-

[image: image1.png]
	oneM2M
Technical Specification

	Document Number
	oneM2M-TS-0034-V-0.1.0

	Document Name:
	Semantics Support

	Date:
	 2017-06-26

	Abstract:
	This specification provides normative text for semantic enablement in oneM2M

	Template Version: January 2017 (Dot not modify)

This Specification is provided for future development work within oneM2M only. The Partners accept no liability for any use of this Specification.
The present document has not been subject to any approval process by the oneM2M Partners Type 1. Published oneM2M specifications and reports for implementation should be obtained via the oneM2M Partners' Publications Offices.
About oneM2M

The purpose and goal of oneM2M is to develop technical specifications which address the need for a common M2M Service Layer that can be readily embedded within various hardware and software, and relied upon to connect the myriad of devices in the field with M2M application servers worldwide.

More information about oneM2M may be found at: http//www.oneM2M.org

Copyright Notification

© 2017, oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSTDI, TTA, TTC).

All rights reserved.
The copyright extends to reproduction in all media.

Notice of Disclaimer & Limitation of Liability

The information provided in this document is directed solely to professionals who have the appropriate degree of experience to understand and interpret its contents in accordance with generally accepted engineering or other professional standards and applicable regulations. No recommendation as to products or vendors is made or should be implied.

NO REPRESENTATION OR WARRANTY IS MADE THAT THE INFORMATION IS TECHNICALLY ACCURATE OR SUFFICIENT OR CONFORMS TO ANY STATUTE, GOVERNMENTAL RULE OR REGULATION, AND FURTHER, NO REPRESENTATION OR WARRANTY IS MADE OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR AGAINST INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS. NO oneM2M PARTNER TYPE 1 SHALL BE LIABLE, BEYOND THE AMOUNT OF ANY SUM RECEIVED IN PAYMENT BY THAT PARTNER FOR THIS DOCUMENT, WITH RESPECT TO ANY CLAIM, AND IN NO EVENT SHALL oneM2M BE LIABLE FOR LOST PROFITS OR OTHER INCIDENTAL OR CONSEQUENTIAL DAMAGES. oneM2M EXPRESSLY ADVISES ANY AND ALL USE OF OR RELIANCE UPON THIS INFORMATION PROVIDED IN THIS DOCUMENT IS AT THE RISK OF THE USER.

Contents

3Contents

1
Scope
4
2
References
4
2.1
Normative references
4
2.2
Informative references
4
3
Definitions, symbols and abbreviations
4
3.1
Definitions
4
3.2
Symbols
5
3.3
Abbreviations
5
3.4
Acronyms
5
4
Conventions
6
5
Architectural Model and Concepts
6
5.1
Introduction
6
6
Resource Types
6
6.1
Overview
6
6.2
Resource Type X
6
6.2.1
Definition
6
6.2.2
Operations
6
7
Functional Descriptions
6
7.1
Overview
6
7.2
Access Control
7
7.3
Semantics Annotation
7
7.4
Semantic Filtering and Discovery
7
7.5
Semantic Queries and Query Scope
7
7.6
Semantics Reasoning
7
7.7
Semantics Mash-up
7
7.8
Semantics-based Data Analytics
7
7.9
Ontology Management
7
7.10
Semantic Validation
7
Proforma copyright release text block
7
Annexes
8
Annex <y>: Bibliography
8
History
9

1 Scope

The present document …
EXAMPLE:
The present document provides the necessary adaptions to the endorsed document.

The Scope shall not contain requirements.

2 References

The following text block applies.

References are either specific (identified by date of publication and/or edition number or version number) or non‑specific. For specific references, only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.

2.1 Normative references

Clause 2.1 only shall contain normative (essential) references which are cited in the document itself. These references have to be publicly available and in English.
The following referenced documents are necessary for the application of the present document.
 [1]

oneM2M TS-0001: "Functional Architecture".

2.2 Informative references
Clause 2.2 shall only contain informative references which are cited in the document itself.

The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.
[i.1]
oneM2M Drafting Rules (http://www.onem2m.org/images/files/oneM2M-Drafting-Rules.pdf)
3 Definitions, symbols and abbreviations

Delete from the above heading the word(s) which is/are not applicable.
3.1 Definitions

Clause numbering depends on applicability.

· A definition shall not take the form of, or contain, a requirement.

· The form of a definition shall be such that it can replace the term in context. Additional information shall be given only in the form of examples or notes (see below).

· The terms and definitions shall be presented in alphabetical order.
For the purposes of the present document, the [following] terms and definitions [given in ... and the following] apply:

Definition format

<defined term>: <definition>

If a definition is taken from an external source, use the format below where [N] identifies the external document which must be listed in Section 2 References.
<defined term>[N]: <definition>

example 1: text used to clarify abstract rules by applying them literally

NOTE:
This may contain additional information.

3.2 Symbols

Clause numbering depends on applicability.

For the purposes of the present document, the [following] symbols [given in ... and the following] apply:

Symbol format

<symbol>
<Explanation>

<2nd symbol>
<2nd Explanation>

<3rd symbol>
<3rd Explanation>

3.3 Abbreviations

Abbreviations should be ordered alphabetically.

Clause numbering depends on applicability.

For the purposes of the present document, the [following] abbreviations [given in ... and the following] apply:

Abbreviation format

ARIB
Association of Radio Industries and Businesses
ATIS
Alliance for Telecommunications Industry Solutions
CCSA
China Communications Standards Association
ETSI
European Telecommunications Standards Institute

TIA
Telecommunications Industry Association,
TSDSI
Telecommunications Standards Development Society

TTA
Telecommunications Technology Association
TTC
Telecommunication Technology Committee
AE
Application Entity

CRUD
Create, Retrieve, Update, Delete

CSE
Common Service Entity

CSF
Common Service Function

IoT
Internet of Things

MR
Mashup Requestor

RDF

Resource Description Framework

RH
Resource Host

SMF
Semantic Mashup Function

SMI
Semantic Mashup Instance

SMJP
Semantic Mashup Job Profile

SPARQL
SPARQL Protocol and RDF Query Language
<ABREVIATION1>
<Explanation>

<ABREVIATION2>
<Explanation>

<ABREVIATION3>
<Explanation>

3.4 Acronyms

Acronyms should be ordered alphabetically.

Clause numbering depends on applicability.

