	No
	no

Based on the table above, three resource types, TerminalLocation, PeriodicNotificationSubscription and CircleNotificationSubscription shall be used for the location request specified in the oneM2M system. The resource types are described in the tables below. The table also contains the relevant attributes column that is correlated with either <locationPolicy> or <accessControlPolicy> resource type defined (3GPP TS 23.003 [17]). Only attributes that may be utilized by oneM2M system are described. For the detailed information, see the [28].
Table G.1.2‑4: Resource Type Definition – TerminalLocation

	Attributes
	OMA NetAPI
Defined Type
	Description
	Relevant Attribute defined by oneM2M

	Address
	xsd:anyURI
	Address of the terminal to which the location information applies
	locationTargetID in the <locationPolicy>

resource type

	locationRetrievalStatus
	common:RetrievalStatus
	Status of retrieval for this terminal address.
	locationStatus in the <locationPolicy>

resource type

	currentLocation
	LocationInfo
	Location of terminal.
	Content in the <contentInstance> resource type

Table G.1.2‑5: Resource Type Definition – PeriodicNotificationSubscription

	Attributes
	OMA NetAPI
Defined Type
	Description
	Relevant Attribute defined by oneM2M

	address
	xsd:anyURI
	Addresses of terminals to monitor
	locationTargetID in the <locationPolicy>
 resource type

	frequency
	xsd:int
	Maximum frequency (in seconds) of notifications (can also be considered minimum time between notifications) per subscription.
	locationUpdatePeriod in the <locationPolicy> resource type

	duration
	xsd:int
	Period of time (in seconds) notifications are provided for. If set to “0” (zero), a default duration time, which is specified by the service policy, will be used. If the parameter is omitted, the notifications will continue until the maximum duration time, which is specified by the service policy, unless the notifications are stopped by deletion of subscription for notifications.
	locationUpdatePeriod in the <locationPolicy> resource type

Table G.1.2‑6: Resource Type Definition – CircleNotificationSubscription

	Attributes
	OMA NetAPI
Defined Type
	Description
	Relevant Attribute defined by oneM2M

	Latitude
	xsd:float
	Latitude of center point.
	accessControlLocationRegion in the <accessControlPolicy> resource type

	longitude
	xsd:float
	Longitude of center point.
	accessControlLocationRegion in the <accessControlPolicy> resource type

	Radius
	xsd:float
	Radius of circle around center point in meters.
	accessControlLocationRegion in the <accessControlPolicy> resource type

	checkImmediate
	xsd:boolean
	Check location immediately after establishing subscription.
	

G.1.3. Procedures for terminal location
G.1.3.1. Request in a single query toward a location server

This procedure shows how to request and return location for a M2M Node.

[image: image14.emf]CSE

Location

Server

OMA REST NetAPI for Terminal Location

Interface

1. Request Single or Multiple Terminal Location

3. Response: Terminal Location

2. Retrieve terminal

location

Figure G.1.3.1‑1: Single Query Toward Location Server
1. A Hosting CSE requests location for a single terminal (Node) by means of OMA REST NetAPI for terminal location API. This request message shall contain terminal address and Request URL with the address of Location Server using RETRIEVE operation.

In this step, the TerminalLocation resource type described in Table G.1.2‑3 shall be used with RETRIEVE operation.

NOTE: GET operation shall be used for this RETRIEVE operation.

2. The Location Server shall retrieve the location information of the terminal.

3. After the successful retrieve, the Hosting CSE receives the location information.

G.1.4. Subscribe to notifications for periodic location updates
This procedure shows how to control subscriptions for periodic notifications about terminal location.

[image: image15.emf]CSE

Location

Server

OMA REST NetAPI for Terminal Location

Interface

1. Create new periodic notification subscription

2. Response the subscription

Timer

Expiration

3. Notify new location information

4. Response

Location

Configuration

Changing

5. Update an individual subscription

6. Response

Figure G.1.4‑1: Subscribe to Notification for Periodic Location Updates
1. A Hosting CSE shall create a new periodic notification subscription for obtaining location information of a terminal periodically.

In this step, the PeriodicNotificationSubscription resource type described in Table G.1.2‑3 shall be used with CREATE operation.

NOTE: POST operation shall be used for this CREATE operation.

2. After the successful creation of subscription, the Hosting CSE shall receive the response.

3. When the set up timer is expires, the location server shall notify the application of current location information.

In this step, the notification message shall be used as NOTIFY operation.

NOTE: Alternatively, the hosting CSE obtains the notifications using a Notification Channel [i.3]. This is repeated at specific frequency (periodic information) when the CSE is not reachable.

NOTE: POST operation shall be used for this NOTIFY operation

4. After the successful receiver of notification, the Hosting CSE shall send a response to the location server.

5. Based upon the location configuration change by the Hosting CSE, it updates an individual subscription for periodic location notification.

In this step, the PeriodicNotificationSubscription resource type described in the Table G.1.2‑3 shall be used with UPDATE operation.

NOTE: PUT operation shall be used for this UPDATE operation.
G.1.5. Subscribe to notifications for area updates

This procedure shows how to subscribe to area update notification.

[image: image16.emf]CSE

Location

Server

OMA REST NetAPI for Terminal Location

Interface

1. Create new area notification subscription

2. Response the subscription

Terminal

Cross in the area

3. Notify new location information

4. Response

Location

Configuration

Changing

5. Update a subscription

6. Response

Figure G.1.5‑1: Subscribe to Notification for Area Updates
1. A Hosting CSE shall create a new area notification subscription to track the terminal’s movement in relation to the geographical area (circle), crossing in and out. In this step, the CircleNotificationSubscription resource type described in the table-G.1-3 shall be used with CREATE operation.

NOTE: POST operation shall be used for this CREATE operation.

2. After the successful creation of subscription, the Hosting CSE shall receive the response.

3. When the target terminal crosses in or out the specified area (circle), the location server shall notify the application of current location information.

In this step, the notification message shall be used as NOTIFY operation.

NOTE: Alternatively, the hosting CSE obtains the notifications using a Notification Channel [i.3].

NOTE: POST operation shall be used for this NOTIFY operation

4. After the successful receiver of notification, the Hosting CSE shall send a response to the location server.

5. Based upon the location configuration change by the Hosting CSE, it updates an individual subscription for area location notification.

In this step, the CircleNotificationSubscription resource type described in the table-G.1-3 shall be used with UPDATE operation.

NOTE: PUT operation shall be used for this UPDATE operation.

Annex H (Normative): CMDH message processing

H.1. Pre-requisites

The scope of CMDH processing is to decide at which time and via which communication path to forward request or response messages from a receiver CSE to another CSE. A number of message parameters impact the CMDH processing. CMDH-related request message parameters are:

· ec: Event Category

· rqet: Request expiration time

· rset: Result expiration time

· oet: operation execution time

· rp: result persistence

· da: delivery aggregation
CMDH-related response message parameters are:

· ec: Event Category

· ‘ec’ is needed for response messages as well since response messages can go over multiple hops and CMDH needs to know how to handle them.

· rset: Result expiration time

· da: delivery aggregation

· When a request message was carried inside a <delivery> resource type, also the corresponding response message shall be carried in a <delivery> resource, i.e. the CSE requested to carry out an operation indicated in a request message that reached that CSE via a <delivery> resource, shall also send the response within a <delivery> resource.

The details on how those parameters impact the CMDH processing are described in the next clauses.

In the following description it is assumed that the CSE behavior for CMDH processing is governed by CMDH policies that are represented by [cmdhPolicy] resources and their child resources which are effective for the respective CSE. If legacy device management technologies are used to provision these policies, the information represented by the effective [cmdhPolicy] resources and their child resources may not be available as oneM2M defined resources on the field nodes hosting the respective CSE. This CMDH related policy information may only be available in form of managed objects specific to the used device management technology. In that case the mapping from oneM2M specified [cmdhPolicy] resources and their child resources to equivalent objects of the deployed legacy device management technology shall be used to substitute the respective information contained in [cmdhPolicy] resources and their child resources in the description below. Therefore, whenever reference to [cmdhPolicy] resources, child resources thereof or any attributes of [cmdhPolicy] resources and their children are used in the description of CMDH processing below, they shall be read as a placeholder for the equivalent objects provided by legacy device management technologies on field nodes that are provisioned with such legacy device management technologies.
For a CSE that is processing request or response messages in CMDH, exactly one set of policies represented by a [cmdhPolicy] resource shall be active, as defined by the [activeCmdhPolicy] child resource of the <node> resource that represents the node which hosts the respective CSE. In case of field nodes that are managed via legacy device management technologies, the active CMDH policy can be represented by management objects of that device management technology. For the sake of simplicity, the term ‘active [cmdhPolicy]’ is used in this and the following clauses to refer to the active CMDH policy information even if no oneM2M specified resources are used to represent CMDH policies. Before any provisioning of CMDH policies has occurred, the ‘active [cmdhPolicy]’ and its corresponding managed objects defined for legacy device management technologies shall contain the specified default values as described in the [cdmhPolicy] specific procedures and procedures specific for all its child resources. For that reason, it can be assumed that information for an ‘active [cmdhPolicy]’ is always present on a CMDH capable CSE.
In addition, the active [cmdhPolicy] can have at least one or more [cmdhLimits] child resources and the active [cmdhPolicy] hosting CSE shall lookup all [cmdhLimits] child resources. If the attribute ‘requestContextNotification’ of any of found [cmdhLimits] resources is present and set to true, the CSE shall establish a subscription to the dynamic context information of the CSE defined in ‘requestContext’ attribute of the found [cmdhLimits] as well as subscription to this [cmdhLimits] resource for all AEs corresponding to the AE-ID or an App-ID appearing in the ‘requestOrigin’ attribute. The subscription(s) shall be established when the [cmdhPolicy] is provisioned or re-provisioned and any of found [cmdhLimits] child resource has the attribute ‘requestContextNotification’ that is set to true. Hence, both this policy establishment and changes of the context information and the [cmdhLimits] resource shall be notified to the respective AEs and the notification shall contain the limits for CMDH related parameter values defined in [cmdhLimits], context information and subscription reference ID. After this, the AEs received the notification shall send only allowed ‘ec’ messages if ‘ec’ is specified by the AEs.
H.2. CMDH processing: processing request or response messages requiring the receiver CSE to forward information to another CSE

H.2.1. Applicability of CMDH processing

If a request or response message that is targeting an entity or a resource in the ‘to’ parameter that is not among any of

· the receiver CSE itself,

· an AE registered with the receiver CSE,

· a resource hosted on the receiver CSE,

and if the message is not a response message with an acknowledgement response code, the receiver CSE of that message needs to forward the message to another CSE via CMDH processing, see also the description in Clause 7.1.2. Description of Generic Procedures of this TS. For forwarding a message to the target CSE indicated by the ‘to’ parameter of the message, the receiver CSE shall determine to which CSE the message needs to be forwarded next. In the following clauses this CSE is referred to as the ‘next CSE’. CMDH processing shall be carried out as described in the following clauses.

