
	[image: image45.png]Originator Hosting CSE
Request Home resourceType = CSEBase
fr: AE1 N
N Room1 Type = contai
to: /Home/Room1/Humidity” . resourcelype = container
op: RETRIEVE AN
fo N ACP resourceType = accessControlPolicy
filterUsage = Discovery \\"l’ e Y
resourceType = contentInstance 1 Humidity | resourceType = container 1
createdAfter = 2018-09-04T10:30:00 1 resourceType = contentlnstance 1
limit =10 1 x3 creationTime = “2018-09-04T10:15:00 |
| content=75 I
Response 1 1 resourceType = contentlnstance I
2 creationTime = “2018-09-04T11:00:00 1
200 OK l‘________ﬁomeﬂliso_ ________ /
/Home/Room1/Humidity/al

	oneM2M
Technical Report

	Document Number
	oneM2M-TR-0057-V-0.6.0

	Document Name:
	Getting Started with oneM2M

	Date:
	2021-02-25

	Abstract:
	

	Template Version: January 2017 (Do not modify)

The present document is provided for future development work within oneM2M only. The Partners accept no liability for any use of this report.
The present document has not been subject to any approval process by the oneM2M Partners Type 1. Published oneM2M specifications and reports for implementation should be obtained via the oneM2M Partners' Publications Offices.
About oneM2M

The purpose and goal of oneM2M is to develop technical specifications which address the need for a common M2M Service Layer that can be readily embedded within various hardware and software, and relied upon to connect the myriad of devices in the field with M2M application servers worldwide.

More information about oneM2M may be found at: http//www.oneM2M.org

Copyright Notification

© 2021, oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC).

All rights reserved.
The copyright and the foregoing restriction extend to reproduction in all media.

Notice of Disclaimer & Limitation of Liability

The information provided in this document is directed solely to professionals who have the appropriate degree of experience to understand and interpret its contents in accordance with generally accepted engineering or other professional standards and applicable regulations. No recommendation as to products or vendors is made or should be implied.

NO REPRESENTATION OR WARRANTY IS MADE THAT THE INFORMATION IS TECHNICALLY ACCURATE OR SUFFICIENT OR CONFORMS TO ANY STATUTE, GOVERNMENTAL RULE OR REGULATION, AND FURTHER, NO REPRESENTATION OR WARRANTY IS MADE OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR AGAINST INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS. NO oneM2M PARTNER TYPE 1 SHALL BE LIABLE, BEYOND THE AMOUNT OF ANY SUM RECEIVED IN PAYMENT BY THAT PARTNER FOR THIS DOCUMENT, WITH RESPECT TO ANY CLAIM, AND IN NO EVENT SHALL oneM2M BE LIABLE FOR LOST PROFITS OR OTHER INCIDENTAL OR CONSEQUENTIAL DAMAGES. oneM2M EXPRESSLY ADVISES ANY AND ALL USE OF OR RELIANCE UPON THIS INFORMATION PROVIDED IN THIS DOCUMENT IS AT THE RISK OF THE USER.

Contents

3Contents

1
Scope
5
2
References
5
2.1
Normative references
5
2.2
Informative references
5
3
Definitions of terms, symbols and abbreviations
5
3.1
Terms
5
3.2
Symbols
6
3.3
Abbreviations
6
4
Conventions,
6
5
oneM2M Overview
6
5.1
Introduction
6
5.1.1
oneM2M Service Layer
6
5.1.2
Functional Architecture description
9
5.1.3
Common Service functions
13
5.1.4
Benefits of using oneM2M
13
5.2
REST Architecture
15
5.3
Application Program Interfaces (API)
16
5.3.1
Introduction
16
5.3.2
oneM2M Primitives
16
5.3.2.1
Overview
16
5.3.2.2
Primitive structure
17
5.3.3
oneM2M Resources
19
5.3.3.1
Resource template
19
5.3.3.2
Resource structure
20
5.3.3.3
Resource attributes
21
5.3.3.4
Resource Schema
22
5.3.4
oneM2M Procedures
24
5.3.4.1
Access Resources in Local CSE
24
5.3.4.2
Access Resources in Remote CSE
24
5.3.4.3
CREATE operation
25
5.3.4.4
RETRIEVE operation
26
5.3.4.5
UPDATE operation
26
5.3.4.6
DELETE operation
27
5.2.4.7
NOTIFY operation
27
5.4
Data collection principles
27
5.4.1
Container
27
5.4.2
Access Control Policy
28
5.4.3
Subscription and Notification
30
5.4.4
Discovery
31
5.5
Data collection example
31
6
Core Functionalities
31
6.1
Introduction
31
6.2
Addressing modes
31
6.3
Retargeting
32
6.4
Long Polling
32
6.4.1
Introduction
32
6.4.2
Long polling example
33
6.5
Location policy
35
6.5.1 Introduction
35
6.5.2 Obtaining Location Information
35
6.x
IPE
37
6.x
Group management
37
6.x
App-ID
37
6.x
Announcement
37
6.x
Block/NB sync/async modes
37
7
Main feature descriptions
38
7.1
Introduction
38
7.2
3GPP Interworking
38
7.2.1
Introduction
38
7.2.2
IoT Device Enrollment
39
7.2.3
IoT Device Sleep Schedule Management
40
7.2.4
 IoT Device Location Tracking
41
7.2.5
 IoT Device Message Delivery Handling
42
7.2.6
 Network Congestion Control
43
7.2.7
 Non-IP Data Delivery (NIDD)
44
7.2.8
 IoT Device Tampering Detection
45
7.2.9
 Management of Groups of IoT Devices
45
7.2.10
 IoT Roaming Device Services
46
7.3
FlexContainer
47
7.4
Semantics
47
7.5
Industrial Domain
47
7.5.1
Time Series
47
7.5.2
Transaction
47
7.x
Security
47
7.x
SDT
47
Proforma copyright release text block
48
Annexes
48
Annex <y>: Bibliography
49
History
49

1
Scope

The present document …
EXAMPLE:
The present document provides the necessary adaptions to the endorsed document.

The Scope shall not contain requirements.

2
References

The following text block applies.

References are either specific (identified by date of publication and/or edition number or version number) or non‑specific. For specific references,only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.

2.1
Normative references

As a Technical Report (TR) is entirely informative it shall not list normative references.
The following referenced documents are necessary for the application of the present document.
Not applicable.

2.2
Informative references
Clause 2.2 shall only contain informative references which are cited in the document itself.

The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.
[i.1]
oneM2M Drafting Rules (http://member.onem2m.org/Static_pages/Others/Rules_Pages/oneM2M-Drafting-Rules-V1_0.doc)
3
Definitions of terms, symbols and abbreviations

Delete from the above heading the word(s) which is/are not applicable.
3.1
Terms
Clause numbering depends on applicability.

· A definition shall not take the form of, or contain, a requirement.

· The form of a definition shall be such that it can replace the term in context. Additional information shall be given only in the form of examples or notes (see below).

· The terms and definitions shall be presented in alphabetical order.
For the purposes of the present document, the [following] terms and definitions [given in ... and the following] apply:

Definition format

<defined term>: <definition>

If a definition is taken from an external source, use the format below where [N] identifies the external document which must be listed in Section 2 References.
<defined term>[N]: <definition>

example 1: text used to clarify abstract rules by applying them literally

NOTE:
This may contain additional information.

3.2
Symbols

Clause numbering depends on applicability.

For the purposes of the present document, the [following] symbols [given in ... and the following] apply:

Symbol format

<symbol>
<Explanation>

<2nd symbol>
<2nd Explanation>

<3rd symbol>
<3rd Explanation>

3.3
Abbreviations

Abbreviations should be ordered alphabetically.

Clause numbering depends on applicability.

For the purposes of the present document, the [following] abbreviations [given in ... and the following] apply:

Abbreviation format

<ABBREVIATION1>
<Explanation>

<ABBREVIATION2>
<Explanation>

<ABBREVIATION3>
<Explanation>

4
Conventions,

The key words “Shall”, ”Shall not”, “May”, ”Need not”, “Should”, ”Should not” in this document are to be interpreted as described in the oneM2M Drafting Rules [i.1]
5
oneM2M Overview
5.1
Introduction

5.1.1
oneM2M Service Layer

The architecture standardized by oneM2M defines an IoT Service Layer, i.e. a software Middleware sitting between processing / communication hardware and IoT applications providing a rich set of functions needed by many IoT applications.
It supports among others:
· secure end-to-end data/control exchange between IoT devices and custom applications by providing functions for proper identification
· authentication, authorization, encryption

· remote provisioning & activation

· connectivity setup

· buffering

· scheduling

· synchronization

· aggregation
· group communication
· device management
· etc…
oneM2M’s Service Layer is typically implemented as a software layer and sits between IoT applications and processing or communication hardware and operating system elements that provide data storage, processing and transport, normally riding on top of IP. However, non-IP transports are also supported via interworking proxies. The oneM2M Service Layer provides commonly needed functions for IoT applications across different industry segments.

· oneM2M defines a horizontal architecture providing common services functions that enable applications in multiple domains, using a common framework and uniform APIs.

Using these standardized APIs make it much simpler for M2M/IoT solution providers to cope with complex and heterogeneous connectivity choices by abstracting out the details of using underlying network technologies, underlying transport protocols and data serialization. This is all handled by the oneM2M Service Layer without a need for the programmer to become an expert in each of these layers. Therefore, the application developer can focus on the process / business logic of the use case to be implemented and does not need to worry about how exactly the underlying layers work. This is very much like writing a file to a file system without worrying how hard disks and their interfaces actually work.