For the purposes of the present document, the [following] abbreviations [given in ... and the following] apply:

Acronym format

<ACRONYM1>
<Explanation>

<ACRONYM2>
<Explanation>

<ACRONYM3>
<Explanation>

4 Conventions

The key words “Shall”, ”Shall not”, “May”, ”Need not”, “Should”, ”Should not” in this document are to be interpreted as described in the oneM2M Drafting Rules [i.1]
5 Architectural Model and Concepts
5.1 Introduction

<Text>

6 Resource Types

Note: This section specifies new resource types for specific support of semantic functionality only (and the related CRUD procedures). General purpose resources will be referenced from TS-0001.
6.1 Overview
<Text>
6.2 Resource Type semanticMashupJobProfile
Editor’s Note: Resource type semanticMashupJobProfile including its definition and operations shall be moved to TS-0001.
6.2.1 Definition

Note: This section shows resource types, similar to TS-0001 clause 9.6.
The <semanticMashupJobProfile> resource represents a Semantic Mashup Job Profile (SMJP). The <semanticMashupJobProfile> resource shall contain the child resources specified in Table 6.2.1-1.
Table 6.2.1-1: Child resources of <semanticMashupJobProfile> resource

	Child Resources of <semanticMashupJobProfile>
	Child Resource Type
	Multiplicity
	Description

	<variable>
	<semanticMashupInstance>
	0..n
	Represents semantic mashup instances which have been created based on this <semanticMashupJobProfile> resource. This child resource is optional as related<semanticMashupJobProfile> and <semanticMashupInstance> may be stored separately within the resource tree or on different CSEs.

	<variable>
	<semanticDescriptor>
	0..1
	Describes general semantic information about this <semanticMashupJobProfile> resource.

	<variable>
	<subscription>
	0..n
	Represents subscriptions on this resource.

The <semanticMashupJobProfile> resource shall contain the attributes specified in Table 6.2.1-2.
Table 6.2.1-2: Attributes of <semanticMashupJobProfile> resource

	Attributes of
<semanticMashupJobProfile>
	Multiplicity
	RW/

RO/

WO
	Description

	memberFilter
	1
	RW
	Semantically describes the types of member resources which are involved in this semantic mashup job profile <semanticMashupJobProfile>. When a <semanticMashupInstance> is created based on this <semanticMashupJobProfile>, the member resources of the <semanticMashupInstance> shall be discovered and selected based on this memberFilter attribute. The value of this attribute is a SPARQL query.

	smiID
	0..1(L)
	RO
	List of identifiers (e.g. URI) of related semantic mashup instance resources which have been created based on this <semanticMashupJobProfile>.

	inputDescriptor
	0..1
	RW
	Semantically (e.g. in semantic triples) describes the types of input parameters, which are required as input parameters in order to use this <semanticMashupJobProfile>. A Mashup Requestor needs to know and understand all types of input parameters as described in this attribute in order to create a <semanticMashupInstance> based on this <semanticMashupJobProfile>. Some semantic mashup job profiles may not need input parameters and as such this attribute is optional.

	outputDescriptor
	1
	RW
	Semantically (e.g. in semantic triples) describes the types of output parameters generated as semantic mashup results if using this <semanticMashupJobProfile>.

	functionDescriptor
	1
	RW
	Semantically (e.g. in semantic triples) describes the mashup function of this <semanticMashupJobProfile>. The mashup function specifies how semantic mashup results should be generated based on input parameters (defined by the inputDescriptor attribute) and original member resources (defined by the memberFilter attribute).

The structure of a <semanticMashupJobProfile> resource is also illustrated in Figure 6.2.1-1.

[image: image2.emf]<semanticMashupJobProfile>

memberFilter

<semanticMashupInstance>

smiID

1

1(L)

0:1(L)

0:n

<subscription>

0:n

0:1

1

<semanticDescriptor>

0:1

inputDescriptor

outputDescriptor

functionDescriptor

Figure 6.2.1-1: Structure of <semanticMashupJobProfile> Resource

6.2.2 Operations
Note: This section shows resource-type specific operations, i.e. CRUD <X> from TS-0001 clause 10.

A <semanticMashupJobProfile> resource can be provisioned to a Hosting CSE which provides semantic mashup function; alternatively, an AE or CSE can request to create <semanticMashupJobProfile> resource at the Hosting CSE. Once a <semanticMashupJobProfile> resource is provisioned or created at the Hosting CSE, other oneM2M CSEs/AEs, which act as Mashup Requestors, can discover, retrieve, update, or delete it based on the requirements.
Figure 6.2.2-1 illustrates a generic procedure (e.g. Create/Retrieve/Update/Delete) to operate on a <semanticMashupJobProfile> resource. Detailed descriptions are given in following clauses 6.2.2.1, 6.2.2.2, 6.2.2.3, and 6.2.2.4, respectively.

[image: image3.emf]Receiver

(a CSE)

Originator

(a CSE or AE)

1. Processing at Originator

before sending Request

2. Request Message

(e.g. Create/Retrieve/Update/Delete

<semanticMashupJobProfile>)

3. Processing at Receiver

4. Response Message

Figure 6.2.2-1: Procedures for operating a <semanticMashupJobProfile> resource

6.2.2.1 Create <semanticMashupJobProfile>

This procedure shall be used for creating a <semanticMashupJobProfile> resource as described in Table 6.2.2.1-1.

Table 6.2.2.1-1: <semanticMashupJobProfile> CREATE

	<semanticMashupJobProfile> CREATE

	Associated Reference Point
	Mca, Mcc and Mcc'.

	Information in Request message
	All parameters defined in Table 8.1.2-3 in [1] apply with the specific details for:

Content: The resource content shall provide the information about an <semanticMashupJobProfile> resource (e.g. attribute values) as described in the Clause 6.2.1.

	Processing at Originator before sending Request
	According to clause 10.1.1.1 in [1].

	Processing at Receiver
	According to clause 10.1.1.1 in [1].

	Information in Response message
	All parameters defined in Table 8.1.3-1 in [1] apply with the specific details for:

Content: Address of the created <semanticMashupJobProfile> resource, according to clause 10.1.1.1 in [1].

	Processing at Originator after receiving Response
	According to clause 10.1.1.1 in [1].

	Exceptions
	According to clause 10.1.1.1 in [1].

6.2.2.2 Retrieve <semanticMashupJobProfile>
This procedure shall be used for retrieving the attributes of a <semanticMashupJobProfile> resource as described in Table 6.2.2.2-1.
Table 6.2.2.2-1: <semanticMashupJobProfile> RETRIEVE

	<semanticMashupJobProfile> RETRIEVE

	Associated Reference Point
	Mca, Mcc and Mcc'.

	Information in Request message
	All parameters defined in Table 8.1.2-3 in [1] apply with the specific details for:

Content: void.

	Processing at Originator before sending Request
	According to clause 10.1.2 in [1].

	Processing at Receiver
	The Receiver shall verify the existence (including Filter Criteria checking, if it is given) of the target resource or the attribute and check if the Originator has appropriate privileges to retrieve information stored in the resource/attribute. Otherwise clause 10.1.2 in [1] applies.

	Information in Response message
	All parameters defined in Table 8.1.3-1 in [1] apply with the specific details for:

Content: attributes of the <semanticMashupJobProfile> resource as defined in clause 6.2.1.

	Processing at Originator after receiving Response
	According to clause 10.1.2 in [1].