H.2.2. Partitioning of CMDH processing

The CMDH processing consists of two parts:

A. CMDH message validation: This includes message parameter pre-processing, deciding on acceptance for transporting the message, and buffering of messages.
This procedure defines how incoming request or response messages that need to be forwarded to other CSE(s) shall be pre-processed, how a decision on acceptance of the message for forwarding to another CSE shall be derived and how the messages shall be queued up before the actual forwarding can happen. Details of CMDH validation are defined in clause H.2.3. .

B. CMDH message forwarding: This includes selecting buffered messages and communication path for forwarding the message to another CSE.
This procedure defines how to select among the messages buffered for forwarding to other CSEs the ones that need to be transported at a certain time and how to select an appropriate communication path for transporting the message(s). Details of CMDH message forwarding are defined in Annex H.2.4. .

CMDH message validation (Part A) will be carried out for each incoming new message for which CMDH processing is applicable.

If CMDH message validation is successful, the received message shall be queued up for the CMDH message forwarding process (Part B) including the associated ‘storagePriority’ value as defined in the applicable [cmdhBuffer] resource (see details in the CMDH message validation procedure).

If the queued message was a request message and it was done in non-blocking mode then:

· if the Receiver CSE supports the <request> resource type, it shall create a <request> resource representing the pending non-blocking request

· the Receiver CSE shall send an acknowledgement response message to the entity that sent the request message directly via Mca or Mcc to the receiver CSE indicating the acceptance of the request

· if the receiver CSE supports the <request> resource type it shall provide a reference to the created <request> resource in the cn parameter of the response.

After successful forwarding of such a request message, any incoming response message matching with the Request-ID and the Originator in the <request> resource shall be parsed to update the corresponding attributes of the <request> resource. In case a non-blocking synchronous request was forwarded successfully and a response with acknowledgement was received, it is the responsibility of the CSE that forwarded the message to periodically poll the status of the <request> resource created on the next CSE and update the locally created <request> resource accordingly. When the locally created <request> resource expires the hosting CSE can remove it. Details on <request> resource specific procedures for polling results are defined in clause 7.2.1.4.

If the queued message was a request message and it was done in blocking mode then memorize the open blocking request by storing its Request-ID and Originator and set a timer for a timeout until which a matching response message with the same Request-ID and Originator shall be received by the CSE processing this message. If no matching response is received when the timeout expires, the receiver CSE shall send a response message to the entity that sent the request to the Receiver CSE indicating unsuccessful processing of the request, unless the Receiver CSE and the Originator are the same. If Receiver CSE and Originator are the same, the Originator can decide internally whether to retry forwarding of the message.

If CMDH message validation is not successful, then the received message shall either get ignored – in case the received message is a response message – or a new error response message shall be sent back to the entity that sent the message to the Receiver CSE – in case the received message is a request message and the Originator is not the Receiver CSE. If Receiver CSE and Originator are the same, the Originator can decide internally whether to create a new request message.

The CMDH message forwarding process (Part B) will handle all queued up messages that shall be forwarded to another CSE. This process shall always be carried out when messages are pending for forwarding to another CSE.

The flow of CMDH processing is depicted in Figure H.2.2‑1:

[image: image17.emf]New request or response

message for CMDH

Processing received

CMDH message

validation

Successful

?

Queue received

message for CMDH

message forwarding

YES

Message Type

?

Send unsuccessful

response

request

Ignore

response

response

NO

non-blocking

request

?

Send

acknowledgement

response to entity

that sent the request

via Mca or Mcc

YES

End

Create <request>

resource if

supported

Message Type

?

NO

response

request

Memorize Req-ID as

open blocking

request, set timer for

timeout, wait for

response to forward

to Originator or send

unsuccessful

response when

timeout occurs

Figure H.2.2‑1: CMDH Processing
H.2.3. CMDH message validation procedure

In CMDH message validation, pre-processing of CMDH related parameters of a message for which CMDH-processing applies, deriving the decision on acceptance of a message and the buffering of that messages shall be carried out in line with the following steps. A summary of this processing is depicted in the flow chart at the end of this clause.

1. Filling in missing CMDH-related parameters:

1.1. Determine the value that shall be used for the ‘ec’ parameter of the processed message

1.1.1. If the message contains an ‘ec’ parameter: Use the value of the ‘ec’ parameter provided in the message.

1.1.2. If the message does not contain an ‘ec’ parameter:

1.1.2.1. Lookup all [cmdhDefEcValue] child resources of the [cmdhDefaults] resource that is a child resource of the provisioned active [cmdhPolicy] resource.

1.1.2.2. If the message is a request message and any of the attributes ‘requestContext’, and ‘requestCharacteristics’ are present in the found [cmdhDefEcValue] resources, discard all [cmdhDefEcValue] resources from the list of found items for which the context conditions or the request characteristics at time of processing the request message are not met, respectively.

1.1.2.3. Among the remaining found [cmdhDefEcValue] resources do the following selection:

1.1.2.3.1. If present, select the [cmdhDefEcValue] resource containing the AE-ID in the list defined by the ‘requestOrigin’ attribute which matches with the ’fr’ parameter in case of a request message or with the ‘to’ parameter in case of a response message. If multiple [cmdhDefEcValue] resources match, select the one with the lowest value in the ‘order’ attribute. Continue processing with step 1.1.2.4

1.1.2.3.2. If present, select the [cmdhDefEcValue] resource containing the App-ID in the list defined by the ‘requestOrigin’ attribute which matches with the ’fr’ parameter in case of a request message or with the ‘to’ parameter in case of a response message. If multiple [cmdhDefEcValue] resources match, select the one with the lowest value in the ‘order’ attribute. Continue processing with step 1.1.2.4

1.1.2.3.3. If present, select the [cmdhDefEcValue] resource containing the string ‘localAE’ in the list defined by the ‘requestOrigin’ attribute in case of processing a message where the ’fr’ parameter is the AE-ID of an AE registered with the CSE processing this message. If multiple [cmdhDefEcValue] resources match, select the one with the lowest value in the ‘order’ attribute. Continue processing with step 1.1.2.4

1.1.2.3.4. If present, select the [cmdhDefEcValue] resource containing the string ‘thisCSE’ in the list defined by the ‘requestOrigin’ attribute in case of processing a message where the ’fr’ parameter is the CSE-ID of the CSE processing this message. If multiple [cmdhDefEcValue] resources match, select the one with the lowest value in the ‘order’ attribute. Continue processing with step 1.1.2.4

1.1.2.3.5. Select the [cmdhDefEcValue] resource containing the string ‘default’ in the list defined by the ‘requestOrigin’ attribute in case of processing a message where no other matches were found.

1.1.2.4. If a [cmdhDefEcValue] resource has been selected in steps 1.1.2.3.1 through 1.1.2.3.4: Use the value of the ‘defEcValue’ attribute of the selected [cmdhDefEcValue] resource as the value for the ‘ec’ parameter of the message. Else use the default value of ‘bestEffort’ for the ‘ec’ parameter of the message.

1.2. Filling in values that shall be used for the remaining CMDH-related parameters of messages

1.2.1. If the message contains any of the CMDH-related parameters ‘rqet’, ‘rset’, ‘oet’, ‘rp’: The provided values of the respective parameters in the message shall be used. No filling in is needed for those parameters. If any of the parameters ‘rqet’, ‘rset’, ‘oet’, ‘rp’ present in the message is represented with a duration, the receiving CSE shall translate the values of those parameters into absolute times by adding the duration to the originating timestamp in the ‘ot’ parameter of the message. This ‘ot’ parameter is an optional message parameter and in case it is not present in a message, it shall be filled in by the first receiving CSE of a message using the time when the message was received.

1.2.2. If the message parameter ‘ec’ has a value of ‘bestEffort’, use the following values for any missing CMDH-related parameters: For a request message use ‘rqet’ = ‘infinite’, ‘rset’ = ‘infinite’, ‘oet’ = ‘now’, ‘rp’ = ‘none’, ‘da’ = ON. For a response message use ‘rset’ = ‘infinite’, ‘da’ = ON. Continue with step 2.

1.2.3. If the message parameter ‘ec’ has a value of ‘immediate’, do not fill in any remaining missing CMDH-related parameters and continue with step 2.

1.2.4. For any of the missing CMDH-related parameters fill in values as follows:

1.2.4.1. Lookup all [cmdhEcDefParamValues] child resources of the [cmdhDefaults] resource that is a child resource of the provisioned active [cmdhPolicy] resource.

1.2.4.2. Among the found [cmdhEcDefParamValues] resources do the following selection:

1.2.4.2.1. If present, select the [cmdhEcDefParamValues] resource containing the value of the ‘ec’ parameter of the message in the list defined by the ‘applicableEventCategory’ attribute. If a match is found, continue processing with step 1.2.4.3

1.2.4.2.2. Select the [cmdhEcDefParamValues] resource that contains the string ‘default’ in the list defined by the ‘applicableEventCategory’.

1.2.4.3. Use the following attributes of the selected [cmdhEcDefParamValues] resource to fill in any missing CMDH-related message parameters: Fill in the value of the attribute ‘defaultRequestExpTime’ for the parameter ‘rqet’ if it is missing. Fill in the value of the attribute ‘defaultResultExpTime’ for the parameter ‘rset’ if it is missing. Fill in the value of the attribute ‘defaultOpExecTime’ for the parameter ‘oet’ if it is missing. Fill in the value of the attribute ‘defaultRespPersistence’ for the parameter ‘rp’ if it is missing. Fill in the value of the attribute ‘defaultDelAggregation’ for the parameter ‘da’ if it is missing.

2. Compare CMDH parameters with allowed CMDH parameter limits:
Check if CMDH-related parameters effective for the message are with allowed limits.

2.1. Lookup all [cmdhLimits] child resources of the provisioned active [cmdhPolicy] resource.

2.2. If the message is a request message and any of the attributes ‘requestContext’, and ‘requestCharacteristics’ are present in the found [cmdhLimits] resources, discard all [cmdhLimits] resources from the list of found items for which the context conditions or the request characteristics at time of processing the request message are not met, respectively.