Therefore, the IoT Service Layer specified in oneM2M can be understood as a distributed operating system for IoT providing uniform APIs to IoT applications in a similar way as a mobile OS does for the smart phone eco system.

[image: image2.emf]Connectivity

Operating System

Applications

API

• Applications control connectivity Layer

and built-in sensors via API’s provided

by the Operating System

=> Applications are becoming portable

• Operating System collects data transfer

requests from applications. The OS

optimizes & controls use the of the

network by the device and provides

securtiy

• Connectivity Layer provides access to

the Internet via the wired and wireless

networks

 Figure 5.1.1-1: IoT Service layer
For example, the following “vertical” domains are isolated silos which makes it difficult to exchange data between each other. Using a “horizontal” architecture allows the providion of a seamless interaction between applications and devices. In the below use case, a security application detects that when noboby is in the building, it triggers the switching off of the light and it stops the air conditioning.

[image: image3.emf]Building

Dedicated

devices

Security

Dedicated

devices

Energy

Dedicated

devices

Invert the

pipe

Building

IoT

devices

Security

IoT

devices

Energy

IoT

devices

oneM2M Service Layer

Without oneM2M

•

Highly fragmented market with limited vendor-specific

applications

•

Reinventing the wheel: Same services developed again

and again

•

Each silo contains its own technologies without

interoperability

With oneM2M

•

End-to-end platform: common service capabilities layer

•

Interoperability at the level of data and control

exchanges via uniform APIs

•

Seamless interaction between heterogeneous

applications and devices

Figure 5.1.1-2: IoT Cross-domain interoperability
· Cloud provider independent: From Fragmentation to Standards (decoupling device, cloud, and application by open interfaces

[image: image4.emf]oneM2M

IP Communication

Device Infrastructure

oneM2M

oneM2M

oneM2M

oneM2M

To

Open

Cloud

 independent

From

Proprietary

Cloud specific

Application

Layer

Connectivity

Layer

Service

Layer

Cloud A

Cloud B

Device

Infrastructure

IP Communication

Figure 5.1.1-3: Cloud provider independent
· Common IoT key problems solved by oneM2M

[image: image5.emf]•

oneM2M stores data in case of lack of connectivity

•

oneM2M can controls the devices usage of connectivity (When, how often

communication happens)

Connectivity

•

oneM2M provides globally standardized interfaces for the Application developers

(device and cloud)

•

oneM2M enables Application portability

Application

area

•

oneM2M provides services towards the Application (Application –Registration & -

Discovery, Subscription & Notifications Services, Secure Communication, Device

Management etc…

•

oneM2M enables Device portability (a Device can be connected to any Infrastructure

solution)

Data

Interoperability

Figure 5.1.1-4: Common IoT key problems
· oneM2M in a nutshell:

oneM2M’s Service Layer corresponds to a software “framework”, located between the IoT applications and communication HW/SW that provide storage/connectivity/data transport.

It provides functions that IoT applications across different industry segments commonly need (eg. data transport, security/encryption, scheduling, event notifications, remote software update...)
It supports cooperative intelligence in distributed applications i.e. in devices, gateways and back-end/cloud applications
It supports a selection of underlying transport protocols and serialization formats

It is like an Operating System for the Internet of Things, sitting on field devices/sensors, gateways and in servers.

And, it is a standard – not controlled by a single private company.
5.1.2
Functional Architecture description
oneM2M Layered Model comprises three layers:
· the Application Layer,
· the Common Services Layer

· the underlying Network Services Layer.

[image: image6.emf]Underlying

Network

Underlying

Network

CSE

AE

NSE

CSE

NSE

CSE

NSE NSE

Application Service Node Middle Node Infrastructure Node

Mca

Mcn

Mca Mca

Mcn Mcn Mcc Mcc

CSE

Mcc’

Inf. Node

AE

AE

Connectivity

Layer

Service Layer

Application

Layer

Figure 5.1.2-1: oneM2M Layered Model

oneM2M entities:

The oneM2M functional architecture comprises the following functions:

1) Application Entity (AE): The Application Entity is an entity in the application layer that implements an M2M application service logic. Each application service logic can be resident in a number of M2M nodes and/or more than once on a single M2M node. Each execution instance of an application service logic is termed an "Application Entity" (AE) and is identified with a unique AE-ID.
Examples of the AEs include an instance of a fleet tracking application, a remote blood sugar measuring application, a power metering application or a pump controlling application.

2) Common Services Entity (CSE): A Common Services Entity represents an instantiation of a set of "common service functions" of the oneM2M Service Layer. A CSE is actually the entity that contains the collection of oneM2M-specified common service functions that AEs are able to use. Such service functions are exposed to other entities through the Mca (exposure to AEs) and Mcc (exposure to other CSEs) reference points. Reference point Mcn is used for accessing services provided by the underlying Network Service Entities such as waking up a sleeping device. Each CSE is identified with a unique CSE-ID.

Examples of service functions offered by the CSE include: data storage & sharing with access control and authorization, event detection and notification, group communication, scheduling of data exchanges, device management, and location services.

3) Underlying Network Services Entity (NSE): A Network Services Entity provides services from the underlying network to the CSEs.
Examples of such services include location services, device triggering, certain sleep modes like PSM in 3GPP based networks or long sleep cycles.
oneM2M Reference Points:

[image: image7.emf]AE AE

Mca Mca Mca

Mcc

Mcn Mcn

CSE CSE

NSE NSE

Field Domain Infrastructure Domain

To Infrastructure

Domain of other

Service Provider

Mcc’

Figure 5.1.2-2: oneM2M Functional Architecture

The oneM2M functional architecture defines the following reference points:
· Mca: Reference point for the communication flows between an Application Entity (AE) and a Common Services Entity (CSE). These flows enable the AE to use the services supported by the CSE, and for the CSE to communicate with the AE. The AE and the CSE may or may not be co-located within the same physical entity.
· Mcc: Reference point for the communication flows between two Common Services Entities (CSEs). These flows enable a CSE to use the services supported by another CSE.

· Mcn: Reference point for the communication flows between a Common Services Entity (CSE) and the Network Services Entity (NSE). These flows enable a CSE to use the supported services provided by the NSE. While the oneM2M Service Layer is, usually independent of the underlying network – as long as it supports IP transport – it leverages specific M2M/IoT optimization such as 3GPP’s eMTC features (e.g. device triggering, power saving mode, long sleep cycles, etc).
· Mcc’: Reference point for the communication flows between two Common Services Entities (CSEs) in Infrastructure Nodes (IN) that are oneM2M compliant and that reside in different M2M Service Provider domains.

· Additional reference points are defined in oneM2M for specific purposes such as enrolment functions etc. and are not detailed in this overview.
oneM2M Nodes:

oneM2M has defined a set of Nodes that are logical entities identifiable in the oneM2M System. oneM2M Nodes typically contain CSEs and/or AEs. For the definition of Node types, oneM2M distinguishes between Nodes in the “Field Domain” – i.e. the domain in which sensors / actors / aggregators / gateways are deployed – and the “Infrastructure Domain” – i.e. the domain in which servers and applications on larger computers reside.

[image: image8]
Figure 5.1.2-3: oneM2M node topology
Nodes can be of the following types:
· Application Dedicated Node (ADN): a Node that contains at least one AE and does not contain a CSE. It is located in the Field Domain. An ADN would typically be implemented on a resource constraint device that may not have access to rich storage or processing resources and – therefore – may be limited to only host a oneM2M AE and not a CSE. Examples for devices that would be represented by ADNs: simple sensor or actor devices.

· Application Service Node (ASN): a Node that contains one CSE and contains at least one Application Entity (AE), located in the Field Domain. An ASN could be implemented on a range of different devices ranging from resource constraint devices up to much richer HW. Examples for devices that would be represented by ASNs: data collection devices, more capable sensors and actors including simple server functions.
· Middle Node (MN): a Node that contains one CSE and could contain AEs. MNs are located in the Field Domain. There could be several MNs in the Field Domain of the oneM2M System. Typically an MN would reside in an M2M Gateway. MNs would be used to establish a logical tree structure of oneM2M nodes, e.g. to hierarchically aggregate data of buildings / neighborhoods / cities / counties / states etc.
· Infrastructure Node (IN): a Node that contains one CSE and could contain AEs. There is exactly one IN in the Infrastructure Domain per oneM2M Service Provider. An example of physical mapping, an IN could reside in an M2M Service Enablement Infrastructure.

· Non-oneM2M Node (NoDN): This Node type is not shown in the figure above. oneM2M specifications also define a Node Type for non-oneM2M Nodes which are Nodes that do not contain oneM2M Entities (neither AEs nor CSEs). Typically such Nodes would host some non-oneM2M IoT implementations or legacy technology which can be connected to the oneM2M system via interworking proxies.
5.1.3
Common Service functions

As a horizontal architecture providing a common framework for IoT, oneM2M has identified a set of common functionnalities, that are applicable to all the IoT domains. Think of these functions as a large toolbox with special tools to solve a number of IoT problems across many different domains. Very much like a screw driver can be used to fasten screws in a car as well as in a plane, the oneM2M CSFs are applicable to different IoT use cases in different industry domains.
In its first phase, oneM2M went through a large number of IoT use cases and identified a set of common requirements which resulted in the design of this set of tools termed Common Service Functions. Furthermore, oneM2M has standardized how these functions are being executed, i.e. is has defined uniform APIs to access these functions. Figure 5.3.1-1 shows a grouping of these functions into a few different scopes.