	Exceptions
	According to clause 10.1.2 in [1].
In addition, a timer has expired. The Receiver responds with an error.

6.2.2.3 Update <semanticMashupJobProfile>

This procedure as described in Table 6.2.2.3-1 shall be used to update an existing <semanticMashupJobProfile> resource, e.g. an update to its inputDescriptor attribute.

Table 6.2.2.3-1: <semanticMashupJobProfile> UPDATE

	<semanticMashupJobProfile> UPDATE

	Associated Reference Point
	Mca, Mcc and Mcc'.

	Information in Request message
	All parameters defined in Table 8.1.2-3 in [1] apply with the specific details for:

Content: attributes of the <semanticMashupJobProfile> resource as defined in clause 6.2.1 to be updated.

	Processing at Originator before sending Request
	According to clause 10.1.3 in [1].

	Processing at Receiver
	According to clause 10.1.3 in [1].

	Information in Response message
	According to clause 10.1.3 in [1].

	Processing at Originator after receiving Response
	According to clause 10.1.3 in [1].

	Exceptions
	According to clause 10.1.3 in [1].

6.2.2.4 Delete <semanticMashupJobProfile>
This procedure as described in Table 6.2.2.4-1 shall be used to delete an existing <semanticMashupJobProfile> resource.

Table 6.2.2.4-1: <semanticMashupJobProfile> DELETE

	<semanticMashupJobProfile> DELETE

	Associated Reference Point
	Mca, Mcc and Mcc'.

	Information in Request message
	All parameters defined in Table 8.1.2-3 in [1] apply.

	Processing at Originator before sending Request
	According to clause 10.1.4.1 in [1].

	Processing at Receiver
	According to clause 10.1.4.1 in [1].

· If the <semanticMashupJobProfile> to be deleted has smiID attribute and the smiID attribute has a value, the Receiver notifies each <semanticMashupInstance> resource as included in the smiID attribute of the removal of the <semanticMashupJobProfile> since those <semanticMashupInstance> resources use this <semanticMashupJobProfile>.
· If the <semanticMashupJobProfile> to be deleted has <semanticMashupInstance> child resources, all those <semanticMashupInstance> child resources shall be removed accordingly.

	Information in Response message
	According to clause 10.1.4.1 in [1].

	Processing at Originator after receiving Response
	According to clause 10.1.4.1 in [1].

	Exceptions
	According to clause 10.1.4.1 in [1].

6.3 Resource Type semanticMashupInstance

Editor’s Note: Resource type semanticMashupInstance including its definition and operations shall be moved to TS-0001.
6.3.1 Definition
Note: This section shows resource types, similar to TS-0001 clause 9.6.
<semanticMashupInstance> models and represents a Semantic Mashup Instance (SMI) resource. A CSE/AE as a Mashup Requestor can request to create <semanticMashupInstance> resources at another oneM2M CSE which implements the semantic mashup function. Each created <semanticMashupInstance> resource corresponds to a semantic mashup job profile (i.e. a <semanticMashupJobProfile> resource); in other words, how the <semanticMashupInstance> resource should execute the mashup operation to calculate the mashup result is specified in the corresponding <semanticMashupJobProfile> resource. Note that the <semanticMashupInstance> and its corresponding <semanticMashupJobProfile> resources may be placed at the same CSE or at different CSEs, and the smjpID attribute of the <semanticMashupInstance> allows locating the corresponding <semanticMashupJobProfile> resource. If the <semanticMashupInstance> resource has a <semanticMashupResult> as its child resource, the Mashup Requestor may use it to retrieve the mashup result.

<semanticMashupInstance> resource shall contain the child resources specified in Table 6.3.1-1.
Table 6.3.1-1: Child resources of <semanticMashupInstance> resource

	Child Resources of <semanticMashupInstance>
	Child Resource Type
	Multiplicity
	Description

	<variable>
	<semanticMashupResult>
	0..n
	Contains mashup result. A <semanticMashupInstance> resource may have multiple <semanticMashupResult> child resources, with each mashup result instance resulting from different input parameters and/or member resource values. The hosting CSE generates <semanticMashupResult> each time when it executes the mashup operation and calculate a new semantic mashup result (e.g. for long-lived mashup application as described in the clause 7.7).

	<variable>
	<semanticDescriptor>
	0..1
	Describes general semantic information about this <semanticMashupInstance> resource.

	<variable>
	<subscription>
	0..n
	Stands for any subscription on this <semanticMashupInstance>.

	<mashup>
	<mashup>
	0..1
	This is a standard oneM2M virtual resource. When a Mashup Requestor sends a RETRIEVE operation on this virtual resource, it triggers a re-calculation and re-generation of the mashup result.

<semanticMashupInstance> resource shall contain the attributes specified in Table 6.3.1-2.

Table 6.3.1-2: Attribute of <semanticMashupInstance> resource

	Attributes of
<semanticMashupInstance>
	Multiplicity
	RW/

RO/

WO
	Description

	smjpID
	1
	RW
	Denotes the identifier (e.g. URI) of the semantic mashup job profile resource <semanticMashupJobProfile> which this <semanticMashupInstance> is based on.

	smjpInputParameter
	1
	RW
	Contains the value of all input parameters which are required to calculate the mashup result. Note that the types of these input parameters are specified by the inputDescriptor attribute of the corresponding <semanticMashupJobProfile> which is denoted by the smjpID attribute of this <semanticMashupInstance> resource. This attribute is not needed if the corresponding <semanticMashupJobProfile> does not have inputDescriptor attribute.

	memberStoreType
	1
	RW
	Indicates the way which member resources should be stored under this <semanticMashupInstance>. For example,

· If memberStoreType=“URI Only”, the mashupMember attribute contains the URI of each member resource;

· If memberStoreType=“URI and Value”, the mashupMember attribute contains both the URI and the value of each member resource.

	mashupMember
	0:1(L)
	RW
	Stores the URI and/or value of each mashup member resource, which is dependent on the value of memberStoreType attribute.

	resultGenType
	1(L)
	RW
	Describes how the mashup result should be generated using this <semanticMashupInstance>. Example values for this attribute could be one of the following or a combination of them.

· If resultGenType=“When SMI Is Created”, the semantic mashup result is generated when this <semanticMashupInstance> is created by running semantic functions specified by the corresponding <semanticMashupJobProfile>.

· If resultGenType=“When Mashup Requestor Requests”, the mashup result is to be calculated and generated when requested or triggered by a Mashup Requestor which sends a RETRIEVE operation on the virtual child resource mashup.