2.3. Among the remaining found [cmdhLimits] resources do the following selection:

2.3.1. If present, select the [cmdhLimits] resource(s) containing the AE-ID in the list defined by the ‘requestOrigin’ attribute which matches with the ’fr’ parameter in case of a request message or with the ‘to’ parameter in case of a response message. If multiple [cmdhLimits] resources match, select the one with the lowest value in the ‘order’ attribute. Continue processing with step 2.4

2.3.2. If present, select the [cmdhLimits] resource(s) containing the App-ID in the list defined by the ‘requestOrigin’ attribute which matches with the ’fr’ parameter in case of a request message or with the ‘to’ parameter in case of a response message. If multiple [cmdhLimits] resources match, select the one with the lowest value in the ‘order’ attribute. Continue processing with step 2.4

2.3.3. If present, select the [cmdhLimits] resource(s) containing the string ‘localAE’ in the list defined by the ‘requestOrigin’ attribute in case of processing a message where the ’fr’ parameter is the AE-ID of an AE registered with the CSE processing this message. If multiple [cmdhLimits] resources match, select the one with the lowest value in the ‘order’ attribute. Continue processing with step 1.1.2.4

2.3.4. If present, select the [cmdhLimits] resource(s) containing the string ‘thisCSE’ in the list defined by the ‘requestOrigin’ attribute in case of processing a message where the ’fr’ parameter is the CSE-ID of the CSE processing this message. If multiple [cmdhLimits] resources match, select the one with the lowest value in the ‘order’ attribute. Continue processing with step 2.4

2.3.5. Select the [cmdhLimits] resource containing the string ‘default’ in the list defined by the ‘requestOrigin’ attribute in case of processing a message where no other matches were found.

2.4. Validate if ‘ec’ parameter is within allowed range:
If the ‘ec’ parameter of the message is not within the list defined by the ‘limitsEventCategory’ attribute of the selected [cmdhLimits] resource, mark CMDH message validation for this message as not successful and exit CMDH message validation.

2.5. Validate if ‘rqet’ parameter is within allowed range:
If the ‘rqet’ parameter is present in the message and if it is not within the range defined by the ‘limitsRequestExpTime’ attribute of the selected [cmdhLimits] resource, mark CMDH message validation for this message as not successful and exit CMDH message validation.

2.6. Validate if ‘rset’ parameter is within allowed range:
If the ‘rset’ parameter is present in the message and if it is not within the range defined by the ‘limitsResultExpTime’ attribute of the selected [cmdhLimits] resource, mark CMDH message validation for this message as not successful and exit CMDH message validation.

2.7. Validate if ‘oet’ parameter is within allowed range:
If the ‘oet’ parameter is present in the message and if it is not within the range defined by the ‘limitsOpExecTime’ attribute of the selected [cmdhLimits] resource, mark CMDH message validation for this message as not successful and exit CMDH message validation.

2.8. Validate if ‘rp’ parameter is within allowed range:
If the ‘rp’ parameter is present in the message and if it is not within the range defined by the ‘limitsRespPersistence’ attribute of the selected [cmdhLimits] resource, mark CMDH message validation for this message as not successful and exit CMDH message validation.

2.9. Validate if ‘da’ parameter is within allowed range:
If the ‘da’ parameter is present in the message and if it is not within the list of allowed values defined by the ‘limitsDelAggregation’ attribute of the selected [cmdhLimits] resource, mark CMDH message validation for this message as not successful and exit CMDH message validation.

3. Check if message complies with network access rules and buffer limits:

3.1. Check if ‘ec’ is ‘immediate’:
If the ‘ec’ parameter of the message is ‘immediate’ bypass any checks on buffering or access network usage rules. Mark the CMDH message validation for this message as successful and end CMDH message validation.

3.2. Check if delivering the message is possible within the boundaries of access network usage rules in CMDH policies:

3.2.1. Lookup all [cmdhNetworkAccessRules] child resources of the provisioned active [cmdhPolicy] resource.

3.2.2. Among the all found [cmdhNetworkAccessRules] resources do the following selection:

3.2.2.1. If present, select the [cmdhNetworkAccessRules] resource containing the value of the ‘ec’ parameter of the message in the list defined by the ‘applicableEventCategory’ attribute. If a match is found, continue processing with step 3.2.3

3.2.2.2. Select the [cmdhNetworkAccessRules] resource that contains the string ‘default’ in the list defined by the ‘applicableEventCategory’.

3.2.3. Lookup all [cmdhNwAccessRule] child resources of the selected [cmdhNetworkAccessRules] resource

3.2.4. Among the all found [cmdhNwAccessRule] resources find at least one for which the <schedule> child resource ‘allowedSchedule’ is allowing usage of the corresponding target network consistent with the ‘rqet’ parameter in case of a request message being processed or in line with the ‘rset’ parameter in case of a response message being processed. If no matching [cmdhNwAccessRule] resource is found, mark CMDH validation for this message as not successful due to lack of scheduling opportunities and end CMDH message validation. Otherwise continue.

3.3. Check if delivering the message is possible within the boundaries of buffer usage rules in CMDH policies:

3.3.1. Lookup all [cmdhBuffer] child resources of the provisioned active [cmdhPolicy] resource.

3.3.2. Among the all found [cmdhBuffer] resources do the following selection:

3.3.2.1. If present, select the [cmdhBuffer] resource containing the value of the ‘ec’ parameter of the message in the list defined by the ‘applicableEventCategory’ attribute. If a match is found, continue processing with step 3.3.3
3.3.2.2. Select the [cmdhBuffer] resource that contains the string ‘default’ in the list defined by the ‘applicableEventCategory’.

3.3.3. Check if the amount of memory needed to buffer the message being validated in addition to the already buffered messages matching with the same buffer usage policy in the selected [cmdhBuffer] resource would exhaust the limit defined by the ‘maxBufferSize’ attribute of the selected [cmdhBuffer] resource or if the available memory for CMDH forwarding on the receiver CSE would get exhausted even when purging buffered messages with lower storage priority.

3.3.3.1. If the check is negative, mark the CMDH message validation for the message being validated as successful, assign the storage priority defined in the ‘storagePriority’ attribute of the selected [cmdhBuffer] resource to the validated message, and end CMDH message validation

3.3.3.2. If the check is positive, mark the CMDH message validation for the message being validated as not successful and end CMDH message validation.

[image: image18.emf]Filling in missing CMDH parameters (step 1. in II.iii)

New request or response

message for CMDH message

validation

Determine value to

be used for ‘ec’

(step 1.1 in II.iii)

Determine remaining

missing CMDH

parameters as

function of ‘ec’

(step 1.2 in II.iii)

Compare CMDH parameters with

allowed CMDH parameter limits

(step 2. in II.iii)

Successful

?

Check if message complies with

network access rules and buffer limits

(step 3. in II.iii)

YES

Successful

?

NO

NO

YES

Mark CMDH message

validation successful

Mark CMDH message

validation not successful

End

Figure H.2.3‑3: CMDH message validation procedure
H.2.4. CMDH message forwarding procedure

The high-level sequence of processing steps for the CMDH message forwarding process is depicted in the flow chart below. Note that this flow chart only represents the reference flow for implementing a standard compliant behavior. Other standard compliant implementations may be possible as long as the events defined below will result in the same normative message exchanges via reference points.

Occurrence of the following events shall trigger processing in the CMDH message forwarding:

· One or more new message(s) get(s) queued up for CMDH message forwarding

· Any of the underlying networks becomes usable for message forwarding due to transition(s) in allowed schedule(s) or due to establishing of availability of connectivity (e.g. cable plugged-in, coverage established)

· Any of the underlying networks becomes unusable for message forwarding due to transition(s) in allowed schedule(s) or due to loss of availability of connectivity (e.g. cable unplugged, coverage lost)

· Any message buffered for CMDH forwarding expires

[image: image19.emf]New message queued up for

CMDH message forwarding

Buffer message for

CMDH forwarding

(step 2.1. in II.iv)

‘ec’ =

‘immediate’

?

Forward

message asap

to next CSE

(step 1. in II.iv)

YES

NO

Any underlying network

becomes usable due to

transition(s) in

allowed schedule or due to

change(s) in connectivity

End

Evaluate if any message forwarding is

currently allowed (step 2.2. in II.iv)

Setup Mcc communication

connection(s) to next CSE

(step 2.3. in II.iv)

possible?

YES NO

Buffered message

expired

Determine usage of delivery

aggregation (step 1.3. in II.iv)

Use da

?

aggregated messages

other messages

Purge message and

–in case of request

message –create

response (step YYY

in II.iv)

Create <delivery>

resource on next CSE

(step 1.3.2. in II.iv)

Forward message(s) to

next CSE

(step 1.3.1. in II.iv)

Any underlying network

becomes unusable due to

transition(s) in

allowed schedule or due to

change(s) in connectivity

If possible,

complete ongoing

message

forwarding

Figure H.2.4‑1: CMDH message forwarding procedure
When a new message is getting queued up for CMDH message forwarding, carry out the following:

If the ‘ec’ parameter of the messages has the value ‘immediate’:

Forward message as soon as possible to the next CSE. The processing in this situation is described by the flow chart in Figure H.2.4-2 below.
1.1. If a Mcc communication connection to the next CSE for forwarding the message is already established, continue with step 1.3.

1.2. If no Mcc communication connection to the next CSE for forwarding the message is established pick one underlying network among all underlying networks that can provide communication to the next CSE and establish a Mcc communication connection to the next CSE in line with the rules outlined in clause H.2.5. . If establishment of a Mcc communication connection to the next CSE was not successful before the message expires, continue with step 1.4.

1.3. Determine whether delivery aggregation or forwarding of the message itself shall be used:

1.3.1. If the message contains a ‘da’ parameter set to the value ‘ON’, the Receiver CSE shall forward this message by creation of a <delivery> resource on the next CSE as outlined in clause 7.3.11. The receiver CSE can combine the forwarded message in the same <delivery> resource with other messages for which the ‘da’ parameter set to ‘ON’ and which need to be forwarded to the same target CSE.

1.3.2. If the message is not forwarded using a <delivery> resource, the receiver CSE shall forward the message as is to the next CSE via the established Mcc communication connection.

1.4. If the message could not be forwarded successfully to the next CSE before it expired (e.g. due to repeated unsuccessful attempts to establish a Mcc communication connection or due to the lack of usable underlying networks), the receiver CSE shall carry out the following:

1.4.1. If the message was a response message, ignore the message. End this cycle of CMDH message forwarding and wait for new triggering events.

1.4.2. If the message was a request message:

1.4.2.1. If the request was a blocking request:
Send an error response to the pending blocking request with a matching Request-ID and Originator indicating the reason for failure and close the blocking request. End this cycle of CMDH message forwarding and wait for new triggering events.

1.4.2.2. If the request was a non-blocking request:
Update the associated <request> resource with matching Request-ID and Originator using an error response code indicating the reason for failure. If the non-blocking request was made in asynchronous mode, send a notification with the error response to the notification target(s) of the request. End this cycle of CMDH message forwarding and wait for new triggering events.

1.5. Else, i.e. if the message was forwarded successfully to the next CSE:

1.5.1. If the message was a response and the Receiver CSE has an open blocking request context with a matching Request-ID and matching Originator, mark the open blocking request as closed, end this cycle of CMDH message forwarding and wait for new triggering events.

1.5.2. If the message was a request message:

1.5.2.1. If the request was a blocking request:
Keep the context of the pending blocking request with matching Request-ID and matching Originator open and wait for an incoming response message with the same Request-ID and Originator. End this cycle of CMDH message forwarding and wait for new triggering events.