[image: image9.emf]Registration

Group

Management

Security

Discovery &

Announcement

Data

Management &

Repository

Application &

Service

Management

Device

Management

Subscription &

Notification

Communication

Management

Service

Charging &

Accounting

Location

Network Service

Exposure

Semantics Interworking

Figure 5.1.3-1: Common Service Functions

The services above reside within a CSE and are referred to as Common Services Functions (CSFs). The CSFs provide services to the AEs via the Mca reference point and to other CSEs via the Mcc reference point.
All these services are not specific to any IoT domain in particular. It enables each domain to build on the top of this service layer and really focus on its specific industrial needs. This is similar to functions of a generic operating system (OS) exposed to applications running on that OS. For instance, many applications read and write to files. File I/O is typically provided by the OS. oneM2M’s Service Layer provides similar functions in a generic way to many different IoT Applications.

5.1.4
Benefits of using oneM2M

· Service Layer on top of transport network supporting a choice of transport protocols and serializations of data/messages
· Flexibility: it can be deployed on all domains, not tied to a particular protocol technology.
· IP based: relies on known existing APIs to handle IP communications.
· Aware of optimizations if underlying network is 3GPP-based: can make use of policy-based scheduling, power saving mode, triggering /wakeup of devices, non-IP data transport, etc without the need for the developer to be aware of these terms.
· Enhances data sharing efficiency: communications over an underlying network are policed by provisioned policies that govern the use of network resources based on configurable categories of events/messages. Avoids storm of low-value messages in netoworks with costly resources. Lowers Opex.
· For example, in use cases with a need for fast & compact message exchanges one may want to rely on TCP sockets (opened via web sockets) and use binary serialization (e.g. CBOR) whereas in other cases a combination of HTTPS/JSON may be preferable for simpler debugging.
· Evolution: supported transport protocols and/or message serialization can evolve while the oneM2M code will not change. This allows for easy adaptation to future transport technologies.
· Horizontal platform provides common service functions that enable multiple IoT domains
· One investment/deployment serves multiple domains, does not re-invent the wheel. Lowers Capex.
· No need to maintain domain-specific platforms, reduction in Capex
· Cross-domain service/application innovation with a common framework and uniform APIs, allows for sharing of information and processes across domains that were isolated thus far (e.g. home security system versus heating system), Supports new business opportunities.
· Re-use of the code whatever the domain was. Increases reusability / lowers Capex.
· Easy interworking/integration with existing & evolving deployments paves the way to long term evolution and sustainable economy.
· Does not disrupt existing “vertical deployment”, but evolves it. Supports interworking with legacy technology.
· Interworking with a rich set of proximal IoT technologies, embracing different ecosystems.
· Takes advantage of the operators’ network capabilities and existing management technologies.
· Data sharing and semantic interoperability brings the real value.
· Data oriented RESTful API design.
· Semantic data annotation, discover and reasoning facilitates intelligent analytics and service mashups.
· Security protection at both channel and object level, with static and dynamic access control.
· Open standards to avoid lock-in to a platform or a cloud provider.
· No single party or company controls the technology / features.
· Several open source implementations available (CSE or AE).
· oneM2M is an international standard.
· Developed using standardization methodology that has insured successful interoperability in many technical domains, using the same process as in 3GPP.
· Developed by many companies based on consensus: it does not depend on a single or a small number of companies; not using a closed proprietary technology.
· It is an open standard: transparent development process & open access to all deliverables; all the specifications, even the drafts are available at http://www.onem2m.org/technical/latest-drafts
In summary, the oneM2M initiative can remove fragmentation of the IoT world. Because it is independent of the access or protocol technology that is used for transport, it is designed to be a long term solution for IoT deployment.
5.2
REST Architecture

Representational State Transfer (REST) is a software architectural style that defines a set of constraints to be used for creating web services.

RESTful services allow the requesting systems to access and manipulate textual representations of resources by using a uniform and predefined set of stateless operations. A stateless protocol operation does not require the server to retain session information or status about each communicating partner for the duration of multiple requests.

REST is not a protocol. It is about manipulating resources, uniquely identified by URIs. A resource is stateful and contains a link pointing to another resource. All the actions on resources are done through a Uniform Interface.
As REST is an architecture style, it can be mapped to multiple protocols such as HTTP, CoAP, etc…

Six guiding constraints define a RESTful system. These constraints restrict the ways in which the server can process and respond to client requests
· Client-server: separation of concerns is the principle behind the client-server constraints.

· Stateless server: request from client to server contains all of the information necessary to understand the request, and cannot take advantage of any stored context on the server.

· Cache: the client can reuse response data, sent by the server, by storing it in a local cache.
· Layered system: allows an architecture to be composed of hierarchical layers. It enables the addition of features like a gateway, a load balancer, or a firewall to accommodate system scaling.
· Code-on-demand: (optional) REST allows client functionality to be extended by downloading and executing code in the form of scripts (e.g. JavaScript).
· Uniform interface

· Identification of resources: resource identifier enables the identification of the particular resource involved in an interaction between components.
· Manipulation of resources through representations: resource representations are the state of a resource that is transferred between components.
· Self-descriptive messages: contain metadata to describe the meaning of the message.
· Hypermedia as the engine of application state or HATEOAS: Clients find their way through the API by following links available in the resource representations.
5.3
Application Program Interfaces (API)
5.3.1
Introduction

The oneM2M REST APIs are used to manipulate data generated by the Application Entity (AE) to the oneM2M Service platform (CSE) as well as data retrieve services. The oneM2M REST APIs are developed for handling CRUD+N (Create, Retrieve, Update, Delete and Notification) operations for oneM2M resources specified in oneM2M standards.

The oneM2M API includes the following components:
· Primitives.
· Resources + Attributes.
· Data Types.
· Protocol Bindings .
· Procedures (CRUD+N).
The oneM2M API is used by CSEs and AEs to communicate with one another. The communication can be originated from an AE or CSE depending on the operation.
Communication is done via the exchange of oneM2M primitives across the oneM2M defined reference points (Mca/Mcc/Mcc’).
Primitives are used to perform CRUD+N operations on resources hosted by CSEs or to send notifications to AEs. Each CRUD+N operation is comprised of a pair of Request and Response primitives.
Access and manipulation of the resources is subject to access control privileges.

5.3.2 oneM2M Primitives
5.3.2.1
Overview
Primitives are service layer messages transmitted over the Mca/Mcc/Mcc’ reference points.
Originators send requests to Receivers via primitives. Originator and Receiver can be an AE or a CSE.
Each CRUD+N operation consists of one request and one response primitive.

[image: image10.emf]Originator

(AE or CSE)

Receiver

(AE or CSE)

1. Request Primitive

2. Response Primitive

Mca/Mcc/Mcc’

Figure 5.3.2.1-1: General primitives flow
Primitives are binded to underlying transport layer protocols such as HTTP, CoAP , MQTT or WebSocket. Primitives are generic with respect to underlying network transport protocols. Each primitive is binded to zero or more messages in the transport layer.

[image: image11.emf]

Binding Function

Receiver

 Under l ying networks

Response

Originator

Request

Application/ Service layer

Transport layer

Primitives

Request Response

Transport Messages

Primitives

Binding Function

Transport Messages

Figure 5.3.2.1-2: oneM2M Communications
5.3.2.2
Primitive structure
A primitive consists of two parts; control and content.

· The control part: contains parameters required for the processing of the primitive itself (e.g. request or response parameters).
· The content part is optional based on the type of primitive and contains the representation of the resource consisting of all or a subset of the resource attributes.

[image: image12.emf]oneM2M

Primitive

Content Part

(Resource Representation/Attributes)

Control Part

(Request or Response Parameters)

Figure 5.3.2.2-1: Primitive structure
Primitives are encoded and serialized based on the particular oneM2M protocol binding being used.
The originator and receiver of each primitive use the same binding, and thus use compatible forms of encoding/ decoding and serialization/de-serialization.
During transfer, the control part is encoded based on the protocol binding being used and the content portion is serialized using XML, JSON and CBOR.

	oneM2M Request Primitive: oneM2M short names
HTTP/1.1

Method: POST

(op : Operation
URI: m2msp1.com/CSE01Base

(to : To
URI Query String: ?rcn=1

 (rcn : Result content
From: ae01.com

(fr : From
X-M2M-RI:0001

(rqi : Request identifier
X-M2M-RVI: 2a

(rvi : Release Version Indicator
Content: <AE> representation

(pc: primitive content
oneM2M Response Primitive:
Status: Created

(rsc :Response Status Code
Location: http//m2msp1.com/CSE01Base/ae01
(uri : URI

X-M2M-RI:0001

(rqi : Request identifier
Content: <AE> representation created
 (pc: primitive content

Figure 5.3.2.2-2: Example of Control part binded to HTTP
The Content part of a primitive contains serialized representation of a resource. oneM2M supports XML, JSON or CBOR serializations of resources.
This is an example of a oneM2M <container> resource representation in JSON format.
[image: image1.png]

This is an example of a oneM2M <container> resource representation in XML format.
<?xml version="1.0" encoding="UTF-8"?>

<m2m:cnt xmlns:m2m="http://www.onem2m.org/xml/protocols" rn="cont_temp">

 <ty>3</ty>

 <ri>server/cnt-2951972863155866584</ri>

 <pi>server</pi>

 <ct>20181114T145000</ct>

 <lt>20181114T145000</lt>

 <et>20181114T145000</et>

 <st>0</st>

 <mni>10000</mni>

 <mbs>0</mbs>

 <mia>0</mia>

 <cni>0</cni>

 <cbs>0</cbs>

</m2m:cnt>
5.3.3 oneM2M Resources
5.3.3.1 Resource template

All entities in the oneM2M System, such as AEs, CSEs, application data representing sensors, commands, etc. are represented as resources in the CSE. Each resource has its own specific type.

Each resource type has a defined set of mandatory and optional attributes as well as child resources.

A resource can contain child resources.
Each resource is addressable and can be the target of CRUD operations specified in oneM2M primitives.