· If resultGenType=“Periodically”, the CSE which hosts <semanticMashupInstance> calculates and generates the semantic mashup result periodically based on the periodForResultGen attribute.
· If resultGenType=“When A Mashup Member Is Updated”, the CSE which hosts <semanticMashupInstance> calculates and generates the semantic mashup result whenever there is any update on the mashupMember attribute of <semanticMashupInstance>.

	periodForResultGen
	0:1
	RW
	Is the time period for re-calculating and generating the semantic mashup result. When it is the time to re-calculate the semantic mashup result, the CSE hosting this <semanticMashupInstance> needs to retrieve the latest content value of each member resource if it is not obtained yet. This attribute is needed when resultGenType=“Periodically”.

The structure of <semanticMashupInstance> resource is also illustrated in Figure 6.3.1-1.

[image: image4.emf]<semanticMashupInstance>smjpID1mashupMember0:1(L)<subscription>0:10:n<semanticMashupResult>0:n<semanticDescriptor>resultGenType1smjpInputParameter0:1memberStoreType1periodForResultGen0:1mashup0:1

Figure 6.3.1-1: Structure of <semanticMashupInstance> Resource

6.3.2 Operations
Note: This section shows resource-type specific operations, i.e. CRUD <X> from TS-0001 clause 10.
Figure 6.3.2-1 illustrates the procedure to operate a <semanticMashupInstance> resource (e.g. Create/Retrieve/Update/Delete a <semanticMashupInstance> resource). Detail descriptions are given in the clause 6.3.2.1, 6.3.2.2, 6.3.2.3, and 6.3.2.4, respectively.

[image: image5.emf]Receiver

(a CSE)

Originator

(a CSE or AE)

1. Processing at Originator

before sending Request

2. Request Message

(e.g. Create/Retrieve/Update/Delete

<semanticMashupInstance>)

3. Processing at Receiver

4. Response Message

Figure 6.3.2-1: Procedures for Operating a <semanticMashupInstance> Resource

6.3.2.1 Create <semanticMashupInstance>

This procedure shall be used for creating a <semanticMashupInstance> resource as described in Table 6.3.2.1-1.

Table 6.3.2.1-1: <semanticMashupInstance> CREATE

	<semanticMashupInstance> CREATE

	Associated Reference Point
	Mca, Mcc and Mcc'.

	Information in Request message
	All parameters defined in Table 8.1.2-3 in [1] apply with the specific details for:

Content: The resource content shall provide the information about a <semanticMashupInstance> resource (e.g. attribute values) as described in the clause 6.3.1.

	Processing at Originator before sending Request
	According to clause 10.1.1.1 in [1].

· If the Originator knows the identifier or URI of each mashup member, it can include the value of mashupMember in the Request message.

	Processing at Receiver
	According to clause 10.1.1.1 in [1].

· The Receiver shall first check if the corresponding <semanticMashupJobProfile> as denoted by smjpID attribute exists or not. If it does not exist, the Receiver shall not create the <semanticMashupInstance> and shall report an error (e.g. “<semanticMashupJobProfile> does not exist”) in the Response message to the Originator. If it exists, the Receiver shall retrieve its content.

· The Receiver shall check if smjpInputParameter included in the Request message meets the input parameter requirement as specified by the inputDescriptor attribute of corresponding <semanticMashupJobProfile>. If it does not meet the requirement, the Receiver shall not create the <semanticMashupInstance> and shall report an error (e.g. “smjpInputParameter” does not meet the requirement”) in the Response message to the Originator.

· According to the memberFilter attribute of the retrieved <semanticMashupJobProfile>, the Receiver extracts the SPARQL query contained in memberFilterand use it to discover and determine mashup member resources for the <semanticMashupInstance> to be created.

· Dependent on the memberStoreType attribute contained in the Request message, the Receiver maintains each member resource in different ways. If memberStoreType=”URI Only”, the Receiver creates the mashupMember attribute containing the URIs of the determined member resources. If memberStoreType=”URI and Value”, the Receiver creates the mashupMember attribute, retrieves the content value of each member resource and then stores both the identifier and the content value of each member resource in the mashupMember attribute.

· Depending on the resultGenType attribute contained in the Request message, the Receiver prepares to execute the corresponding semantic mashup job profile as follows.
· If resultGenType=” When SMI Is Created”, the Receiver retrieves the content value of each member resource if not retrieved yet; then it executes mashup functions as specified by the <semanticMashupJobProfile> and generates semantic mashup result, which shall be stored in the <semanticMashupResult> child resource.
· If resultGenType=”When A Mashup Requestor Requests”, there is no further processing at the Receiver.
· If resultGenType=”Periodically”, the Receiver shall set up a timer according to the periodForResultGen attribute contained in the Request message. When the timer expires, the Receiver shall retrieve the content value of each member resource and re-generate the mashup result; then it renews the timer.
· If resultGenType=”When A Mashup Member Is Updated”, there is no further processing at the Receiver.

	Information in Response message
	All parameters defined in Table 8.1.3-1 in [1] apply with the specific details for:

Content: Address of the created <semanticMashupInstance> resource and address of created <semanticMashupResult> resource if any, according to clause 10.1.1.1 in [1].

	Processing at Originator after receiving Response
	According to clause 10.1.1.1 in [1].

	Exceptions
	According to clause 10.1.1.1 in [1].

6.3.2.2 Retrieve <semanticMashupInstance>
This procedure shall be used for retrieving the attributes of a <semanticMashupInstance> resource as described in Table 6.3.2.2-1.

Table 6.3.2.2-1: <semanticMashupInstance> RETRIEVE

	<semanticMashupInstance> RETRIEVE

	Associated Reference Point
	Mca, Mcc and Mcc'.

	Information in Request message
	All parameters defined in Table 8.1.2-3 in [1] apply with the specific details for:

Content: void.

	Processing at Originator before sending Request
	According to clause 10.1.2 in [1].

	Processing at Receiver
	The Receiver shall verify the existence (including Filter Criteria checking, if it is given) of the target resource or the attribute and check if the Originator has appropriate privileges to retrieve information stored in the resource/attribute. Otherwise clause 10.1.2 in [1] applies.

	Information in Response message
	All parameters defined in Table 8.1.3-1 in [1] apply with the specific details for:

Content: attributes of the <semanticMashupInstance> resource as defined in the clause 6.3.1.

	Processing at Originator after receiving Response
	According to clause 10.1.2 in [1].

	Exceptions
	According to clause 10.1.2 in [1].

6.3.2.3 Update <semanticMashupInstance>
This procedure as described in Table 6.3.2.3-1 shall be used to update an existing <semanticMashupInstance>, e.g. an update to its memberStoreType attribute.

Table 6.3.2.3-1: <semanticMashupInstance> UPDATE

	<semanticMashupInstance> UPDATE

	Associated Reference Point
	Mca, Mcc and Mcc'.

	Information in Request message
	All parameters defined in Table 8.1.2-3 in [1] apply with the specific details for:

Content: attributes of the <semanticMashupInstance> resource as defined the clause 6.3.1 to be updated.

	Processing at Originator before sending Request
	According to clause 10.1.3 in [1].