1.5.3. If the request was a non-blocking request:
Wait for a response to the forwarded request (e.g. response with acknowledgement or error response). Update the associated <request> resource with the matching Request-ID and Originator using a response code that reflects the status of the forwarded request (e.g. accepted by next CSE, unsuccessful). If the next CSE responded with an error response message and the request was in non-blocking asynchronous mode, send a notification request message to the Originator of the forwarded request containing the error response of the next CSE. End this cycle of CMDH message forwarding and wait for new triggering events.

2. Else, i.e. when the ‘ec’ parameter of the messages does not have the value ‘immediate’:

2.1.1. Buffer the message to be forwarded in the CMDH forwarding buffer:
The processing in this situation is described by the flow chart in Figure H.2.4.2 below:If the message is a request message and the ‘ec’ parameter of the messages has the value ‘latest’:

2.1.1.1. If the request message is a notification triggered by a subscription:

2.1.1.1.1. Find any buffered request message that is a notification triggered by a subscription with the same subscription reference.

2.1.1.2. Else, i.e. if the request message is not a notification triggered by a subscription:

2.1.1.2.1. Find any buffered request message that has the same values in the (‘fr’, ‘to’, ‘op’) parameters as the message being processed

2.1.1.3. If any request message was found in steps 2.1.1.1.1 or 2.1.1.2.1, purge the found message from the CMDH forwarding buffer.

2.1.2. If there is not enough memory available to buffer the message being processed in the CMDH forwarding buffer:

2.1.2.1. Find any buffered messages with storage priority values lower than the one assigned to the message being processed.

2.1.2.2. If any messages are found:
Purge enough messages among the found messages so that the message being processed can be buffered in the CMDH forwarding buffer. Messages which entered the buffer later shall be purged first. In case any request messages need to be purged, carry out the following:

2.1.2.2.1. In case of purging a non-blocking request messages:
Update the associated <request> resource with the same Request-ID as the purged request message with a status indicating unsuccessful completion. If the purged message was made in asynchronous mode, send a response to the notification target(s) of the pending non-blocking request

2.1.2.2.2. In case of purging a blocking request message:
Send an error response to the open blocking request with the same Request-ID as in the purged request message and close the blocking request.

2.1.2.3. Due to the checking of sufficient memory in CMDH message forwarding buffer during CMDH message validation, there should be enough memory available to accommodate the message to be buffered at this point. If that is still not the case, then do the following:

2.1.2.3.1. In case the message to be buffered is a response message:
Ignore the message to be buffered. End this cycle of CMDH message forwarding and wait for new triggering events.

2.1.2.3.2. In case the message to be buffered is a non-blocking request message:
Update the associated <request> resource with the same Request-ID as the request message to be buffered with a status indicating unsuccessful completion. If the request message to be buffered was made in asynchronous mode, send a response to the notification target(s) of the pending non-blocking request. End this cycle of CMDH message forwarding and wait for new triggering events.

2.1.2.3.3. In case the message to be buffered is a blocking request message:
Respond with an error response message to the open blocking request with the same Request-ID as in the request message to be buffered and close the blocking request. End this cycle of CMDH message forwarding and wait for new triggering events.

2.1.3. Store the message to be buffered with its assigned storage priority in the CMDH forwarding buffer. Include it in future evaluations for possible message forwarding.

2.2. Evaluate if any message forwarding is currently allowed:

2.2.1. For all buffered messages that are pending in CMDH message forwarding carry out the following evaluation steps:

2.2.1.1. Among all [cmdhNetworkAccessRules] child resources of the provisioned active [cmdhPolicy] resource do the following selection:

2.2.1.1.1. If present, select the [cmdhNetworkAccessRules] resource containing a value in the list defined by the ‘applicableEventCategory’ attribute that is equal to the value of the ‘ec’ parameter of the buffered message to be evaluated for forwarding. If a match is found, continue processing with step 2.2.1.2.

2.2.1.1.2. Select the [cmdhNetworkAccessRules] resource that contains the string ‘default’ in the list defined by the ‘applicableEventCategory’.

2.2.1.2. Lookup all [cmdhNwAccessRule] child resources of the selected [cmdhNetworkAccessRules] resource

2.2.1.3. If the attribute ‘otherConditions’ is present in any of the found [cmdhNwAccessRule] resources, discard all [cmdhNwAccessRule] resources from the list of found items for which the conditions expressed by ‘otherConditions’ at time of evaluation of the message for forwarding are not met, respectively.

2.2.1.4. Among the all remaining found [cmdhNwAccessRule] resources find those for which
 - the <schedule> child resource ‘allowedSchedule’ is currently allowing usage of the corresponding target network, and
 - for which the corresponding target network could be used to reach the next CSE for forwarding the message under evaluation.
If any allowed target network was found, memorize the message under evaluation as an allowed message and the allowed target network(s) for the message under evaluation and continue with the next evaluation of buffered messages

2.2.2. When all buffered messages have been evaluated, remove from the memorized list of allowed messages and their allowed target networks those target networks where the amount of data to be forwarded – accumulated over all allowed messages of the same event category – is less than the amount of data indicated in the ‘minReqVolume’ attribute of the corresponding [cmdhNwAccessRule] resource.

2.2.3. Remove any messages from the list of allowed messages for forwarding if no allowed target network is left for that message after the previous step.

2.3. Process messages allowed for forwarding to the next CSE:
If any messages can be forwarded, i.e. if any evaluation of step 2.2 was positive, apply the following steps:

2.3.1. Reuse already established Mcc communication connections or – if needed – establish new Mcc communication connection(s) so that all the messages that are allowed to be forwarded to their next CSE can be forwarded. Some messages may be allowed on the same target network. Follow the procedure outlined in clause H.2.5. for setting up a Mcc communication connection to another CSE via a particular target network. If no usable Mcc communication connection could be established for forwarding a particular allowed message before the message expires, execute step 1.4 in this clause above for that message.

2.3.2. For all messages allowed for forwarding and for which Mcc communication connections are established, apply steps 1.3 through 1.5 in this clause above.

2.4. Else, i.e. currently no message forwarding is allowed:
End this cycle of CMDH message forwarding and wait for new triggering events.

When any of the underlying networks becomes usable for message forwarding due to transition(s) in allowed schedule(s) or due to establishing of availability of connectivity (e.g. cable plugged-in, coverage established), carry out the processing above in this clause starting with step 2.2.

When any of the underlying networks becomes unusable for message forwarding due to transition(s) in allowed schedule(s) or due to loss of availability of connectivity (e.g. cable unplugged, coverage lost), complete – if at all possible – any ongoing message forwarding procedures. End this cycle of CMDH message forwarding and wait for new triggering events.

When any message buffered for CMDH forwarding expires, carry out step 1.4 in this clause above. End this cycle of CMDH message forwarding and wait for new triggering events.

[image: image20.emf]Message needs to be

forwarded asap

Successful

?

Message Type

?

request

Ignore

response

message

response

NO

 non-blocking

request

?

YES

NO

Send unsuccessful

response to open

blocking request with

matching Request-ID

End

Establish Mcc communication connection picking any of the underlying

networks that can provide communication to the next CSE and

forward message to the next CSE. Retry as long as message has not expired.

Update corresponding

<request> resource. In

case of asynchronous

request, send

notification with

unsuccessful response

to notification target(s)

Message Type

?

request

response

 non-blocking

request

?

YES

NO

Send successful

response to open

blocking request with

matching Request-ID

Update corresponding

<request> resource. In

case of asynchronous

request, send

notification with

successful response to

notification target(s)

YES

Figure H.2.4‑2: Forwarding of messages with 'ec' = 'immediate'.

[image: image21.emf]New message needs to be

buffered for CMDH message

forwarding

message is

request and ‘ec’ =

‘latest’

?

Enough

memory

?

Purge messages with lower storage priority.

In case of purging request messages, create

& send unsuccessful responses

NO

NO

YES

End

Store message in CMDH message forwarding buffer with

assigned storage priority

found

?

YES NO

Purge found request

message

YES

Find buffered request message with

same (‘fr’,’to’,’op’) parameters

‘op’ = notification

triggered by subscription

?

NO

Find buffered request message with

same subscription reference

YES

Figure H.2.4‑3: Buffering of messages for CMDH message forwarding.

H.2.5. Establishment of Mcc communication connection to another CSE

When a Mcc communication connection shall be established via a specific target network for forwarding a message of a specific event category indicated by the ‘ec’ parameter of the message, the process of establishing the Mcc communication connection shall be governed by values contained in the ‘backOffParameters’ attribute of the [cmdhNwAccessRule] resource that was used to evaluate whether the message was allowed to be forwarded, as defined in step 2.2 in the procedure outlined in clause H.2.4. .

When connectivity via the selected target network to reach the next CSE has not already been established for other reasons, then the CSE that is trying to forward a message buffered for CMDH message forwarding shall establish a new Mcc communication connection via the selected target network for transporting oneM2M messages to the next CSE via a new Mcc instance. This communication connection shall be established following the procedures for authentication and security association using TLS or DTLS as defined in the oneM2M TS-0003 Security Solutions [7] taking into account provisioned security settings. The protocol mapping for transporting oneM2M specified messages via this instance of Mcc shall be selected according to the capabilities of the two end-points of the Mcc instance.

If establishing the Mcc communication connection via the selected target network fails, a new attempt to establish that communication connection shall only be made after waiting for a back-off time according to the value given in the ‘back-off time’ component of the ‘backOffParameters’ attribute of the effective [cmdhNwAccessRule] resource.

When establishing the Mcc communication connection via the selected target network still fails, for each subsequent new attempt to establish the Mcc communication connection without any successful attempts in-between, the back-off time shall be increased by the value given in the ‘back-off time increment’ component of the ‘backOffParameters’ attribute of the effective [cmdhNwAccessRule] resource.

The back-off time for waiting before making any new attempt to establish the Mcc communication connection via the selected target network shall not exceed the value given by the ‘maximum back-off time’ component of the ‘backOffParameters’ attribute of the effective [cmdhNwAccessRule] resource.

When the next CSE is hosted on a node for which a usable Mcc communication connection for forwarding a message to the next CSE can only be established by the next CSE itself, device triggering mechanisms as defined in the oneM2M TS-0001 [6] shall be used.