[image: image13.emf]Resource AttributeN

<resourceType>

childResource1

childResourceN

Resource Attribute1

0..n

0..n

0..n

0..n

Figure 5.3.3.1-1 : Resource template

	Resource Type
	Short Description

	 accessControlPolicy
	Controls "who" is allowed to do "what" and the context in which it can be used for accessing the resources

	 AE
	Stores information about the AE. It is created as a result of successful registration of an AE with the registrar CSE

	 container
	Used to shares data instances among entities

	 contentInstance
	Represents a data instance in the <container> resource.

	 CSEBase
	The structural root for all the resources that are residing on a CSE. It stores information about the CSE itself

	 delivery
	Forwards requests from CSE to CSE

	 eventConfig
	Defines events that trigger statistics collection

	 execInstance
	The Execution Instance resource contains all execution instances of the same management command mgmtCmd

	 fanOutPoint
	Used for addressing bulk operations to all the resources that belong to a group.

	 group
	Stores information about resources of the same type that need to be addressed as a Group.

	 locationPolicy
	Includes information to obtain and manage geographical location.

	 mgmtCmd
	Represents a method to execute management procedures required by existing management protocols

	 mgmtObj
	Represents management functions that provides an abstraction to be mapped to external management technology.

	 node
	Represents specific Node information

	 pollingChannel
	Represent a channel that can be used for a request-unreachable entity

	 remoteCSE
	Represents a remote CSE for which there has been a registration procedure with the registrar CSE

	 schedule
	Contains scheduling information for delivery of messages

	 statsCollect
	Defines triggers for the IN-CSE to collect statistics for applications

	 statsConfig
	Stores configuration of statistics for applications

	 subscription
	Represents subscription information related to a resource.

Table 5.3.3.1-1 : Resource type examples

5.3.3.2
Resource structure
The root of the oneM2M resource structure is <CSEBase>.

The <CSEBase> is assigned an absolute address. All other child resources are addressed relative to <CSEBase>.
Depending on the type of child resource it is instantiated 0..n times.

[image: image14.emf]<CSEBase>

“attribute”

n

0..n

<remoteCSE>

<node>

<AE>

<container>

<group>

<accessControlPolicy>

<subscription>

<mgmtCmd>

<locationPolicy>

<statsConfig>

<statsCollect>

<request>

<delivery>

<schedule>

0..n

0..n

0..n

0..n

0..n

0..n

0..n

0..n

0..n

0..n

0..n

0..n

0..1

Figure 5.3.3.2-1 : <CSEBase> Resource example

5.3.3.3
Resource attributes
Each resource contains attributes that store information pertaining to the resource itself.
The attributes are :

· Universal Attributes : which appear in all resources

· Common Attributes : which appear in more than one resource and have the same meaning whenever they do appear.
· Resource-specific attributes

[image: image15.emf]<AE>

Universal Attributes:



resourceType



resourceID



parentID



lastModifiedTime



creationTime



resourceName

Common Attributes:



accessControlPolicyIDs



expirationTime



stateTag



announceTo



announcedAttribute



Labels



Etc ...

<AE> Specific Attributes:



appName



App-ID



AE-ID



pointOfAccess



ontologyRef



nodeLink



Etc ...

“attribute”

n

0..n

<subscription>

0..n

<container>

0..n

<group>

0..n

<accessControlPolicy>

0..n

<pollingChannel>

Figure 5.3.3.3-1: <AE> Resource example
	Universal Attribute
	Description

	resourceType
	Identifies the type of resource

	parentID
	resourceID of the parent of this resource.

	creationTime
	Time/date of creation of the resource.

	lastModifiedTime
	Last modification time/date of the resource.

	resourceID
	Identifier for resource.

	resourceName
	Name of the resource

Table 5.3.3.3-1 : Universal resource attributes
5.3.3.4
Resource Schema

oneM2M defines XML, JSON and CBOR schemas which define the attributes of each resource type.
Schemas bind oneM2M attributes to well-known data types defined by XML Schema definitions (e.g. xs:string, xs:anyURI, etc …).

Schemas also bind oneM2M attributes to oneM2M defined data types (e.g. m2m:id, m2m:stringList, etc ...).

<xs:schema xmlns="http://www.w3.org/2001/XMLSchema" targetNamespace="http://www.onem2m.org/xml/protocols"

xmlns:m2m="http://www.onem2m.org/xml/protocols" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

elementFormDefault="unqualified" xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:include schemaLocation="CDT-commonTypes-v3_8_0.xsd" />

<xs:include schemaLocation="CDT-subscription-v3_8_0.xsd" />

<xs:element name="request" substitutionGroup="m2m:sg_regularResource">

<xs:complexType>

<xs:complexContent>

<!-- Inherit common attributes -->

<xs:extension base="m2m:regularResource">

<xs:sequence>

<!-- Common Attribute, specific to <container>, <contentInstance>, <request> and <delivery> resources -->

<xs:element name="stateTag" type="xs:nonNegativeInteger" />

<!-- Resource Specific Attributes -->

<xs:element name="operation" type="m2m:operation" />

<xs:element name="target" type="xs:anyURI" />

<xs:element name="originator" type="m2m:ID" />

<xs:element name="requestID" type="m2m:requestID" />

<xs:element name="metaInformation" type="m2m:metaInformation" />

<xs:element name="primitiveContent" type="m2m:primitiveContent" minOccurs="0" />

<xs:element name="requestStatus" type="m2m:requestStatus" />

<xs:element name="operationResult" type="m2m:operationResult" />

<!-- Child Resources -->

<xs:choice minOccurs="0" maxOccurs="1">

<xs:element name="childResource" type="m2m:childResourceRef" minOccurs="1" maxOccurs="unbounded" />

<xs:choice minOccurs="1" maxOccurs="unbounded">

<xs:element ref="m2m:subscription"></xs:element>

</xs:choice>

</xs:choice>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

</xs:element>

</xs:schema>

Figure 5.3.3.4-1: Example of schema
5.3.4
oneM2M Procedures
5.3.4.1
Access Resources in Local CSE

[image: image16.emf]Originator

(AE or CSE)

(Registrar CSE = Hosting CSE)

The addressed resource

is stored here.

Request (access resource)

CSE verifies

Access Rights

If permitted, the CSE

accesses the resouces

and responds with a

Success or Failure

Response

Response

Figure 5.3.4.1-1 : Access Resources in Local CSE
5.3.4.2
Access Resources in Remote CSE

[image: image17.emf]Originator

(AE/CSE)

Registrar CSE = Transit CSE Hosting CSE

The addressed resource

is stored here.

Request (access resource)

Registrar CSE does not

have the addressed

resource

Hosting CSE verifies

Access Rights

If permitted, the Hosting

CSE accesses the

resource and responds

with Success or Failure

Response

Request (access resource)

Response

Response

Forward the Request to its

registered CSE, which is

the Hosting CSE

Figure 5.3.4.2-1 : Access Resources in Remote CSE
5.3.4.3
CREATE operation

[image: image18.emf]001: CREATE Request

Originator requests creation of a Resource

003: CREATE Response

Receiver responds to creation Request

Originator

(CSE or AE)

Receiver

(Hosting CSE)

002: Receiver

Processing

Figure 5.3.4.3-1 : CREATE operation
5.3.4.4
RETRIEVE operation

[image: image19.emf]001: RETRIEVE Request

Originator requests retrieval of a Resource

003: RETRIEVE Response

Receiver responds to retrieval Request

Originator

(CSE or AE)

Receiver

(Hosting CSE)

002: Receiver

Processing

Figure 5.3.4.4-1 : RETRIEVE operation

5.3.4.5
UPDATE operation

[image: image20.emf]001: UPDATE Request

Originator requests update of a Resource or

create/delete attributes of a Resource

003: UPDATE Response

Receiver responds to update request

Originator

(CSE or AE)

Receiver

(Hosting CSE)

002: Receiver

Processing

Figure 5.3.4.5-1 : UPDATE operation

5.3.4.6
DELETE operation

[image: image21.emf]001: DELETE Request

Originator requests deletion of a Resource

003: DELETE Response

Receiver responds to deletion Request

Originator

(CSE or AE)

Receiver

(Hosting CSE)

002: Receiver

Processing

Figure 5.3.4.6-1 : DELETE operation

5.2.4.7
NOTIFY operation

[image: image22.emf]002: NOTIFY Request

003: NOTIFY Response

Originator

(CSE)

Receiver

(Hosting CSE

or AE)

001: Local Processing

(Notification Triggered)

Figure 5.3.4.7-1 : NOTIFY operation

5.4
Data collection principles

5.4.1
Container
· Container for data instances is represented by the <container> resource.
· Data storage used to share information with other entities and track data.
· <container> resource has no associated content.
· Only attributes and child resources are available.
· Actual data/content is stored in <contentInstance> child resource.
· <container> is the only resource allowed to have recursive child resources.
· <container> resource can have other <container> as child resources.
· useful for representing hierarchical data structure.