	Processing at Receiver
	According to clause 10.1.3 in [1].

· If the updated attribute in the Request message is smjpInputParameter and if the original resultGenType=”When SMI Is Updated”, the Receiver needs to recalculate the semantic mashup result using the new values of input parameters.

· If the updated attribute in the Request message is memberStoreType, the Receiver needs to change the way to maintain mashup member resources. For example, if memberStoreType is updated from “URI Only” to “URI and Value”, the Receiver needs to retrieve the content value of each mashup member resource and store the values together with URI in mashupMember attribute. If memberStoreType is updated from “URI and Value” to “URI Only”, the Receiver needs mashupMember attribute to only maintain the identifier of each mashup member.
· If the updated attribute in the Request message is resultGenType, the Receiver changes the way to calculate/generate the semantic mashup result accordingly.

	Information in Response message
	According to clause 10.1.3 in [1].

	Processing at Originator after receiving Response
	According to clause 10.1.3 in [1].

	Exceptions
	According to clause 10.1.3 in [1].

6.3.2.4 Delete <semanticMashupInstance>
This procedure as described in Table 6.3.2.4-1 shall be used to delete an existing <semanticMashupInstance>.

Table 6.3.2.4-1: <semanticMashupInstance> DELETE

	<semanticMashupInstance> DELETE

	Associated Reference Point
	Mca, Mcc and Mcc'.

	Information in Request message
	All parameters defined in Table 8.1.2-3 in [1] apply.

	Processing at Originator before sending Request
	According to clause 10.1.4.1 in [1].

	Processing at Receiver
	According to clause 10.1.4.1 in [1].

· In addition, The Receiver removes this <semanticMashupInstance> from the smiID attribute of the corresponding <semanticMashupJobProfile>.

	Information in Response message
	According to clause 10.1.4.1 in [1].

	Processing at Originator after receiving Response
	According to clause 10.1.4.1 in [1].

	Exceptions
	According to clause 10.1.4.1 in [1].

6.4 Resource Type mashup
Editor’s Note: Resource type mashup including its definition and operations shall be moved to TS-0001.
6.4.1 Definition
Note: This section shows resource types, similar to TS-0001 clause 9.6.
<mashup> is a virtual resource because it does not have a representation. It is the child resource of a <semanticMashupInstance> resource. When a RETRIEVE operation is sent to the <mashup> resource, it triggers a calculation and generation of the mashup result based on its parent resource <semanticMashupInstance>.
6.4.2 Operations

Note: This section shows resource-type specific operations, i.e. CRUD <X> from TS-0001 clause 10.
Only Retrieve operation shall be allowed on a <mashup> virtual resource. A Create, an Update, or a Delete operation on a <mashup> virtual resource shall not be supported.
6.4.2.1 Retrieve <mashup>
This procedure shall be used for triggering the CSE which hosts the <semanticMashupInstance> to recalculate mashup results and returning the mashup result back to the requestor (e.g. an AE) of this retrieve request as described in Table 6.4.2.1-1.

Table 6.4.2.1-1: <mashup> RETRIEVE

	<mashup> RETRIEVE

	Associated Reference Point
	Mca, Mcc and Mcc'.

	Information in Request message
	All parameters defined in Table 8.1.2-3 in [1] apply with the specific details for:

To: <semanticMashupInstance>/<mashup>
Content: void.

	Processing at Originator before sending Request
	According to clause 10.1.2 in [1].

	Processing at Receiver
	The Receiver shall check if the Originator has appropriate privileges. Otherwise clause 10.1.2 in [1] applies.

· The Hosting CSE triggers the recalculation of semantic mashup result for <mashup>’s parent resource <semanticMashupInstance>. The recalculated mashup result shall be stored in the <semanticMashupInstance>’s child resource <semanticMashupResult>.

	Information in Response message
	All parameters defined in Table 8.1.3-1 in [1] apply with the specific details for:

Content: the mashup result, if indicated in the request

	Processing at Originator after receiving Response
	According to clause 10.1.2 in [1].

	Exceptions
	According to clause 10.1.2 in [1].
In addition: a timer has expired. The Receiver responds with an error.

6.5 Resource Type semanticMashupResult

Editor’s Note: Resource type semanticMashupResult including its definition and operations shall be moved to TS-0001.
6.5.1 Definition
Note: This section shows resource types, similar to TS-0001 clause 9.6.
<semanticMashupResult> resource stores the mashup result. It is the child resource of a <semanticMashupInstance> resource. A <semanticMashupResult> resource shall be automatically generated by a Hosting CSE when it executes a semantic mashup operation on a <semanticMashupInstance> resource. <semanticMashupResult> resource shall contain the child resources specified in Table 6.5.1-1 and the attributes specified in Table 6.5.1-2. The structure of <semanticMashupResult> resource is also illustrated in Figure 6.5.1-1.
Table 6.5.1-1: Child resources of <semanticMashupResult> resource

	Child Resources of <semanticMashupResult>
	Child Resource Type
	Multiplicity
	Description

	<variable>
	<semanticDescriptor>
	0:1
	Describes general semantic information for this <semanticMashupResult> resource.

	<variable>
	<subscription>
	0:n
	Stands for any subscription on this <semanticMashupResult> resource.

Table 6.5.1-2: Attribute of <semanticMashupResult> resource

	Attributes of
<semanticMashupResult>
	Multiplicity
	RW/

RO/

WO
	Description

	smjpInputParameter
	0:1
	RO
	Contains the value of all input parameters which are required to calculate the mashup result. Note that the types of these input parameters are specified by the inputDescriptor attribute of the corresponding <semanticMashupJobProfile> which is denoted by the smjpID attribute of the parent resource <semanticMashupInstance>. This attribute is not needed if the corresponding <semanticMashupJobProfile> does not have inputDescriptor attribute.
The value of this attribute shall be automatically copied from the smjpInputParameter attribute of the parent resource <semanticMashupInstance>. This attribute shall not be updated by other entities except the Hosting CSE.

	mashupResultFormat
	1
	RO
	Stands for the format of mashupResult representation (e.g. Integer, Float, Text, XML, JSON, etc.). The value of this attribute can be obtained by a Hosting CSE directly from outputDescriptor attribute of corresponding <semanticMashupJobProfile> resource. This attribute shall not be updated by other entities except the Hosting CSE.

	mashupResult
	1
	RO
	Contains the representation of mashup result. The value of this attribute shall be only generated by the Hosting CSE when it executes a semantic mashup operation. This attribute shall not be updated by other entities except the Hosting CSE.