In case the next CSE can only be reached via communication connections originating from the node that hosts the next CSE, while it is capable of processing incoming oneM2M messages, it is assumed that such a CSE establishes a polling channel as defined in the oneM2M TS-0001[6] in order to effectively receive unsolicited oneM2M messages.
List of tables and figures

18Figure 5.3.1‑1: Communication model using Request and Response primitives over an IP-based Underlying Network

Figure 5.3.2‑1: Primitives modelling
19
Table 6.2.1‑1: M2M Identifiers
22
Table 6.3.1‑1: Data Types incorporated from XML Schema
25
Table 6.3.2‑1: oneM2M Simple Data Types
27
Table 6.3.3.1‑1: Example of oneM2M Enumeration Type Definition
29
Figure 6.3.3.1‑1: Example of XSD version of oneM2M Enumeration Type
29
Table 6.3.3.2.1‑1: Interpretation of resourceType
30
Table 6.3.3.2.2‑1: Interpretation of cseTypeID
30
Table 6.3.3.2.3‑1: Interpretation of locationSource
31
Table 6.3.3.2.4‑1: Interpretation of stdEventCats
31
Table 6.3.3.2.5‑1: Interpretation of operation
31
Table 6.3.3.2.6‑1: Interpretation of responseType
31
Table 6.3.3.2.7‑1: Interpretation of resultContent
32
Table 6.3.3.2.8‑1: Interpretation of discResType
32
Table 6.3.3.2.9‑1: Interpretation of responseStatusCode
32
Table 6.3.3.2.10‑1: Interpretation of requestStatus
32
Table 6.3.3.2.11‑1: Interpretation of memberType
33
Table 6.3.3.2.12‑1: Interpretation of consistencyStrategy
33
Table 6.3.3.2.13‑1: Interpretation of cmdType
33
Table 6.3.3.2.14‑1: Interpretation of execModetType
34
Table 6.3.3.2.15‑1: Interpretation of execStatusType
34
Table 6.3.3.2.17‑1: Interpretation of pendingNotification
35
Table 6.3.3.2.18‑1: Interpretation of notificationContentType
35
Table 6.3.3.2.19‑1: Interpretation of resourceStatus
36
Table 6.3.3.2.20‑1: Interpretation of status
36
Table 6.3.3.2.21‑1: Interpretation of batteryStatus
36
Table 6.3.3.2.22‑1: Interpretation of mgmtDefinition
37
Table 6.3.3.2.23‑1: Interpretation of logTypeId
37
Table 6.3.3.2.24‑1: Interpretation of logStatus
37
Table 6.3.3.2.25‑1: Interpretation of eventType
38
Table 6.3.3.2.26‑1: Interpretation of statsRuleStatusType
38
Table 6.3.3.2.27‑1: Interpretation of statModelType
38
Table 6.3.3.2.28‑1: Interpretation of encodingType
38
Table 6.3.3.2.29‑1: Interpretation of accessControlOperations
38
Table 6.3.3.2.30‑1: Interpretation of SRole-ID
39
Table 6.3.4.1‑1: Type Definition of m2m:deliveryMetadata
39
Table 6.3.4.2‑1: Type Definition of m2m:aggregatedRequest
39
Table 6.3.4.3‑1: Type Definition of m2m:metaInformation
40
Table 6.3.4.28‑1: Type Definition of m2m:childResourceRef
46
Table 6.3.4.29‑1: Type Definition of m2m:responseTypeInfo
47
Table 6.3.4.30‑1: Type Definition of m2m:rateLimit
47
Table 6.3.4.31‑1: Type Definition of m2m:operationResult
47
Table 6.3.4.32‑1: Type Definition of m2m:aggregatedResponse
47
Table 6.3.5‑1: Universal and Common Attributes
48
Table 6.3.5‑2: Complex Data Types declaring groups of resource common attributes
50
Table 6.3.6.1‑1: Defition of Create Time condition
51
Table 6.3.6.2‑1: Defition of LastModified Time condition
51
Table 6.3.6.3‑1 Defition of State Tag condition
51
Table 6.3.6.4‑1: Defition of ExirationTime condition
52
Table 6.3.6.5‑1: Defition of Lebel Match condition
52
Table 6.3.6.6‑1: Defition of Resource Type Match condition
52
Table 6.3.6.7‑1: Defition of Content Size Match condition
52
Table 6.3.6.8‑1: Defition of Content Type Match condition
53
Table 6.3.6.9‑1: Defition of Attribute Match condition
53
Table 6.3.6.10‑1: Defition of Limit conditions
53
Table 6.3.6.11‑1: Definition of Filter Usage
53
Table 6.4.1‑1: Data Types for Request primitive parameters
54
Table 6.4.2‑1: Data Types for Response primitive parameters
54
Figure 6.5.1‑1: Resource Types
55
Table 6.6.2‑1: Definition of Response Status Code class
57
Table 6.6.3.2‑1: Informational Responses class
58
Table 6.6.3.4‑1: RSCs for Redirection response class
58
Table 6.6.3.5‑1: RSCs for Originator Error response class
58
Table 6.8‑1: Virtual Resources
60
Table 7.1.1.1‑1: Request Primitive Parameters
62
Table7.1.1.2‑1 : Response Primitive Parameters
63
Figure 7.1.2.1‑1: Generic procedure of Originator
64
Figure 7.1.2.2‑1: Generic procedure of Receiver
65
Table 7.2.1.4‑1: Request primitive parameter settings
69
Table 7.2.2.2‑1: Common attributes settings for <request> resource
71
Table 7.2.2.2‑2: Resource-specific attributes settings for <request> resource
71
Table 7.2.2.3‑1: Response primitive parameter settings
71
Table 7.2.2.5‑1: Common attributes settings for <request> resource
72
Table 7.2.2.5‑2: Resource-specific attributes settings for <request> resource
72
Table 7.3.1.1‑1: Data type definition of <resourceType>
81
Table 7.3.1.1‑2: Universal/Common Attributes of <resourceType> resource
81
Table 7.3.1.1‑3: Resource Specific Attributes of <resourceType> resource
82
Table 7.3.1.1‑4: Child resources of <resourceType> resource
82
Table 7.3.2.1‑1: Data type defintion of <accessControlPolicy> resource
82
Table 7.3.2.1‑2: Universal/Common Attributes of <accessControlPolicy> resource
82
Table 7.3.2.1‑3: Resource Specific Attributes of <accessControlPolicy> resource
83
Table 7.3.2.1‑4: Child Resources of <accessControlPolicy> resource
83
Table 7.3.3.1‑1: Data type definition of <CSEBase> resource
84
Table 7.3.3.1‑2: Universal/Common Attributes of <CSEBase> resource
84
Table 7.3.3.1‑3: Resource Specific Attributes of <CSEBase> resource
84
Table 7.3.3.1‑4: Child resources of <CSEBase> resource
84
Table 7.3.4.1‑1: Data type definition of <remoteCSE> resource
86
Table 7.3.4.1‑2: Universal/Common Attributes of <remoteCSE> resource
86
Table 7.3.4.1‑3: Resource Specific Attributes of <remoteCSE> resource
86
Table 7.3.4.1‑4: Child resources of <remoteCSE> resource
86
Table 7.3.5.1‑1: Data type definition of <AE> resource
88
Table 7.3.5.1‑2: Universal/Common Attributes of <AE> resource
88
Table 7.3.5.1‑3: Resource Specific Attributes of <AE> resource
88
Table 7.3.5.1‑4: Child resources of <AE> resource
88
Table 7.3.6.1‑1: Data type definition of <container> resource
90
Table 7.3.6.1‑2: Universal/Common Attributes of <container> resource
90
Table 7.3.6.1‑3: Resource Specific Attributes of <contianer> resource
90
Table 7.3.6.1‑4: Child resources of <container> resource
90
Table 7.3.7.1‑1: Data type definition of <contentInstance> resource
91
Table 7.3.7.1‑2: Universal/Common Attributes of <contentInstance> resource
92
Table 7.3.7.1‑3: Resource Specific Attributes of <contentInstance> resource
92
Table 7.3.8.1‑1: Data type definition of <subscription> resource
93
Table 7.3.8.1‑2: Universal/Common Attributes of <subscription> resource
93
Table 7.3.8.1‑3: Resource Specific Attributes of <subscription> resource
94
Table 7.3.8.1‑4: Reference of child resources
94
Table 7.3.9.1‑1: Data type definition of <schedule> resource
96
Table 7.3.9.1‑2: Universal/Common Attributes of <schedule> resource
96
Table 7.3.9.1‑3: Resource Specific Attributes of <schedule> resource
96
Table 7.3.9.1‑4: Definition of m2m:scheduleEntry string format
96
Table 7.3.10.1‑1: Data type definition of <locationPolicy> resource
98
Table 7.3.10.1‑2: Universal/Common Attributes of <locationPolicy> resource
98
Table 7.3.10.1‑3: Resource Specific Attributes of <locationPolicy> resource
99
Table 7.3.10.1‑4: Child resources of <locationPolicy> resource
99
Table 7.3.11.1‑1: Data type definition of <delivery> resource
101
Table 7.3.11.1‑2: Universal/Common Attributes of <delivery> resource
101
Table 7.3.11.1‑3: Resource Specific Attributes of <delivery> resource
101
Table 7.3.11.1‑4: Child resources of <delivery> resource
102
Table 7.3.12.1‑1: Data type definition of <request> resource
104
Table 7.3.12.1‑2: Universal/Common Attributes of <request> resource
104
Table 7.3.12.1‑3: Resource Specific Attributes of <request> resource
104
Table 7.3.12.1‑4 : Reference of child resources
104
Table 7.3.13.1‑1: Data type definition of <group> resource
105
Table 7.3.13.1‑2: Universal/Common Attributes of <group> resource
106
Table 7.3.13.1‑3: Resource Specific Attributes of <group> resource
106
Table 7.3.13.1‑4: Child resources of <group> resource
106
Table 7.3.15.1‑1: Universal/Common Attributes of <mgmtObj> resource
111
Table 7.3.15.1‑2: Resource Specific Attributes of <mgmtObj> resource
112
Table 7.3.15.1‑3: Child resources of <mgmtObj> resource
112
Table 7.3.16.1‑1: Data type definition of <mgmtCmd> resource
113
Table 7.3.16.1‑2: Universal/Common Attributes of <mgmtCmd> resource
114
Table 7.3.16.1‑3: Resource Specific Attributes of <mgmtCmd> resource
115
Table 7.3.16.1‑4: Child resources of <mgmtCmd> resource
116
Table 7.3.17.1‑1: Data type definition of <execInstance> resource
118
Table 7.3.17.1‑2: Universal/Common Attributes of <execInstance> resource
118
Table 7.3.17.1‑3: Resource Specific Attributes of <execInstance> resource
119
Table 7.3.17.1‑4: Child Resources of <execInstance> resource
119
Table 7.3.18.1‑1: Data type definition of <node> resource
121
Table 7.3.18.1‑2: Universal/Common Attributes of <node> resource
121
Table 7.3.18.1‑3: Resource Specific Attributes of <node> resource
121
Table 7.3.18.1‑4: Child resources of <node> resource
121
Table 7.3.19.1‑1: Data type definition of <m2mServiceSubscriptionProfile> resource
122
Table 7.3.19.1‑2: Universal/Common Attributes of <m2mServiceSubscriptionProfile>
122
Table 7.3.19.1‑3: Resource Specific Attributes of <m2mServiceSubscriptionProfile>
123
Table 7.3.19.1‑4: Child resources of <m2mServiceSubscriptionProfile>
123
Table 7.3.20.1‑1: Data type definition of <serviceSubscribedNode> resource
124
Table 7.3.20.1‑2: Universal/Common Attributes of <serviceSubscribedNode> resource
124
Table 7.3.20.1‑3: Resource Specific Attributes of <serviceSubscribedNode> resource
124
Table 7.3.20.1‑4: Child resources of <serviceSubscribedNode> resource
124
Table 7.3.21.1‑1: Data type definition of <pollingChannel> resource
125
Table 7.3.21.1‑2: Universal/Common Attributes of <pollingChannel> resource
126
Table 7.3.21.1‑3: Child resources of <pollingChannel> resource
126
Table 7.3.23.1‑1: Data type definition of <statsConfig>
128
Table 7.3.23.1‑2: Universal/Common Attributes of <stateConfig> resource
128
Table 7.3.23.1‑3: Resource Specific Attributes of <stateConfig> resource
128
Table 7.3.23.1‑4: Child resources of <statsConfig> resource
128
Table 7.3.24.1‑1: Data type definition of <eventConfig>
129
Table 7.3.24.1‑2: Universal/Common Attributes of <eventConfig> resource
130
Table 7.3.24.1‑3: Resource Specific Attributes of <eventConfig> resource
130
Table 7.3.24.1‑4: Child Resources of <eventConfig> resource
130
Table 7.3.25.1‑1: Data type definition of <statsCollect>
131
Table 7.3.25.1‑2: Universal/Common Attributes of <statsCollect> resource
132
Table 7.3.25.1‑3: Resource Specific Attributes of <statsCollect> resource
132
Table 7.3.25.1‑4: Child Resources of <statsCollect> resource
132
Table 7.3.26.1‑1: Data type definition of announced Resource
134
Table 7.3.26.1‑2: Universal/Common Attributes of announcedResource
134
Table 7.3.26.1‑3: Resource Specific Attributes of announcedResource
135
Table 7.3.29.1‑1: Data type definition of <serviceSubscribedAppRule> resource
138
Table 7.3.29.1‑2: Universal/Common Attributes of <serviceSubscribedAppRule> resource
139
Table 7.3.29.1‑3: Resource Specific Attributes of <serviceSubscribedAppRule> resource
139
Table 7.3.29.1‑4: Child resources of <serviceSubscribedAppRule> resource
139
Table 7.4.1.1‑1: Data Type Definition of notification data object
140
Table 7.4.1‑2: Data Types for notification parameters
140
Table 8.2.2‑1: Primitive parameter short names
147
Table 8.2.4‑1: Resource and specialization type short names
153
Table 8.2.5‑1: Complex data types members short names
154
Table D.2.1‑1: Data Type Definition of [firmware]
162
Table D.2.1‑2: Resource specific attributes of [firmware]
162
Table D.3.1‑1: Data Type Definition of [software]
163
Table D.3.1‑2: Resource specific attributes of [software]
164
Table D.4.1‑1: Data Type Definition of [memory]
165
Table D.4.1‑2: Resource specific attributes of [memory]
165
Table D.5.1‑1: Data Type Definition of [areaNwkInfo]
166
Table D.5.1‑2: Resource specific attributes of [areaNwkInfo]
166
Table D.6.1‑1: Data Type Definition of [areaNwkDeviceInfo]
167
Table D.6.1‑2: Resource specific attributes of [areaNwkDeviceInfo]
168
Table D.7.1‑1: Data Type Definition of [battery]
169
Table D.7.1‑2: Resource specific attributes of [battery]
169
Table D.8.1‑1: Data Type Definition of [deviceInfo]
170
Table D.8.1‑2: Resource specific attributes of [deviceInfo]
170
Table D.9.1‑1: Data Type Definition of [deviceCapability]
171
Table D.9.1‑2: Resource specific attributes of [deviceCapability]
172
Table D.10.1‑1: Data Type Definition of [reboot]
173
Table D.10.1‑2: Resource specific attributes of [reboot]
173
Table D.11.1‑1: Data Type Definition of [eventLog]
175
Table D.11.1‑2: Resource specific attributes of [eventLog]
175
Table D.12‑1: Data Type Definition of [cmdhPolicy]
176
Table D.12‑2: Resource specific attributes of [cmdhPolicy]
176
Table D.12.1‑1: Data Type Definition of [activeCmdhPolicy]
177
Table D.12.1‑2: Resource specific attributes of [activeCmdhPolicy]
177
Table D.12.2‑1: Data Type Definition of [cmdhDefaults]
177
Table D.12.2‑2: Resource specific attributes of [cmdhDefaults]
177
Table D.12.3‑1: Data Type Definition of [cmdhDefEcValue]
178
Table D.12.3‑2: Resource specific attributes of [cmdhDefEcValue]
178
Table D.12.4‑1: Data Type Definition of [cmdhEcDefParamValues]
178
Table D.12.4‑2: Resource specific attributes of [cmdhEcDefParamValues]
179
Table D.12.5‑1: Data Type Definition of [cmdhLimits]
179
Table D.12.5‑2: Resource specific attributes of [cmdhLimits]
180
Table D.12.6‑1: Type Definition of [cmdhNetworkAccessRules]
180
Table D.12.6‑2: Resource specific attributes of [cmdhNetworkAccessRules]
180
Table D.12.7‑1: Data Type Definition of [cmdhNwAccessRule]
181
Table D.12.7‑2: Resource specific attributes of [cmdhNwAccessRule]
181
Table D.12.8‑1: Data Type Definition of [cmdhBuffer]
181
Table D.12.8‑2: Resource specific attributes of [cmdhBuffer]
182
Table G.1.2‑3: Applicable NetAPI for Terminal Location
192
Table G.1.2‑4: Resource Type Definition – TerminalLocation
193
Table G.1.2‑5: Resource Type Definition – PeriodicNotificationSubscription
193
Table G.1.2‑6: Resource Type Definition – CircleNotificationSubscription
193
Figure G.1.3.1‑1: Single Query Toward Location Server
194
Figure G.1.4‑1: Subscribe to Notification for Periodic Location Updates
195