[image: image23.emf]Room2

Home2

CSE1Base

Home1

Room1

Temperature

resourceType = <CSEBase>

resourceType = <container>

resourceType= <container>

resourceType = <contentInstance>

content = 19

°

resourceType = <container>

resourceType= <container>

Figure 5.4.1-1: Example of resources tree
5.4.2
Access Control Policy

· Access Control Policies (ACPs) are used by the CSE to control access to the resources.
· The resources are always linked to Access Control Policies. ACPs are shared between several resources
· Access Control Policies contain the rules (Privileges) defining:
· WHO can access the Resource (e.g. Identifiers of authorized AE/CSE).
· For WHAT operation (CREATE / RETRIEVE / UPDATE / DELETE…).
· Under WHICH contextual circumstances (Time, Location, IP address).
· ACPs are represented by <accessControlPolicy> resources.
· Comprised of attributes privileges and selfPrivileges that represent a set of access control rules for entities.
<accessControlPolicy> resource content:

<m2m:acp xmlns:m2m="…" rn="">

<pv>

<acr>

<acor></acor>

<acop></acop>

</acr>

</pv>

<pvs>

<acr>

<acor></acor>

<acop></acop>

</acr>

</pvs>

</m2m:acp>
Signification

· acr = « Access Control Rule »

· acor = « Access Control Originators »

· acop = « Access Control Operations »
Operation Code
· CREATE

1

· RETRIEVE

2

· UPDATE

4

· DELETE

8

· NOTIFY

16

· DISCOVERY
32
Example:

<pv>

<acr>

<acor>admin</acor>

<acop>63</acop>

</acr>
</pv>
<pvs>

<acr>

<acor>guest</acor>

<acop>34</acop>

</acr>

<pvs>

· Common attribute accessControlPolicyIDs link resources that are not <accessControlPolicy> resources to <accessControlPolicy> resources.
· All resources are accessible only if the privileges from the ACP grants it.
· All resources have an associated accessControlPolicyIDs attribute, either explicitly or implicitly.

[image: image24.emf]resourceType = <CSEBase>

resourceType = <container>

accessControlPolicyIDs

CSE1Base

CRUD Request

arriving at CSE hosting

target resource

“cse1base/container1”

resourceType = <accessControlPolicy>

privileges

selfPrivileges

Container1

ACP1

ID or URI to <accessControlPolicy> resource

access control rules that define which AE/CSE

is allowed for which operation

set of access control rules for the

<accessControlPolicy> resource itself

Response to originator

after policy/rights check

Figure 5.4.2-1 : Access control policy verification example
5.4.3
Subscription and Notification

· Events generated by resources can be received using the <subscription> resource.
· The <subscription> resource contains subscription information for its "subscribed-to" resource.
· <subscription> resource is a child resource of the "subscribed-to" resource.
· The originator (resource subscriber) has RETRIEVE privileges to the "subscribed-to" resource in order to create the <subscription> resource.
· Notification policies specified in the attributes can be applied to the <subscription>.
· Specify which, when, and how notifications are sent.
· Example: batchNotify – receive batches of notification rather than one at a time.

[image: image25.emf]resourceType = <CSEBase>

resourceType = <container>

“subscribed-to” resource

currentNrOfInstances

= 1 → 3

CSE1Base

resourceType = <subscription>

notificationContentType

= modified attributes only

Container1

Notification via

URI specified in

notificationURI

currentNrOfInstances= 3

Originator

(AE1)

Resource Subscriber

to

“cse1base/container1”

Receiver

(CSE1)

Subscription1

Change in

resource attribute

triggers event notification

Figure 5.4.3-1 : Subcription and notification example

5.4.4
Discovery

· Resource Discovery Capabilities
· Under the RESTful architecture, Resource Discovery can be accomplished using RETRIEVE operation by an Originator.
· The use of the filterCriteria parameter allows limiting the scope of the results.
· Type, Labels, Content Size and so on can be configured in the parameter.

[image: image26]

Figure 5.4.4-1 : Discovery example
5.5
Data collection example

Editor note: to provide a basic example scenario using data collection + Subscription/Notification
6
Core Functionalities

6.1
Introduction

 Editor notes: here are examples clauses that could be addressed to simply describe Core Fonctionalities. It is here for information and the list could be revised.
6.2
Addressing modes

6.3
Retargeting

6.4
Long Polling

6.4.1
Introduction
In some cases, an AE or a CSE cannot receive a notification directly from other entities. The reason could be the entity is non-server capable or that it is located behind a NAT or a firewall and therefore cannot be accessed from an external network.

The Long Polling channel feature is defined to solve this issue. The request-unreachable AE/CSE creates a <pollingChannel> resource on its hosting CSE, and then polls this resource for any type of request(s) targeted towards itself.
A typical use case is an AE retrieves notifications by polling a <pollingChannel> resource to receive notifications from a subscription Hosting CSE.
When the <pollingChannel> resource is created, a virtual <pollingChannelURI> resource is automatically created by the Hosting CSE as a child resource of the <pollingChannel> resource. To poll the <pollingChannel> resource, retrieves are targeted towards this <pollingChannelURI> resource by the AE or CSE which created the <pollingChannel> resource. The Hosting CSE delays responding to the long polling request until there is a request that requires re-targeting towards to the AE/CSE or the long polling request reaches its request expiration time.

[image: image27.emf]Target

(AE/CSE)

<pollingChannelURI>

Hosting CSE

(Registrar CSE of the Target)

Originator which

initiates a request

to the Target

001: Retrieve request (req1)

to <pollingChannelURI> resource

006: Response to "req2" (resp2)

002: A request (req2) to the Target

004: polling response (resp1)

carrying "req2" in Content param.

005: Notify request (req3) to

<polingChannelURI> resource

carrying "resp2" in Content param.

007: Response to "req3"

003: Internal processing for polling

channel

Figure 6.4.1-1: Long polling channel call flows

1) The Target (AE/CSE), which is a request-unreachable entity, polls the <pollingChannel> resource Hosting CSE by sending a RETRIEVE requests periodically (“req1”) that target the virtual <pollingChannelURI> child resource.
The Receiver, which is the <pollingChannel> Hosting CSE, holds the request until it has any requests to return to the Originator.
If the request expires and there is no available request to return, the Hosting CSE sends the response with a status indicating a timeout has occurred to inform the AE/CSE that a new polling request should be generated again.
2) The Originator sends a request “req2” to the Target. If the Target is an AE , “req2” is a NOTIFY. If the Target is a CSE, it could be any CRUDN request primitive.
3) The Hosting CSE internally processes the polling channel RETRIEVE.

4) The Hosting CSE replies to the polling request in a response “resp1” (RETRIEVE response) , carrying the req2 in the content parameter.
5) The Target sends a NOTIFY request "req3" containing the "resp2", which is the response to the "req2" sent in step 2) and step 4).
6) The "resp2" is forwarded to the Originator.
7) The Hosting CSE sends to the Target a reponse to “req3” (NOTIFY response).
6.4.2
Long polling example

An AE actuator ADN-AE1 (eg a garden water spray) is behind a NAT and cannot receive notifications requests from its Hosting CSE. Instead, it has to retrieve notifications by long polling on the polling channel it has created.

[image: image28.emf]Actuator

ADN-AE1

Smartphone

ADN-AE2

Mca

CSE

Mca

NAT

Figure 6.4.2-1: Actuator remote control using polling channel
The ADN-AE1 Actuator registers to the CSE and creates a <container> resource (e.g. named <cont_actuator_status>). <contentInstance> child resources are created in this <container> resource to issue commands to the Actuator (e.g. turn it ON or OFF). The ADN-AE1 creates a <subscription> child resource of the <container> to receive notifications when <contentInstance> child resources are created within the <container> resource. However, due to the NAT, the ADN-AE1 cannot receive notifications directly sent to it from the CSE. Therefore, it creates a <pollingChannel> resource on the CSE and configures its <subscription> resource to have the CSE send the notifications via this <pollingChannel> resource which the ADN-AE1 polls.

The ADN-AE2 is able to remotely change the status of the actuator by creating a new <contentInstance> child resource of the <cont_actuator_status> container resource. Within the content of the <contentInstance> an ‘ON ‘or ‘OFF’ command is configured. As a subscription has been created on the <cont_actuator_status> container resource, a notification is generated by the CSE for each <contentInstance> resource created. These notifications are delivered to ADN-AE2 via the polling channel functionality.

[image: image29.emf]ADN-AE1

Target

CSE

ADN-AE2

Originator

contentInstance create

request representing an

updated state to ADN-

AE1

REQ1: retrieve

request to

polllingChannelURI

resource

Internal

processing for

polling channel RESP1: carrying

“REQ2” in

content param

②

①

⑤

REQ3: notify request to

polllingChannelURI

resource, carrying

“RESP2” in content

param

⑥

⑦

contentInstance

create response

RESP3 to ADN-

AE3

Internal

processing for

updating status

<pollingChannelURI>

Hosting CSE

REQ2:Notification

triggered by CI create

③

④

Figure 6.4.2-2: Actuator remote control example call flows

A call flow for remote control is depicted in Figure 6.4.2-2 and the steps are ordered as follows:

4) The Actuator (i.e. ADN-AE1) sends RETRIEVE requests (REQ1) periodically to a CSE in order to retrieve notification requests,.

5) When a smartphone user updates the actuator state on the smartphone, ADN-AE2 generates a <contentInstance> create request to the <cont_actuator_status> container resource hosted on the CSE. The <contentInstance> contains the command to turn the Actuator ON or OFF.

6) The CSE sends a response to the smartphone application (ADN-AE2), to indicate that the <contentInstance> resource is created.
7) As the <cont_actuator_status> container resource hosted on the CSE has a subscription, the CSE generates a notification request (REQ2) when the <contentInstance> resource is created. The notification request is targeted to ADN-AE1 (i.e. the subscriber).
8) Since ADN-AE1 is not able to receive a notification request (REQ2) directly from the CSE, the polling channel is used. The notification request is sent to ADN-AE1 by returning it encapsulated within the payload of the <pollingChannelURI> Retrieve response (RESP1).

9) After processing the notification, (e.g. turning on the water spray), then ADN-AE1 sends a separate notification request (REQ3) to the gateway CSE that includes a response (RESP2) encapsulated in the content parameter to indicate that REQ2 was received and processed successfully (e.g. water spray was turned on).