[image: image6.emf]<semanticMashupResult><subscription>0:10:n<semanticDescriptor>1mashupResultsmjpInputParameter0:1mashupResultFormat1

Figure 6.5.1-1: Structure of <semanticMashupResult>
6.5.2 Operations

Note: This section shows resource-type specific operations, i.e. CRUD <X> from TS-0001 clause 10.
Figure 6.5.2-1 illustrates the procedure to operate a <semanticMashupResult> resource. A <semanticMashupResult> resource shall be automatically created when a Hosting CSE executes semantic mashup operation on a <semanticMashupInstance> resource. Only Retrieve and Delete operations shall be allowed on a <semanticMashupResult> resource. Detail descriptions are given in following clauses 6.5.2.1 and 6.5.2.2.

[image: image7.emf]ReceiverOriginator1. Processing at Originator before sending Request2. Request Message(e.g. Retrieve/Delete <semanticMashupResult>)3. Processing at Receiver4. Response Message

Figure 6.5.2-1: Procedures for Operating an <semanticMashupResult> Resource

6.5.2.1 Retrieve <semanticMashupResult>

This procedure shall be used for retrieving the attributes of a <semanticMashupResult> resource as described in Table 6.5.2.1-1.

Table 6.5.2.1-1: <semanticMashupResult> RETRIEVE

	<semanticMashupResult> RETRIEVE

	Associated Reference Point
	Mca, Mcc and Mcc'.

	Information in Request message
	All parameters defined in Table 8.1.2-3 in [1] apply with the specific details for:

Content: void.

	Processing at Originator before sending Request
	According to clause 10.1.2 in [1].

	Processing at Receiver
	The Receiver shall verify the existence (including Filter Criteria checking, if it is given) of the target resource or the attribute and check if the Originator has appropriate privileges to retrieve information stored in the resource/attribute. Otherwise clause 10.1.2 in [1] applies.

	Information in Response message
	All parameters defined in Table 8.1.3-1 in [1] apply with the specific details for:

Content: attributes of the <semanticMashupResult> resource as defined in the clause 6.5.1.

	Processing at Originator after receiving Response
	According to clause 10.1.2 in [1].

	Exceptions
	According to clause 10.1.2 in [1].
In addition: a timer has expired. The Receiver responds with an error.

6.5.2.2 Delete <semanticMashupResult>
This procedure as described in Table 6.5.2.2-1 shall be used to delete an existing <semanticMashupResult> resource.

Table 6.5.2.2-1: <semanticMashupResult> DELETE

	<semanticMashupResult> DELETE

	Associated Reference Point
	Mca, Mcc and Mcc'.

	Information in Request message
	All parameters defined in Table 8.1.2-3 in [1] apply.

	Processing at Originator before sending Request
	According to clause 10.1.4.1 in [1].

	Processing at Receiver
	According to clause 10.1.4.1 in [1].

	Information in Response message
	According to clause 10.1.4.1 in [1].

	Processing at Originator after receiving Response
	According to clause 10.1.4.1 in [1].

	Exceptions
	According to clause 10.1.4.1 in [1].

6.6 Resource Type X

6.6.1 Definition

Note: This section shows resource types, similar to TS-0001 clause 9.6.
6.6.2 Operations
Note: This section shows resource-type specific operations, i.e. CRUD <X> from TS-0001 clause 10.
7 Functional Descriptions
Note: This section will contain high level feature description, related flows as well as detailed functional descriptions. The associated resources and their respective CRUD procedures will be referenced from clause 7.
7.1 Overview
<Text>

7.2 Access Control
7.3 Semantics Annotation
7.4 Semantic Filtering and Discovery

7.5 Semantic Queries and Query Scope
7.6 Semantics Reasoning
7.7 Semantics Mash-up
7.7.1 Introduction

Existing semantic resource discovery in oneM2M can help in discovering various IoT devices and their data. However, in many application scenarios, the discovered data needs to be further processed (e.g., integrated/orchestrated/combined) based on a certain application business logic. For example, users may just be interested in a metric called “weather comfortability index”, which cannot be directly provided by physical sensors, and in fact can be calculated based on the original sensory data collected from multiple types of physical sensors (e.g., temperature and humility sensors).
In general, the above process is called “Semantic Mashup”, which is defined as a process to discover and collect data from more than one source as inputs, conduct a kind of business logic-related mashup function over the collected data, and eventually generate meaningful mashup results. In particular, semantic mashup emphasizes on leveraging semantic-related technologies during the entire mashup process. For example, in the oneM2M context, an normal resource (e.g., a <AE> resource representing a temperature sensor) may be annotated by semantic descriptions and then they could be discovered and identified as a potential data source for a specific mashup application through the semantic resource discovery.

The above definition also indicates a fact that a complete semantic mashup process may involve multiple stages and multiple entities for each stage. Those entities include:

· Mashup Requestor (MR): The entity which initiates a mashup request to Semantic Mashup Function for a certain need. In the context of oneM2M, an AE or a CSE can be an MR.

· Resource Host (RH): The entity which hosts data source(s) for a given mashup process. In the context of oneM2M, a data source is typically represented by a oneM2M resource (e.g., a temperature <AE> resource) and a RH will be a CSE that hosts oneM2M resources.

· Semantic Mashup Function (SMF): The entity which is responsible for collecting the data inputs from data sources hosted on RHs and mashing them up to generate the mashup result based on a certain business logic. In the context of oneM2M, SMF is a Common Service Function.

7.7.2 Semantic Mashup Function (SMF) Description

Semantic mashup function including high-level architecture and high-level operations will be described in this clause.
7.7.2.1 High-level architecture
The high-level architecture of an SMF is shown in Figure 7.7.2.1-1, which shall contain the following components:

· Semantic Mashup Job Profile (SMJP): Each specific semantic mashup application has a corresponding SMJP, which not only provides functionality/interaction details for external entities to discover (e.g., MRs), but also defines the internal working details regarding how to realize this mashup application (e.g., the criteria of how to select the qualified data sources as well as the definition of mashup function). The content of an SMJP has been defined in the clause 6.2.1.

· Semantic Mashup Instance (SMI): Once an MR identifies a desired SMJP (which can be analogous to a “job description”, but not a real job), it can ask SMF to initialize a real mashup process, which corresponds to a “working instance” of this SMJP and is referred to as a Semantic Mashup Instance (SMI). In order to do so, the SMF will inject the corresponding SMJP into the Mashup Engine of SMF for the SMI instantiation, during which the engine may be involved in: 1) Identifying the qualified data sources according to the data source criteria as defined in the SMJP; 2) Collecting data inputs from those identified data sources; 3) Mashing up the collected inputs by applying mashup functions as defined in the SMJP, and finally deriving the mashup result. The content of an SMI has been defined in the clause 6.3.1.