History
	Publication history

	
	
	

	
	
	

	Draft history (to be removed on publication)

	V.0.1.0
	20 Jun 2013
	Initial Version of TS

	V.0.1.1
	15 Aug 2013
	Incorporate agreed contributions at TP#5

Ref: 2013-0020R01,2013-0026R02,2013-0028R02

	V.0.1.2
	12 Nov 2013
	Incorporate agreed contribution at TP#7.1

Ref: 2013-0067R01

	V.0.2.0
	20 Dec 2013
	Incorporate agreed contribution at TP#8

Ref: 2013-0092R01

	V0.2.1
	19 Feb 2014
	Incorporate agreed contribution at PRO CC 8.x
Ref: 2014-0106R01, 2014-0011R01

	v0.3.0
	5 May 2014
	Incorporate agreed contribution at PRO #9

Ref: 2014-0031R01, 2014-0033R02

	v0.3.1
	25 May 2014
	Incorporate agreed contributions at PRO CC 9.2 and 9.3

Ref: 2014-0117R02

	v0.3.2
	28 May 2014
	Incorporate agreed contribution at PRO CC 9.4

Ref: 2014-0118R02

	V0.4.0
	22 Apr 2014
	Incorporate agreed contributions at PRO #10 after 11 Apr 2014:

Ref: PRO-2014-172R02(Template for oneM2M Resource)

Ref:PRO-2014-151R01(common-operations)

	V0.4.1
	26 May 2014
	Edit to use new template with line numbers

	v0.4.2
	30 May 2014
	Incorporated agreed contributions at PRO #10.5

Ref:PRO-2014-202R01-CRUD_common_operations

Ref:PRO-2014-205R01-Resource_Type_Definition_Template

Ref:PRO-2014-199R02- Primitive_templates_and_procedure_outlines

	V0.4.3
	4 Jun 2014
	Incorporated agreed contributions at PRO #10.7

Ref: PRO-2014-195R03-Child_Resource_Conversion_Rules
Added Editor's Notes to indicate name of leaders

	V0.5.0
	14 Jun 2014
	Incorporated agreed contributions at PRO #11.0:
Ref: PRO-2014-195R03- Child Resource Conversion Rules
Ref: PRO-2014-216R02- Response Status Clause

Ref: PRO-2014-217R03- Attribute Creation and Deletion
Ref: PRO-2014-220R02- management-common-operations
Ref: PRO-2014-229R03- Location Request on Mcn Reference Point
Ref: PRO-2014-242- Correction to Table 7.2.1.1-2 in TS-0004
Ref: PRO-2014-219R02- Resource Discovery Procedure
Ref: PRO-2014-224R01- design_principles_scalability
Ref: PRO-2014-218R05- Announcement Procedures

Ref: PRO-2014-249R03- Resource Type Definition Template Update

Ref: PRO-2014-251R01- remoteCSE Resource Type Definition

Ref: PRO-2014-236R01-Stage 3 text for Resource Type <statsConfig>

Ref: PRO-2014-237R02-Stage 3 text for Resource Type <eventConfig>

Ref: PRO-2014-238R02-Stage 3 text for Resource Type <statsCollect>

Incorporated agreed contributions at PRO #11 (by Nobu U)

Ref: PRO-2014-0152R02-group-management-procedures

Ref: PRO-2014-0194R04-CSEBase_Resource_Type_Definition

Ref: PRO-2014-0221R03-mgmtObj-management-procedures

Ref: PRO-2014-0228R01- LocationPolicy_Resource_Primitive

Ref: PRO-2014-0230R03- mgmtCmd_input_TS0004

Ref: PRO-2014-0231R04-Request_resource_type_definition

Ref: PRO-2014-0235R02- pollingChannel_procedures

Incorporated PRO-2014-0239R03-Resource_Type_XSD_example in Annex with Editor's changes

Incorporated agreed contributions (missing in R01)

Ref: PRO-2014-223R01-node-resource-type-procedures

Ref: PRO-2014-227R02-cmdh_policies_TS0004

	v.0.5.1
	17 Jun 2014
	Incorporated pended Agreed contribution:
Ref: PRO-2014-222R02-Primitive_templates_and_procedure_outlines_modification
Removed resolved Editor's Notes and unused sub-clauses.