10) The CSE returns a notification response (RESP3) to ADN-AE1, to indicate that the response (RESP2) was successfully received.
6.5
Location policy
6.5.1 Introduction

Geographical location information of M2M entities is one of most significant exposed service capabilities in oneM2M system for services. It allows applications AE to obtain geographical location information of Nodes (e.g. ASN, MN) for Location-based services. Such information could be more than just longitude and the latitude.
In the CSE, the LOC Common Service Function obtains and manages the geographical location information of oneM2M entities.

On a request of AEs, a dedicated resource <locationPolicy> is created into the CSE. This resource does not contain the location information itself of the target nodes. Based on its specific attributes, the <locationPolicy> contains the configuration on how to obtain the location information of a target M2M node (Update period, target ID, location server, target area, etc…)
When a policy is set, a data container(<container> resource) is created and is linked to the <locationPolicy> by its attribute locationContainerID. Then the CSE stores the location information in the target <container> resource as <contentInstance> resource. The data are updated depending of the policy. Any AE can then get access to the geographical location information.
[image: image30.png]<locationPolicy>

locationSource

locationUpdatePeriod

locationContainer|D.

II [|$ I|

locationContainerName

Figure 6.5.1-1: <locationPolicy> resource
6.5.2 Obtaining Location Information

The CSE has 3 methods for obtaining location information of an M2M Node . This information is stored in the locationSource attribute of the <locationPolicy> resource.

· Network-based method: where the CSE on behalf of the AE obtains the target M2M Node's location information from an Underlying Network.

· Device-based method: where the ASN is equipped with any location capable modules or technologies (e.g. GPS) and is able to position itself.

· Sharing-based method: where the ADN has no GPS nor an Underlying Network connectivity. Its location information can be retrieved from either the associated ASN or a MN.

Network-based method:

[image: image31.emf]AE

CSE

CSE

AE

Location

Requestor

Target M2M Node

(10.213.32.101)

IN

Create <locationPolicy>

Location

Server

<locationPolicy>

locationSource = ‘Network’

locationTargetID = ’10.213.32.101’

locationServer = ‘locserver.lg.org’

Location Response

Performing Location

(e.g., Cell-ID, OTDOA)

Location Request

Ex : OMA API for Terminal Location)

<cont_loc_10.213.32.101>

Content = (x,y)

 Figure 6.5.2-1: Network-based method

Device-based method

[image: image32.png]Location Requestor

Create <|ocatio

Location Acquisition
(e.g., through System Call)

* non oneM2M interface

nPolicy>

<locationPolicy>

I—)(locationSource = ‘Device-Based’)

<cont_loc>

Figure 6.5.2-2: Device-based method

Sharing-based method

[image: image33.emf]CSE

AE

MN

AE

Location

Requestor – ADN_0 (Location of

itself)

AE

ADN_1

Location = (x

1

,y

1

)

(Stored in the MN-CSE)

AE

ADN_2

AE

ADN_3

Location = (x

3

,y

3

)

(Stored in the MN-CSE)

Create <locationPolicy>

<locationPolicy>

locationSource = ‘Sharing’

Location information of ADN_1 shall be stored

as location information of the requestor

Topology Information

(Obtained though DM Technology)

MN

ADN_0

ADN_1 ADN_2

ADN_3

The Closest to

ADN_0

Figure 6.5.2-3: Sharing-based method

6.x
IPE

6.x
Group management

6.x
App-ID
6.x
Announcement

6.x
Block/NB sync/async modes

7
Main feature descriptions
7.1
Introduction

7.2
3GPP Interworking

7.2.1
Introduction

The oneM2M Service Layer can operate over a variety of underlying network connections, including LPWAN Cellular IoT. The northbound API for applications to interface to a oneM2M Service Layer facilitates horizontal sharing of data across different domains. The services exposed by the oneM2M Service Layer allow working with many types of devices and treating different devices as if they are all the same.

[image: image34.emf]3GPP Network

Apps

Cellular IoT Devices

(NB-IoT, LTE-M)

IoT Server

IoT Features

COMMAND

COMMAND COMMAND

DATA

DATA

DATA

IoT Features

COMMAND

COMMAND

COMMAND COMMAND

DATA

DATA

DATA

DATA

Figure 7.2.1-1: Typical Cellular IoT Deployment
· Use of 3GPP IoT features requires low-level knowledge of 3GPP and a business relationship with operator (E.g. Configuration of IoT device sleep times requires intimate knowledge of 3GPP Power Savings Mode (PSM) or extended Idle Mode DRX (eDRX)
(This presents a high barrier of use and adoption by typical IoT device manufacturers and app developers

· If devices and apps do not properly use these features, cellular IoT deployments are destined to fail
· Inefficient use of network resources (higher costs and less scalability for operators
· Shortened battery life of devices (inability to deploy cellular IoT devices in many IoT use cases
· Security threats to the network (network, devices and application security will be compromised
3GPP has been adding several IoT centric features to their standard starting in Release 10. For instance, the IoT features are:
· Features to avoid network congestion resulting from massive numbers of IoT devices such that operators can continue to provide a high quality of service to all their subscribers
· Features to enable more efficient use of network resources by IoT devices such that an operator can minimize network deployment and management costs
· Features to help keep an operator’s network secure from the increased threats of IoT devices
· Features that allow IoT devices to sleep for long periods of time such that they can maximize their battery lives
Since Release 3, oneM2M includes additional support for interworking to underlying 3GPP network services , allowing IoT devices to operate in constraint environement where low power and long battery life is necessary.

oneM2M can be deployed internal (or external) to an operator’s network and enable an operator to move up the value-chain to offer not just connectivity but also additional value-add IoT services.
oneM2M interacts with a 3GPP operator’s network to mitigate congestion, enable efficient use of network resources, and help keep network secure. The 3GPP features are exposed to oneM2M service layer for the benefit of IoT applications, and vice-versa.

[image: image35.png]Service Layer

Cellular loT Devices
(NB-loT, LTE-M)

3GPP Core Network L i { 3]
Q @ é— loT Features sﬁE:F((Asf;))/ s: e Y
@ | |

loT Server

Figure 7.2.1-2: oneM2M - 3GPP Interworking using SCEF / NEF
oneM2M supports interworking to underlying 3GPP network services:

· Sending/Receiving request to/from UE over 3GPP control plane (Non-IP Data Delivery NIDD) rather than data plane

· Configuration of UE’s Power Savings Mode or extended Idle Mode DRX (PSM/eDRX) parameters based on App requirements

· Scheduling and buffering of messages based on UE’s reachability and/or App’s backgroung data policies

· Triggering of UE to establish a network connection and/or register or enrol based on App requirements

· Configuration of network QoS parameters based on App requirements

· Querying of UE location and making it available to Apps

· Receiving notifications when the network is congested and scheduling messages to UE accordingly

· Receiving notifications when UE has been tampered with and disabling communication with UE

7.2.2
IoT Device Enrollment

One of the main challenges when deploying an IoT network is to get unmanned IoT devices to enroll to an IoT Service Provider, provision the devices with essential security IDs, Credentials and contact information required to allow the devices to connect, authenticate and securely register to an IoT Gateway or Server such that they can use services offered by the Service Provider.
Once enrolled and registered, and in order to save battery life, a 3GPP IoT devices does not maintain long-lived network connections. Before a request can be sent to a 3GPP IoT device, it first re-connects to the 3GPP network.
With the standardized interworking with 3GPP network, oneM2M Service Layer initiates the triggering of cellular IoT devices to connect to an operator’s network, be bootstrapped with proper security credentials and authenticate and securely register.
[image: image36.png]Cellular IoT Devices
(NB-ioT, LTE-M)

A 3GPP_Cer€ Netwo

—ﬁ\ — loT Features

loT Server

Figure 7.2.2-1: IoT device Enrollement
3GPP T8 supports the capability to allow Service Capability Server to initiate sending a trigger message to a specified UE to perform application specific actions. The underlying 3GPP network routes the trigger request message to the appropriate UE and UE routes the message to the appropriate application
oneM2M defines a trigger payload structure that supports triggering a UE to perform the following actions:
· Contact a oneM2M enrollment server MEF to be provisioned with the necessary IDs and credentials needed for authentication and use of services in a oneM2M Service Provider’s domain.
· Register to a specified oneM2M server (i.e. IN-CSE)
· Establish an IP connection to the oneM2M server that the UE is registered to and update the UE’s point-of-contact information (e.g. IP address and port)
· Perform an specified operation on a specified resource hosted by a specified oneM2M server (e.g. create a new child <contentInstance> resource in a specified parent <container> resource).
oneM2M exposes a trigger API to oneM2M applications that allows them to initiate triggering a UE to perform any of the above actions
· This API is supported via the oneM2M defined <triggerRequest> resource
· This API is layered on top of the SCEF T8 device triggering
7.2.3
IoT Device Sleep Schedule Management