[image: image8.emf]SMF: Semantic Mashup FunctionSMJP: Semantic Mashup Job ProfileSMI: Semantic Mashup InstanceMR: Mashup RequestorSemantic Mashup Job Profile (SMJP) Library Semantic Mashup Function (SMF) Functionality:// Finding Suitable Parking Spot (Human Understandable Description)smp-001 is-a ex:smartParkingAssistanceInput Needed from MR: ex:MRInput1 is-a ex:currentVehiclePositionex:MRInput2 is-a ex:destination (e.g., Building A)ex:MRInput3 is-a ex:parkingPreferenceOutput (Mashup Result): ex:output1 is-a ex:parkingSpotIDex:output2 is-a ex:parkingSpotPositionData Sources Criteria/Filter://Data Source Type-1: ex:source1 is-a ex:parkingSpotInParkingBuildingex:source1 is-close-to ex:MRInput2 (i.e., MR¶s destination)//Data Source Type-2: ex:source2 is-a ex:streetParkingSpotex:source2 is-close-to ex:MRInput2 (i.e., MR¶s destination)Mashup Function: ex:function1 is-a ex:cheapestCostBasedSpotSelectionAlgorithm (default)ex:function2 is-a ex:parkingPreferenceBasedSpotSelectionAlgorithmSMJP- 001 (smpID) (Smart Parking Assistance)SMP Semantic DescriptionUtility or Runnable Code BlockSMJP - 002SMJP - 001SMI - 001smjpID: SMJP-001Identified Data Sources Mashup ResultSMJP- 002 (Shopping Guidance Application)«�� Identified Data SourcesSource 1: Parking Spots in Building XX, Source 2: Parking Spots in Building YY Source 3: Parking Spots on Main Street «Source 4: Parking Spots on 5th Avenue«��SMJP ReferenceInjected intoTriggered by MR-1Triggered by MR-2ExampleExample Mashup ResultSuitable Parking Spot ID: Parking Spot-16Position: Parking Building XX, 1st floor, 3rd RowMashup EngineSMIInstantiation& ManagementSMI - 003smjpID: SMP-001SMI - 002smjpID: SMP-002Semantic Mashup Instance (SMI) - 001smjpID: SMP-001 SMJP Semantic Description (RDF Triples)

Figure 7.7.2.1-1: High-level architecture of Semantic Mashup Function

7.7.2.2 High-level operations

An SMF as introduced in clause 7.7.2.1 may involve in different tasks/operations for realizing a complete semantic mashup process. This clause is to introduce those major SMF operations. The high-level SMF operations are shown in Figure 7.7.2.2-1, where each operation shall be realized using CRUD operations as specified in the clause 6.2.2, 6.3.2, 6.4.2, and 6.5.2, respectively

· Operation 1 - SMJP Discovery: This process is needed when an MR (e.g., MR-1 in Figure 7.7.2.2-1) tries to discover a desired SMJP for its need. The procedure defined in the clause 6.2.2.2 for retrieving a <semanticMashupJobProfile> shall be leveraged for discovering <semanticMashupJobProfile> resources based on resource discovery procedures as defined in [1].

· Operation 2 - SMI Creation: This process is needed when an MR already identified a desired <semanticMashupJobProfile> resource, but there is no corresponding SMI available for use. To implement this operation, an MR shall leverage the procedure defined in the clause 6.3.2.1 to send an SMI creation request to the CSE hosting SMF in order to instantiate a new SMI (i.e. <semanticMashupInstance> resource) for the desired SMJP. Alternatively, the SMF can also create a new SMI by itself instead of being triggered by the SMI creation request from the MR.

· Operation 3 – Mashup Member Identification: This process is needed when an SMF tries to identify the qualified mashup members (i.e., data sources) for a given SMI, by referring to the criteria as defined in the corresponding SMJP of this SMI (i.e. the memberFilter attribute of a <semanticMashupJobProfile> resource). Since in the oneM2M context, data sources (such as sensors) are normally represented as oneM2M resources hosted by RHs, this operation shall be implemented using semantic resource discovery mechanism as defined in [1].

· Operation 4 – Mashup Result Retrieval: This process is needed when an MR tries to retrieve the mashup result from a specific SMI. For a given SMI, it may involve in multiple rounds for mashup result generation especially when the mashup result needs to be refreshed periodically. For each round, the SMF shall collect new data inputs from identified mashup members (via Operation 5) and generate new mashup result which will be stored in the child resource <semanticMashupResult> of corresponding <semanticMashupInstance> resource. There are several alternatives for generating semantic mashup results as defined by the resultGenType attribute of an <semanticMashupInstance> resource in the clause 6.3.1, for example:

· Option 1: After an SMI is created, the SMF proactively and periodically runs the mashup result generation; each time before generating new mashup result, the SMF shall use Operation 5 to collect data inputs from mashup members. Whenever a new mashup result becomes available, it shall be stored in a <semanticMashupResult> resource and be exposed to MRs for access.

· Option 2: The SMF shall generate mashup result only after receiving an explicit request from an MR (i.e. using the procedure defined in the clause 6.4.2.1). The benefit of this approach is that SMF works in an on-demand way, which may reduce overhead as compared to Option 1. However, the downside is that it leads to longer waiting time for an MR before the up-to-date mashup result becomes available because data re-collection and mashup result generation will not be triggered until the SMF receives a request from the MR.

· Operation 5 – Data Input Collection and Mashup Result Generation: This process is needed when an SMF tries to generate a mashup result for a given SMI. Note that Operation 3 focuses on how to identify the mashup members while Operation 5 focuses on how to collect data inputs from those identified/qualified mashup members. Operation 5 shall be implemented using resource retrieval mechanism as defined in [1]. In addition, the working mechanism used for Operation 4 as mentioned above will affect how Operation 5 is conducted by the SMF.

· Operation 6 – SMI Discovery and Re-use: An SMI can be discovered, re-used and shared among different MRs. For example, the same SMI of a weather reporting mashup application for New York City Area can be shared by different users asking weather information for this area. Accordingly, Operation 6 is needed when an MR (e.g., MR-2 in Figure 7.7.2.2-1) tries to discover whether there is already an available/desired SMI ready for use. Since a given SMI is exposed as a <semanticMashupInstance> resource, existing resource discovery mechanism in [1] shall be leveraged to discover a desired SMI from the Hosting CSE. This approach leads to less processing overhead, since other MRs do not need to require the SMF to generate a new SMI (therefore Operation 2 and 3 are not needed).

[image: image9.emf]Semantic Mashup Job

Profile (SMJP) Library

SMJP

Injected

into

Mashup

Engine

SMI

instantiation

& Management

Source-1

Resource Hosts

(RH)

Source-2Source-3

...

SMJP

SMP Semantic

Description

Data Sources

& Business Logic

Semantic Mashup Instance (SMI)

smjpID

Identified Data

Sources

Mashup

Result

Mashup

Requestor-1

(MR-1)

Semantic Mashup Function (SMF)

Source-N

Operation 1: SMJP

Discovery

Operation 2:

SMI Creation

Operation 3: Mashup

Member Identification

Operation 4:

Mashup Result

Retrieval

Operation 5: Data Input

Collection and Mashup Result

Generation

Mashup

Requestor-2

(MR-2)

Operation 6:

SMI Discovery

and Reuse

Figure 7.7.2.2-1: High-level operations for Semantic Mashup Function
7.8 Semantics-based Data Analytics

7.9 Ontology Management
7.10 Semantic Validation

The following text is to be used when appropriate:

Proforma copyright release text block

This text box shall immediately follow after the heading of an element (i.e. clause or annex) containing a proforma or template which is intended to be copied by the user. Such an element shall always start on a new page.