	V0.5.2
	25 Jun 2014
	Clean-up done by editHelp!
e-mail: mailto:edithelp@etsi.org
Incorporated agreed contributions at PRO #11.1 (by Nobu U)
Ref: PRO-2014-0252R02-XML_Schema_Further_Changes
Ref: PRO-2014-0262R01-schedule
Fixed reference link between section 1.1 and section 7.3.8
· PRO-2014-0228R01- LocationPolicy_Resource_Primitive
Added missing annex

· PRO-2014-229R03- Location Request on Mcn Reference Point
Incorporated agreed contribution at PRO #11.2:

Ref: PRO-2014-0274- TS0004 Abbreviations

	V0.5.3
	4 Jul 2014
	Incorporated agreed contribution at PRO #11.3 (by Shingo):
Ref: PRO-2014-0276R01-addtional-common-operation
Ref: PRO-2014-0281R01-Delivery_resource_type_definition
Ref: PRO-2014-0272R02-Messages_parameters_data_types_claus
Ref: PRO-2014-0277- clause-re-arrangement
PRO-2014-0287R021-TS-0004_Section_7.3_Cleanup
PRO-2014-0261R01-generic_procedures

	V0.5.4
	28 Jul 2014
	Incorporated agreed contributions before PRO #12 (by Shingo)

Ref:

Ref:PRO-2014-0268R04-Add_common_attributes_on_ResType_template

Ref:PRO-2014-0272R02-Messages_parameters_data_types_clause

Ref:PRO-2014-0286R03-Container_and_Container_Instance_ResType

Ref:PRO-2014-0287R02-TS-0004_Section_7_3_Cleanup

Ref:PRO-2014-0298R02-Generic_Procedure_Clean_Up

Ref:PRO-2014-0304R03-data_types (this has NOT been incorporated.)
Ref:PRO-2014-0308R06-subscription_definition_and_procedures

Ref:PRO-2014-0320R02-Request-related_common_procedures

Ref:PRO-2014-0324R02-notification_definition_and_procedures

Ref:PRO-2014-0326R02-procedure-for-fanOutPoint

Ref:PRO-2014-0328-Request_resource_type_definition_-_Update

Ref:PRO-2014-0331R01-Operation_Applicability_Reference

Ref:PRO-2014-0334R04-New_section_for_services_provided_by_the_underlying_network.

Ref:PRO-2014-0335R02-Clarify_M2M-Ext-ID

Ref:PRO-2014-0336R01-Clarify_Device_Triggering

Ref:PRO-2014-0337R01-Notification_procedure_for_subscription

Ref:PRO-2014-0342R01-Clarification_on_entrance_for_resource_announcement

Ref:PRO-2014-0347R01-Announced_Resource_Procedures

Ref:PRO-2014-0355R01-Corrections_of_locationPolicy_Resource

Ref:PRO-2014-0373R01-Res_Def_Template_Update

	V0.5.5
	29 Jul 2014
	Incorporated agreed contributions on July 29 at PRO #12 (by Nobu)

PRO-2014-0309R03-Notify_Request_Re-targeting
PRO-2014-0310R02-AE_Resource_Type_and_Procedure

PRO-2014-0311R03-TS-0004_Cleanup

PRO-2014-0312R01-accessControlPolicy_Resource_Type_and_Procedure

PRO-2014-0356R02-Area-based_notification_Service_of_OMA_Location_API

PRO-2014-0357R01-Correction_of_the_parameters_at_the_Device_Triggering_commands

PRO-2014-0364-remoteCSE_XSD

PRO-2014-0366R02-Extensibility_issues

PRO-2014-0375R02-oneM2M_enumeration_types

PRO-2014-0380R03-Correction_of_notification_procedure

PRO-2014-0381R01-Resource_Discovery_Procedure

PRO-2014-0383R01-Clarify_the_Trigger-Recipient-ID

PRO-2014-0385R01-restructuring_notification_text

PRO-2014-0389-Request_Applicability_on_Attributes

	V0.5.6
	30 Jul 2014
	Incorporated agreed contributions on July 30 at PRO #12 (by Nobu)

PRO-2014-0315R08-TS-0004_Annex_D_Cleanup
PRO-2014-0327R07-resources-for-mgmtObj
PRO-2014-0329R01-Delivery_resource_type_definition_-_Update

PRO-2014-0340R02-Resource_definition_of_AreaNwkInfo_and_AreaNwkDeviceInfo

PRO-2014-0343R04-Synchronization_of_announced_attribute

PRO-2014-0345R02-devInfo_eventLog_Management_Resource_Procedures

PRO-2014-0346R04-TS-0004-Mgmt_obj_common_operations_updates

PRO-2014-0348R03-mgmtCmd_update_TS0004

PRO-2014-0367R04-Procedures_for_accessing_resources
PRO-2014-0388-Enumeration_Data_Type_Definitions

PRO-2014-0390-cleaning-for-the-new-template
PRO-2014-0391R01-response-status-code-cleaning

PRO-2014-0394R02-Cleaning_CSEBase_resource_for_the_new_template
PRO-2014-0395R02-Cleaning_remoteCSE_resource_for_the_new_template
PRO-2014-0397R01-7_3_Cleanup_for_subscription_pollingChannel_pollingChannelURI
PRO-2014-0398R01-Clean_Up_of_locationPolicy_Resource

	V0.6.0
	01 Aug 2014
	Incorporated agreed contributions on July 31st at PRO #12 (by Shingo)

PRO-2014-0314R02-MIME_type_for_oneM2M_resource_representation

PRO-2014-0372R02-Status_Code_Cleanup

PRO-2014-0374R03-CMDH_Procedures

PRO-2014-0392R03-_schedule_resource_default_text

PRO-2014-0399R01-_container_contentInstance_update

PRO-2014-0401R02-clean_up_of_announced_resource_type

PRO-2014-0403R01-Response_Status_Update

PRO-2014-0404R01-authorizedNode_Resource_Type

PRO-2014-0405R01-m2mServiceSubscriptionProfile_Resource_Type

PRO-2014-0406-Management_common_operations_and_status_codes_updates

And, add correction missing implementation of PRO-2014-0304R03

	V0.6.1
	01 Aug 2014
	Prepared for Initial Release. Same content of V0.6.0 (published as Initial Release)

	V0.6.2
	09 Sep 2014
	Correction on editorial errors and notation for attribute/parameter on previous version.
Incorporated agreed contribution as of September 6th (by Shingo)
PRO-2014-0418-CR_notificationEvent_data_type

	V0.7.0
	26 Sep 2014
	Incorporated agreed contributions as of September 24th (by Shingo):
PRO-2014-0436R03-TS-0004_Annex_F_Cleanup

PRO-2014-0443R03-Complex_Type_Definitions_for_MIME_Types

PRO-2014-0444R04-Restructuring_Common_Data_Types

PRO-2014-0448R02-CR_TS-0004_statsConfig

PRO-2014-0464R02-CR_TS-0004_container

PRO-2014-0465R03-CR_TS-0004_contentInstance

PRO-2014-0467R02-CR_TS-0004_node

PRO-2014-0468R02-CR_TS-0004_remoteCSE

PRO-2014-0469R01-CR_TS-0004_subscription

PRO-2014-0476R01-aggregate-notification

PRO-2014-0477R03-procedure-for-service-layer-managements

PRO-2014-0483R02-TS-0004_updates_on_ac_and_cmdh_policies

PRO-2014-0488R02-TS-0004_sec_7_3_15_cleanup

PRO-2014-0507R01-TS-0004_sec_6_3_2_2_update

PRO-2014-0508R04-Short_Names_tables

PRO-2014-0509R01-Event_Category_in_Notification_Procedure

	V0.7.1
	7 Oct 2014
	Incorporated remaining agreed contributions at TP#13 (by Nobu)

PRO-2014-0449R02-CR_TS-0004_eventConfig

PRO-2014-0450R01-CR_TS-0004_statsCollect
PRO-2014-0463R02-CR_TS-0004_AE

PRO-2014-0466R03-CR_TS-0004_CSEBase

PRO-2014-0471R03-Design_principles
PRO-2014-0472R02-TS0004_XSD_Change_Request

PRO-2014-0489R03-TS-0004_sec_7_3_16_cleanup

PRO-2014-0510R02-Representation_of_Primitives

	V0.7.2
	30 Oct 2014
	Incorporated agreed contributions at PRO13.4 conference call (by Nobu)

PRO-2014-0528-Numbering_of_Generics_Procedures
PRO-2014-0529R01-authorization_procedure

PRO-2014-0532R01-CR_TS-0004_Msg_Param_Data_Types

	V0.7.3
	07 Nov 2014
	Made editorial clean-up during PRO13.5 and PRO#14 face-to-face meetings.
PRO-2014-0594-CR_for_TS-0004_Editorial_clean-up

	V0.8.0
	24 Nov 2014
	Incorporated remaining agreed contributions at TP#14 (by Nobu)
PRO-2014-0520R01-Resource_Type_Enumeration_Cleanup
PRO-2014-0534R01-Short_Names_cleanup
PRO-2014-0541R01-CR_for_TS-0004_responseMessageType
PRO-2014-0547R01-TS-0004_CR_Short_Names
PRO-2014-0551R01-CR_AE_resource_type
PRO-2014-0552R02-CR_container_contentInstance_resource_type
PRO-2014-0553R01-CR_CSEBase_remoteCSE_resource_type
PRO-2014-0554R02-CR_pollingChannel_resource_type
PRO-2014-0555R01-Chanes_to_shortname
PRO-2014-0556-Cleans_up_of_the_enum_data_types
PRO-2014-0557-Clean_up_of_mgmtObj_related_sections
PRO-2014-0558R03-Adding_Definition_of_missing_data_types
PRO-2014-0560R03-Definition_of_the_primitive_content_parameter
PRO-2014-0561R03-definition_of_m2m_encoding
PRO-2014-0562R02-Implementation_of_Filter_Criteria_as_concept
PRO-2014-0563R01-TS-0004_CR_appName_poaList
PRO-2014-0566R02-Design_principles_and_requirements
PRO-2014-0567R02-CR_for_DataTypes
PRO-2014-0569R01-CR_resource_creation
PRO-2014-0570R02-Correction_Primitives_Definition
PRO-2014-0572R01-Introduction_of_oneM2M_procedures
PRO-2014-0579R02-CR_multiplicity_for_notification_data_type
PRO-2014-0582R01-CR_Request_Response_Format
PRO-2014-0583R01-XSD_purpose
PRO-2014-0585R01-Resource_type_short_names_table_modifications
PRO-2014-0588-TR0004_CSEBase_and_AE_Change_Request
PRO-2014-0590-XML_attributes_notation
PRO-2014-0591R02-editorial_corrections_generic_procedures
PRO-2014-0595r01-TS0004_Annex_F_Change_Request
PRO-2014-0600R01-Further_Cleanup_of_mgmtObj_related_sections
Ammended as PRO-2014-0605R02 (by Shingo)

	v.0.8.1
	18 Jan 2015
	Incorporated agreed contributions before TP15 (by Shingo)