Battery life is crucial for IoT devices. NB-IoT and CAT-M1 devices can supposedly run on 2 double AA batteries for 10 years. 3GPP has defined “deep state” mode (Power Savings Mode or extended Idle Mode DRX) in order to save IoT device battery. But in deep sleep, data can not be sent to the device, thus the device can not be reached. Devices need to sleep for hours if they want to achieve a battery life of multiple years. An IoT Server that collects data from cellular devices needs to understand that the device will be unreachable for long stretches of time.
oneM2M Service Layer optimizes the sleep schedule of cellular IoT devices such that battery life can be maximized. This can be done based on the schedule requirements of IoT devices and the apps that interact with the devices and the requirements of the cellular network operator.
oneM2M supports managing UE schedules based on application requirements:
· oneM2M server (IN-CSE) aggregates schedule requirements for a given UE
· oneM2M allows each application (AE or CSE) hosted on a UE to specify its schedule of when requests need to be sent or received
· oneM2M also allows applications that communicate with a UE to specify schedule of when they need to communicate with the UE
· oneM2M server keeps the underlying 3GPP network informed (via T8) of UE schedule requirements
oneM2M exposes a device communication schedule API to oneM2M applications that allows them to configure schedule requirements, retrieve schedule information and receive notifications of schedule changes.
· This API is supported via the oneM2M defined <schedule> resource
· This API is simpler and more user friendly than 3GPP API. It hides complexity of 3GPP T8 API
· E.g. UE needs to be reachable from 1:00 – 1:30pm every Tuesday
· This API is layered on top of the SCEF T8 Network Parameter Configuration, Reachability Monitoring, and Communication Pattern Configuration APIs
[image: image37.png]1. Apps on device
specify their desired
communication
schedule

Cellular IoT Devices
(NB-ioT, LTE-M)

—3GPP Core Network

3. oneM2M Service Layer
computes proposed
PSM/eDRX times based
on aggregated schedule
inputs from device and
appls)

2. oneM2M app(s)
specify their
desired schedules
to communicate
with a device

~2__ Service Layer

loT Features

ﬁu@)
®e

5. Targeted Device
is configured with
PSM/eDRX timers

4. 3GPP network
considers proposed
PSM/eDRX timers for
device and
determines actual
timer values

B

loT Server

6. oneM2M Service
Layer notifies
appl(s) of the

device’s schedule

of availability

Figure 7.2.3-1: IoT Device Sleep Schedule Management
7.2.4
 IoT Device Location Tracking

Certain IoT use cases require awareness of an IoT device location, however many IoT devices lack location reporting capability.

oneM2M Service Layer supports the capability to interwork to the 3GPP T8 for the following Device Location operations :

· A oneM2M server supports the capability to interwork to the 3GPP T8 location monitoring API to retrieve the current location of a UE and to subscribe to receive notifications if a UE’s location changes.
· A oneM2M server supports storing location history of a UE.
· A oneM2M server supports geo-fencing capabilities used to generate events if/when a UE’s location enters or leaves a specified boundary.
· A oneM2M server supports location-based authorization used to grant/deny access to resources based on the location of the originator of a request.
· oneM2M exposes a location API to oneM2M applications :
· Application can retrieve the current location of a UE, instruct the oneM2M server to track the location of a UE or can define a geo-fence boundary.
· This API is supported via the oneM2M defined <locationPolicy> resource
· This API is layered on top of the SCEF T8 location monitoring API
[image: image38.png]6. oneM2M Service Layer
receives device’s current
location, compares it against
geofenced area and detects

1. A oneM2M
App asks to be
notified if/when
device leaves
specified
geofenced area

5. 3GPP CN detects
device’s current
location has changed

d send:
:r;ﬁ'sii:ﬁi: device has left the area

4. Device moves to a
new location

Cellular IoT Devices
(NB-ioT, LTE-M)

3GPP Core Network

VW‘M @
@
%;;..' — — 10T Features e IR —

loT Server

7. 0neM2M Service
Layer notifies
device has left
geofenced area

2. oneM2M Service Layer
subscribes to 3GPP CN to
receive location updates
for specified device

3. 3GPP CN monitors

the current location of
the de to detect
changes

Figure 7.2.4-1: IoT Device Location Tracking

7.2.5
 IoT Device Message Delivery Handling

In certain use cases, a user application may need communicate with a device that has a certain availability schedule and hence require input into the device’s communication and sleep schedule.
For deployments consisting of large numbers of IoT devices, managing the communication schedules across these devices such that they connect and communicate to IoT Servers and Gateways in a coordinated and balanced fashion is not trivial. Lack of coordination can lead to contention for core network resources as well as IoT Server and Gateway resources. As IoT devices are added and removed from the system or individual device scheduling requirements change, this problem becomes more dynamic and difficult to manage.
3GPP SCEF supports the capability for a oneM2M IN-CSE (SCS/AS) :

· to inform the 3GPP network how long a UE can stay in long power savings sleep cycle. The network can use this information to configure the UE’s DRX cycles, Power Saving Mode, and Tracking Area Update timer.
· to inform the 3GPP network of when a device is expected to communicate. The core network can then use this information to create assistance information for the RAN like to minimize UE state transitions.
(oneM2M supports buffering of requests targeting UEs while they are sleeping
· oneM2M supports priority based buffering of requests when the UE is not awake.
· oneM2M server subscribes via SCEF to receive notifications from the 3GPP core network when an UE goes into a power saving mode sleep cycle and is unavailable to receive requests. oneM2M server can buffer requests targeting a UE while it is sleeping
· When an oneM2M server receives a notification that UE is available, it forwards any buffered requests to the UE.
[image: image39.png]2. Device enters
power savings mode
(PSM/eDRX) to

9. Device
receives
request and
responds

conserve its battery

Cellular IoT Devices
(NB-ioT, LTE-M)

6. Device exits
power savings
mode (PSM/eDRX)

8. oneM2M

Service Layer
sends buffered

5. oneM2M Service
Layer buffers
request until

3.3GPPCN
notifies oneM2M

7.3GPPCN Service Layer
ifi e LY requests to device exits power 4. AoneM2m
notifies device has . . 4 i
oneM2M Service s el device now thatit | savings mode and pp issues a
s is reachable becomes reachable request

Layer device has
exited power
savings mode

savings mode targeting an

loT device

3GPP Core NetwWo

loT Features

loT Server
10. oneM2M

Service Layer

1. oneM2M Service Layer
returns response

subscribes to 3GPP CN to

receive notifications when
a device enters or exits

power savings mode

Figure 7.2.5-1: IoT Device Message Delivery Handling
7.2.6
 Network Congestion Control

A particular region of an operator’s network may become congested.
When a oneM2M Service Layer receives 3GPP notifications from the SCEF indicating that the core network is congested it can reduce the communication rate or buffer requests targeting IoT devices in that region based on priority until congestion resides.
[image: image40.png]4.0neM2M Service Layer
checks location of targeted 3. AoneM2M
in.particular location of device and detects it is in App sends a
network and notification congested area of network so it request targeting
is sent buffers the request adevicein
congested area of
network

2. Congestion detected

Cellular IoT Devices 2. Service Layer

(NB-loT, LTE-M) - > {Request
A 3GPP Core Network | -

Apps

loT Features

5

loT Server

7. 0neM2M Service
Layer returns
response

1. oneM2M Service

Layer subscribes to
3GPP CN to receive
network status

6. oneM2M Service
Layer detects
congestion has
subsided and sends
buffered request

5. Congestion eventually

Figure 7.2.6-1: Network Congestion Control

7.2.7
 Non-IP Data Delivery (NIDD)
UEs may support different application data delivery method(s) such as delivery of application data to/from a UE over SGi, NIDD or SMS.
Determining which data delivery method(s) a UE supports and under what conditions a method is preferred could depend on various conditions:
· E.g. context of the request targeting the UE (e.g. size, type, originator)
· E.g. state of the targeted UE (location, battery level, etc)
· E.g. congestion level of network where UE resides
An oneM2M Service Layer helps to determine which data delivery method(s) should be used for a given UE and under what conditions.
3GPP supports the capability for a oneM2M server:

· to deliver application data to a UE over SGi (i.e. IP data plane)
· to deliver application data to a UE over the Control Plane
(oneM2M Data Delivery Methods:

· A oneM2M server supports delivery of oneM2M requests and responses to/from a UE over NIDD and SGi. (oneM2M currently does not support SMS-based delivery of requests and responses).
· For a given UE, oneM2M relies on a configurable parameter that is exposed via the oneM2M API to determine whether to use SGi or NIDD. This API is supported via the niddRequired attribute of the oneM2M defined <serviceSubcribedNode> resource. Can be set to true or false (default)
· Applications communicating with UEs via the oneM2M server do not need to be concerned about whether a UE uses NIDD or SGi, the oneM2M server will manage and hide this detail.
[image: image41.png]3. Device sends an uplink
oneM2M request over
the control plane of 3GPP

4. oneM2M Service

Layer processes request AT

CN using NIDD and returns a response

(.2 sensor reading) App samples

sensor reading

~2__ Service Layer

Cellular IoT Devices
(NB-ioT, LTE-M)

3GPP Core Network
| | 2%

Apps

Response

7. oneM2M Service

2. 3GPP CN processes NIDD Layer returns
5. (optional) Device configuration and will know where IEETD
receives an downlink to send NIDD data when the UE request for device that (&.2. sensor reading)
oneM2M response establishes a PDN connection enrolls with NIDD
via NIDD capability

Figure 7.2.7-1: Non-IP Data Delivery (NIDD)

7.2.8
 IoT Device Tampering Detection
Unmanned IoT devices can be more easily tampered with and may go can unnoticed for longer periods of time which can amplify the security threat. For instance, SIM card of one device is removed and used in another device.