Notwithstanding the provisions of the copyright clause related to the text of the present document, oneM2M grants that users of the present document may freely reproduce the <proformatype> proforma in this {clause|annex} so that it can be used for its intended purposes and may further publish the completed <proformatype>.

<PAGE BREAK>

Annexes

Each annex shall start on a new page (insert a page break between annexes A and B, annexes B and C, etc.).

Use the Heading 9 style for the title and the Normal style for the text.
Annex <A> (Informative/Normative): Remove Informative or Normative as appropriate Title of annex (style H9)
<Text>

<PAGE BREAK>

Annex (Informative/Normative): Remove Informative or Normative as appropriate Title of annex (style H9)
<Text>

B.1
First clause of the annex (style H1)
<Text>

B.1.1
First subdivided clause of the annex (style H2)
<Text>

<PAGE BREAK>
The following text is to be used when appropriate:

Annex <y>:
Bibliography

The annex entitled "Bibliography" is optional.

It shall contain a list of standards, books, articles, or other sources on a particular subject which are not mentioned in the document itself
It shall not include references mentioned in the document.

Use the Heading 9 style for the title and B1+ or Normal for the text.

· <Publication>: "<Title>".

OR

<Publication>: "<Title>".

<PAGE BREAK>

History

This clause shall be the last one in the document and list the main phases (all additional information will be removed at the publication stage).
	Publication history

	V1.1.1
	<dd-Mmm-yyyy>
	<Milestone>

	
	
	

	
	
	

	
	
	

	
	
	

	Draft history (to be removed on publication)

	V0.0.1
	2017-02-16
	MAS-2017-0017R01 – TS Skeleton

	V0.1.0
	2017-06-26
	Included TP29 contributions:

MAS-2017-0096R01-Semantic_Mashup_for_TS-0034

	
	
	

	
	
	

	
	
	

© oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC)
Page 1 of 1
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

<semanticMashupJobProfile>
memberFilter
<semanticMashupInstance>
smiID
1
1(L)
0:1(L)
0:n
<subscription>
0:n
0:1
1
<semanticDescriptor>
0:1
inputDescriptor
outputDescriptor
functionDescriptor

Receiver
Originator
1. Processing at Originator before sending Request
2. Request Message
(e.g. Retrieve/Delete <semanticMashupResult>)
3. Processing at Receiver
4. Response Message

<semanticMashupResult>
<subscription>
0:1
0:n
<semanticDescriptor>
1
mashupResult
smjpInputParameter
0:1
mashupResultFormat
1

SMF: Semantic Mashup Function
SMJP: Semantic Mashup Job Profile
SMI: Semantic Mashup Instance
MR: Mashup Requestor
Semantic Mashup Job Profile (SMJP) Library
Semantic Mashup Function (SMF)

Functionality:
// Finding Suitable Parking Spot (Human Understandable Description)
smp-001 is-a ex:smartParkingAssistance

Input Needed from MR:
ex:MRInput1 is-a ex:currentVehiclePosition
ex:MRInput2 is-a ex:destination (e.g., Building A)
ex:MRInput3 is-a ex:parkingPreference

Output (Mashup Result):
ex:output1 is-a ex:parkingSpotID
ex:output2 is-a ex:parkingSpotPosition
Data Sources Criteria/Filter:

//Data Source Type-1:
ex:source1 is-a ex:parkingSpotInParkingBuilding
ex:source1 is-close-to ex:MRInput2 (i.e., MR’s destination)

//Data Source Type-2:
ex:source2 is-a ex:streetParkingSpot
ex:source2 is-close-to ex:MRInput2 (i.e., MR’s destination)

Mashup Function:

ex:function1 is-a ex:cheapestCostBasedSpotSelectionAlgorithm (default)
ex:function2 is-a ex:parkingPreferenceBasedSpotSelectionAlgorithm
SMJP- 001 (smpID)
(Smart Parking Assistance)

SMP Semantic Description

Utility or
Runnable
Code Block

SMJP - 002

SMJP - 001

SMI - 001

smjpID:
 SMJP-001

Identified Data Sources

Mashup Result
SMJP- 002
(Shopping Guidance Application)
…..

Identified Data Sources

Source 1: Parking Spots in Building XX,
Source 2: Parking Spots in Building YY
Source 3: Parking Spots on Main Street …
Source 4: Parking Spots on 5th Avenue
…..
SMJP Reference
Injected into
Triggered by MR-1
Triggered by MR-2
Example
Example

Mashup Result

Suitable Parking Spot ID: Parking Spot-16
Position: Parking Building XX, 1st floor, 3rd Row

Mashup
Engine
SMI
Instantiation
& Management

SMI - 003

smjpID:
 SMP-001

SMI - 002

smjpID:
 SMP-002

Semantic Mashup Instance (SMI) - 001

smjpID:
 SMP-001
SMJP Semantic Description (RDF Triples)

<semanticMashupInstance>
smjpID
1
mashupMember
0:1(L)
<subscription>
0:1
0:n
<semanticMashupResult>
0:n
<semanticDescriptor>
resultGenType
1
smjpInputParameter
0:1
memberStoreType
1
periodForResultGen
0:1
mashup
0:1

Receiver
(a CSE)
Originator
(a CSE or AE)
1. Processing at Originator before sending Request
2. Request Message
(e.g. Create/Retrieve/Update/Delete <semanticMashupJobProfile>)
3. Processing at Receiver
4. Response Message

Receiver
(a CSE)
Originator
(a CSE or AE)
1. Processing at Originator before sending Request
2. Request Message
(e.g. Create/Retrieve/Update/Delete <semanticMashupInstance>)
3. Processing at Receiver
4. Response Message

Semantic Mashup Job Profile (SMJP) Library

SMJP

Injected into

Mashup
Engine
SMI
instantiation
& Management
...
Source-1
Resource Hosts
(RH)
Source-2
Source-3
SMJP

SMP Semantic Description

Data Sources
& Business Logic
Semantic Mashup Instance (SMI)

smjpID

Identified Data Sources

Mashup Result
Mashup
Requestor-1
 (MR-1)
Semantic Mashup Function (SMF)
Source-N
Operation 1: SMJP Discovery
Operation 2: SMI Creation
Operation 3: Mashup Member Identification
Operation 4: Mashup Result Retrieval
Operation 5: Data Input
Collection and Mashup Result Generation

Mashup
Requestor-2
 (MR-2)
Operation 6: SMI Discovery and Reuse