PRO-2014-0604R03-CR_conventions_for_clause7_3
PRO-2014-0607R01-editorial_changes_clause7_3_9_2_1
PRO-2014-0608R02-editorial_changes_clause7_4_2_2
PRO-2014-0610-CR_reference_point_applicability
PRO-2014-0612-common_use_of_m2m_timeStamp
PRO-2014-0613R01-TS0004_XSD_Change_Request
PRO-2014-0618-externalID_clarification
PRO-2014-0619R03-Response_Status_Code_Update
PRO-2015-0002R02-CR_for_TS-0004_abbreviation_clean-up
PRO-2015-0623-convention_adoption_for_clause_7_3
PRO-2015-0628R01-change-to-xsdtable-mgmtObj
PRO-2015-0630R02-cleanup-of-group-procedures
PRO-2015-0631R01-editorial-to-node-resource
PRO-2015-0632R02-modification_to_DM_common_operation
PRO-2015-0635R01-CR_for_TS-0004_m2m_requestStatus
PRO-2015-0638-CR_for_TS-0004_Editorial_clean-up_in_generic_procedures
PRO-2015-0642R01-CR_modification_of_resource_common_attributes
PRO-2015-0644R01-CR_modification_of_memberList
PRO-2015-0664-objectPath_to_objectPaths
PRO-2015-0643R01-CR_default_value_clarification

	v.0.8.2
	21 Jan 2015
	Incorporated agreed contributions on January 20 during TP15 (by Nobu)

PRO-2015-0007-Short_Names_correction
PRO-2015-0622R03-add_resourceName_to_common_attributes
PRO-2015-0625R02-RSC_cleanup_in_procedures
PRO-2015-0627R01-aggregated-response
PRO-2015-0629R02-cleanup_of_enumeration
PRO-2015-0640R03-CR_for_TS-0004_clean-up_for_creating_updating_request_resource
PRO-2015-0645R02-CR_unsupported_attribute_in_notification_procedure
PRO-2015-0667R03-CR_typeOfContent_to_contentInfo
PRO-2015-0669-CR_annex_d_missing_procedure
PRO-2015-0670R01-Clarify_virtual_resource_handling
PRO-2015-0673R03-CR_TS-0004-Annex-E
PRO-2015-0674-CR_for_TS-0004_clean-up_based_on_the_feedback_from_EditHelp
PRO-2015-0677R04-CR_for_TS-0004_serviceSubscribedAppRule
PRO-2015-0680-CR_annex_G_reference_cleanup
PRO-2015-0681R02-TS0004_status_code_type
PRO-2015-0682R01-CR_RSC_definition_update
PRO-2015-0685-CR_TS0004_for_Service_Subscription_Procedure

	v.9.0.0
	27 Jan 2015
	Incorporated agreed CRs on PRO 15 (over v.0.8.2 by Shingo)

PRO-2014-0584R07-XML_serialization

PRO-2014-0615R01-Examples_for_oneM2M_Simple_Data_Types

PRO-2014-0617R03-scheduleElement_data_format

PRO-2015-0004R03-CR_Shortname_for_filterCriteria

PRO-2015-0624R01-originator_restriction

PRO-2015-0626R02-data_type_for_pollingChannelURI

PRO-2015-0661R02-XML_Schema-related_changes_to_Clause_6

PRO-2015-0662R02-XML_Schema-related_changes_to_Clause_7

PRO-2015-0663R05-XML_Schema-related_changes_to_Annex_D

PRO-2015-0666R05-CR_create_response

PRO-2015-0675-CR_for_TS-0004_clean-up_delivery_and_request_resource_procedure

PRO-2015-0683R03-clean-up-of-common-operation

PRO-2015-0684R02-XML_Schema-related_changes_to_notification

PRO-2015-0686R03-TS0004_m2m_identifier_and_addressing

PRO-2015-0687R04-oneM2M_Media_Type

PRO-2015-0689R05-TS0004_Notification_for_non-blockingAsync
PRO-2015-0690R03-TS0004_Removal_of_Annex-A-
PRO-2015-0692-TS0004_Removal_of_Unicode reference
PRO-2015-0695R01-TS0004_JSON_serialization(replacement_of_2015-0005)

PRO-2015-0696R02-CR_for_TS-0004_nonBlockingAsynch_in_the_common_procedure

PRO-2015-0697R01-Partial_retrieving

PRO-2015-0701-CR_CSE_AE_registration_reference

PRO-2015-0702-TS0004_removal_of_res_def_template
PRO-2015-0703R01-TS-0004_CR_Verify_From_parameter_clause_7_2_2_1
PRO-2015-0704-TS0004_editorial_corrections

<xs:simpleType name="enumFooType">

 <xs:restriction base="xs:integer">

 <xs:enumeration value="1"/>

 <xs:enumeration value="2"/>

 <xs:enumeration value="3"/>

 </xs:restriction>

</xs:simpleType>

Figure � STYLEREF 4 \s �7.1.2.1��� SEQ Figure * ARABIC \s 4 �1�: Generic procedure of Originator

Orig-1.0: “Compose Request primitive”

Orig-2.0: “Send a Request to the Receiver CSE”

Orig-3.0: “Wait for Response primitive”

Orig-4.0: “Communication Method?”

Orig-6.0: Process Response

Orig-5.0: “Retrieve result from <request> resource”

blockingRequest

Start

Finish

nonBlockingRequestSynch

nonBlockingRequestAsynch

Orig-7.0: “Receive Notification”

Orig-8.0: “Create a Response”

Orig-9.0: “Send Response primitive”

Recv-1.0: “Check the validity of received request primitive”

Recv-2.0: Communication method?

Recv-6.0: Resource handling procedures

Recv-3.0: “Create <request> resource locally”

Recv-4.0: “Create a success Response”

Recv-5.0: “Send Response primitive”

nonBlockingRequestAsynch

nonBlockingRequestSynch

Recv-6.0: Resource handling procedures

Recv-7.0: “Update <request> resource”

Finish

Start

Recv-3.0: “Create <request> resource locally”

Recv-4.0: “Create a success Response”

Recv-5.0: “Send Response primitive”

Recv-6.0: Resource handling procedures

Recv-7.0: “Update <request> resource”

Recv-8.0: “Send Notification”

Recv-9.0: “Wait for Response primitive”

blockingRequest

Recv-6.10: “Queue request primitive and execute CMDH message forwarding procedure”

Recv-6.1: Hosting CSE of the targeted resource?

Start

Recv-6.3: “Check authorization of the Originator”

Recv-6.4: “Check validity of resource representation for the given resource type”

Recv-6.2: “Check existence of the addressed resource”

Recv-6.5: “Create/Update/Retrieve/Delete/Notify operation is performed”

Recv-6.6: “Announce/De-announce the resource”

Finish

Yes

No

Recv-6.7: “Create a success response”

Recv-6.8: “Send Response Primitive”

Recv-6.9: CMDH processing supported?

Recv-6.11: “Forwarding”

No

Yes

Recv-6.0.1: Receiver is Registrar CSE & Originator is AE & operation is create

Recv-6.0.2: “Check Service Subscription Profile”

Yes

No

Recv-6.6.1: “Communication Method?”

Else

blockingRequest

© oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TTA, TTC)
Page 154 of 228
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

CSE
Location
Server
OMA REST NetAPI for Terminal Location
Interface

1. Create new area notification subscription
2. Response the subscription
Terminal
Cross in the area
3. Notify new location information
4. Response

Location Configuration Changing
5. Update a subscription
6. Response

_1477223223.doc

Transport Layer Protocol

(UDP/TCP)

Transport Layer Protocol

(UDP/TCP)

IP- based Underlying Network

Application Layer Communication

Protocol (e.g. HTTP, CoAP, MQTT)

Application Layer Communication

Protocol (e.g. HTTP, CoAP, MQTT)

Application/Common Service Layer

Binding Function

Binding Function

Primitives

Primitives

Response

Response

Request

Receiver

Originator

Request

_1483317735.vsd
2.If <request> resource type is supported, <request> resource shall be created, requestStatus is set to “PENDING”.

Originator

Transit CSE
(Registrar CSE)

1.Request (rt:non-blockingRequestSynch)

3.Response (rsc: Locally accepted, cn: reference to <request>)

6. Response (rsc: ACCEPTED, cn: reference to <request>)

11. Request (op:RETRIEVE, to: reference to <request>)

12.Response (rsc:OK, cn: <request> resource)

5.If <request> resource type is supported, <request> resource shall be created, requestStatus is set to “ACCEPTED”.

The addressed resource is stored here

Hosting CSE

10. Requested results is available, UPDATE <request> resource, containing results in operationResult attribute, updating the values of requestStatus stateTag and lastModificationTime

4.Forwarding Request

7. Processing resources completes. UPDATE <request> resource, containing results in operationResult attribute, updating the values of requestStatus stateTag and lastModificationTime

8.Request (op:RETRIEVE, to: reference to <request>)

9.Response (rsc: succesful,cn: <request> resource)

_1483317785.vsd
2.If <request> resource type is supported, <request> resource shall be created, requestStatus is set to “ACCEPTED” .

The addressed resource is stored here

Originator

Hosting CSE

1.Request (rt:non-blockingRequestSynch)

3.Response (rsc: ACCEPTED, cn:reference to <request>)

4.Requsted results is available, UPDATE <request> resource, containing results in operationResult attribute, updating the values of requestStatus stateTag and lastModificationTime

5.Request (op:RETRIEVE, to:reference to <request>)

6.Response (rsc:OK, cn:<request> resource)

_1484124183.vsd
�

�

�

�

Message needs to be forwarded asap

_1483317458.vsd
2.Results are available

The addressed resource is stored here

Originator

Hosting CSE

1.Request (rt:BlockingRequest)

3.Response (cn:requested results, rsc:OK)

_1467746500.vsd
�

�

�

�

New request or response message for CMDH message validation

Determine value to be used for ‘ec’ (step 1.1 in II.iii)

Determine remaining missing CMDH parameters as function of ‘ec’ (step 1.2 in II.iii)

_1467746504.vsd
�

�

�

�

New message needs to be buffered for CMDH message forwarding

Find buffered request message with same (‘fr’,’to’,’op’) parameters

_1468236814.vsd
�

�

�

�

New request or response message for CMDH Processing received

CMDH message validation

Queue received message for CMDH message forwarding

Successful ?

YES

Message Type ?

Send unsuccessful response

request

Ignore response

response

NO

 non-blocking request ?

Send acknowledgement response to entity that sent the request via Mca or Mcc

YES

End

NO

Create <request> resource if supported

Message Type ?

response

request

Memorize Req-ID as open blocking request, set timer for timeout, wait for response to forward to Originator or send unsuccessful response when timeout occurs

_1467746502.vsd
�

�

�

�

New message queued up for CMDH message forwarding

Any underlying network becomes usable due to transition(s) in allowed schedule or due to change(s) in connectivity

End

Evaluate if any message forwarding is currently allowed (step 2.2. in II.iv)

/queries
//{serverRoot}/location/{apiVersion}
/subscriptions
/location
/periodic
/periodic

/area/circle

CSE
Location
Server
OMA REST NetAPI for Terminal Location
Interface
1. Request Single or Multiple Terminal Location
3. Response: Terminal Location

2. Retrieve terminal
location

CSE
Location
Server
OMA REST NetAPI for Terminal Location
Interface

1. Create new periodic notification subscription
2. Response the subscription
Timer
Expiration
3. Notify new location information
4. Response

Location Configuration Changing
5. Update an individual subscription
6. Response

_1458556837.doc

[image: image1]

Control part

Content part