The oneM2M Service Layer helps mitigate the security threats of a tampered IoT device and assists with remediation of the threat.
3GPP T8 supports the capability for an oneM2M CSE to subscribe and receive notifications from the 3GPP core network if it detects that the IMSI/IMEI of a UE has been tampered with, for example when the SIM card is removed and placed into a another UE.
If a change IMSI/IMEI notification is received, the oneM2M server stops servicing requests to/from the UE and tears down any active security associations (e.g. D/TLS sessions) to the UE. The oneM2M server also denies any new security association establishment requests from the UE. The oneM2M server blocks IoT applications from sending/receiving new requests from the device or accessing stored data from the device which may have been compromised.
[image: image42.png]2. A device’s SIM card
is tampered with
(i.e. removed and

swapped out with
another SIM)

Cellular 10T Devices
(NB-ioT, LTE-M)

6. oneM2M stops servicing
requests to/from tampered
device

3. Change in IMSI-IMEI is
detected. A notification
is generated

5. AoneM2M app
sends request
targeting device
that has been
tampered with

(notiy}——

& 3GPP Core Network

4. The tampered
device issues a
request

loT Features

loT Server

7. oneM2M Service

1. oneM2M Service
Layer returns error

Layer subscribes to
3GPP CN to receive
device tampering
notifications

response

Figure 7.2.8-1: IoT Device Tampering Detection
7.2.9
 Management of Groups of IoT Devices
Many IoT use cases call for communicating with a group of devices. For instance, large numbers of IoT devices that need firmware updates can take a lot of time and resources to send data to each UE one at a time.
The oneM2M Service Layer coordinates group message delivery by establishing and tearing down groups of devices and fanning out requests to the group using 3GPP multicast/broadcast feature.
Multimedia Broadcast / Multicast Service (MBMS) is a point-to-multipoint service in which data is transmitted from a single source entity to multiple recipients. Transmitting the same data to multiple recipients allows network resources to be shared. Group message delivery using MBMS is intended to efficiently distribute the same content to the members of a group that are located in a particular geographical area on request of the oneM2M IN-CSE (SCS/AS) via SCEF.
The oneM2M server establishes a MBMS group using the 3GPP SCEF API.
When a device is added to a <group> resource, the oneM2M server checks if the UE supports MBMS.
[image: image43.png]5. oneM2M 2. oneM2M

Service Layer sends Service Layer 1. AoneM2M app

requests to devices detects if devices sends request to
to join MBMS are 3GPP MBMS form a group

6. Devices
receive unicast
request to join

MBMS group group multicast capable devices

Cellular IoT Devices

™ w?nms group 3GPP Core Network
TR

ToT Features

loT Server

9. Devices

4. 3GPP CN sets up PDU 7. A oneM2M app

receive group)
request via session for group 8. oneM2M SL 3. oneM2M Service sends request to a
MBMS communication, establishes sends group Layer requests 3GPP group of devices
MBMS group and allocates request to SCEF CN to establish a

MBMS group with
an assigned TMGI

and assigns TMGI

Figure 7.2.9-1: Management of Groups of IoT Devices
7.2.10
 IoT Roaming Device Services

IoT applications can make requests that target a roaming cellular IoT device.
When an UE is connected to another network operator’s network (i.e. UE is roaming) communicating with the UE can be more costly. In many deployment use cases, requests made to UEs may be low priority in nature and possibly buffered until the UE re-attaches to its home operator’s network.
The 3GPP SCEF API supports the capability for a oneM2M IN-CSE to subscribe to receive notifications from the 3GPP core network when a UE’s roaming status changes.
When the oneM2M Service Layer receives 3GPP notifications that a cellulsar IoT device is roaming it buffers requests targeting the roaming device until the device is no longer roaming. This can be a valuable service for certain IoT use cases.
oneM2M supports device roaming capabilities:
· oneM2M server subscribes via T8 to receive notifications from 3GPP SCEF of a UE’s roaming status
· oneM2M servers can buffer requests targeting a UE that is roaming
oneM2M exposes a device roaming API that is layered over top of SCEF Roaming Status API
· This API is supported via the roamingStatus attribute of the oneM2M <node> resource
· An application can query the roamingStatus attribute to check current state of the UE
· An application can subscribe to roamingStatus to receive notifications from the oneM2M server when the roaming status changes
[image: image44.png]2. Device roams onto

another operator’s
network =l
request and

responds

Cellular IoT Devices
(NB-ioT, LTE-M)

6. Device returns to

its home operator’s
network

7.3GPP CN notifies oneM2M

oneMZ:ll Service device is roaming [——— J—— request
Layerl levi targeting an
no longer loT device

8. oneM2M
Service Layer
sends buffered
requests to
device that is no

5. oneM2M Service
Layer buffers
request until

device returns to
its home operator

3.3GPPCN

4. A oneM2M

notifies Service Layer App issues a

roaming

3GPP Core NetwWo

IoT Features SCEF

loT Server
10. oneM2M
Service Layer
1. oneM2M Service Layer [l returns response

subscribes to 3GPP CN to

receive notifications when
a device is roaming

Figure 7.2.10-1: IoT Roaming Device Services

7.3
FlexContainer
7.4
Semantics
7.5
Industrial Domain

7.5.1
Time Series

7.5.2
Transaction

7.x
Security

· 7.x.1 Introduction

· Dynamic Authorization
· Distributed Authorization

· End to end

7.x
SDT
Proforma copyright release text block

This text box shall immediately follow after the heading of an element (i.e. clause or annex) containing a proforma or template which is intended to be copied by the user. Such an element shall always start on a new page.

Notwithstanding the provisions of the copyright clause related to the text of the present document, oneM2M grants that users of the present document may freely reproduce the <proformatype> proforma in this {clause|annex} so that it can be used for its intended purposes and may further publish the completed <proformatype>.

<PAGE BREAK>

Annexes

Each annex shall start on a new page (insert a page break between annexes A and B, annexes B and C, etc.).

Use the Heading 9 style for the title and the Normal style for the text.
Annex <A>:
Title of annex (style H9)
<Text>

<PAGE BREAK>

Annex :
Title of annex (style H9)
<Text>

B.1
First clause of the annex (style H1)
<Text>

B.1.1
First subdivided clause of the annex (style H2)
<Text>

<PAGE BREAK>
Annex <y>:
Bibliography

The annex entitled "Bibliography" is optional.

It shall contain a list of standards, books, articles, or other sources on a particular subject which are not mentioned in the document itself.

It shall not include references mentioned in the document.

Use the Heading 9 style for the title and B1+ or Normal for the text.

· <Publication>: "<Title>".

OR

<Publication>: "<Title>".

<PAGE BREAK>

History

This clause shall be the last one in the document and list the main phases (all additional information will be removed at the publication stage).
	Publication history

	V1.1.1
	<yyyy-mm-dd>
	<Milestone>

	
	
	

	
	
	

	
	
	

	
	
	

	Draft history (to be removed on publication)

	V0.0.1
	2018-11-10
	Initial draft

	V0.1.0
	2018-12-10
	Implemented contribution agreed at ARC#38

ARC-2018-0317R01-TR-0057-oneM2M-overview_clause_5

	V0.2.0
	2019-02-26
	Implemented contribution agreed at SDS#39

SDS-2019-0110R03-TR-0057_oneM2M_overview

	
	
	

	V0.3.0
	2019-05-04
	Implemented contribution agreed at SDS#39.8

SDS-2019-0103R01-TR-0057_Long_Polling_description

	V0.4.0
	2021-01-15
	Implemented contribution agreed at SDS#48

SDS-2020-0329-TR-0057_Location_Policy

	V0.5.0
	2021-02-11
	Implemented contribution agreed at SDS#49

SDS-2020-0375-TR-0057_3GPP_interworking_-_part_1

	V0.6.0
	2021-02-24
	Implemented contribution agreed at SDS#49.1

SDS-2021-0040-TR-0057_3GPP_interworking_-_part_2

Application�Service�Node

Application�Dedicated�Node

Application�Dedicated�Node

Application�Dedicated�Node

Middle Node

Middle Node

Middle Node

Infrastructure Node

AE

AE

AE

AE

AE

CSE

CSE

CSE

AE

CSE

AE

AE

CSE

CSE

{

"m2m:cnt": {

"cbs": 0,

"cni": 0,

 "ct": "20180406T085712",

"et": "99991231T235959",

"lt": "20180406T085712",

"mbs": 60000000,	

"mia": 1600,

"mni": 10000,

"pi": "CAE0120180406T084680_cse01",

ri": "cnt20180406T08571214_cse01",

"rn": "cont_temp",	

"st": 0,	

"ty": 3

}

}

cnt : container

cbs : currentByteSize

cni : currentNrOfInstances

ct : creationTime

et : expirationTime

lt : lastModifiedTime

mbs : maxByteSize

mia : maxInstanceAge

mni : maxNrOfInstance

pi : parentID

ri : resourceID

rn :resourceName

st : stateTag

ty : resourceType

Privileges:

Manage the right for resources of this ACP

Self-privileges:

Manage the right to access or modify this resource. It defines who can set an Access Control Policy

Combinations of these values are specified by adding them together. For example the value 5 is interpreted as "CREATE and UPDATE".

63 grants all rights

34 grants Retrieve and Discovery rights

How to link with a <container> resource

URI of the created <container>

Name of the container

For Network-based Location Information

ID of the Target M2M Node

ID of the Location Server located in Underlying Network

Basic Information

Source (Network/Device/Sharing)

Period to obtain location information

© oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC)
Page 10 of 38
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

To
Open
Cloud  independent
From
Proprietary
Cloud specific

Registration

Group Management

Security

Discovery & Announcement

Data Management & Repository

Application & Service Management

Device Management

Subscription & Notification

Communication Management

Service Charging & Accounting

Location

Network Service Exposure

Semantics

Interworking

image1.png

Actuator
ADN-AE1
Smartphone ADN-AE2
Mca
CSE
Mca
NAT

_1624156463.ppt

CSE

AE

MN

AE

Location

Requestor – ADN_0 (Location of itself)

AE

ADN_1

Location = (x1,y1)

(Stored in the MN-CSE)

AE

ADN_2

AE

ADN_3

Location = (x3,y3)

(Stored in the MN-CSE)

Create <locationPolicy>

<locationPolicy>

locationSource = ‘Sharing’

Location information of ADN_1 shall be stored

as location information of the requestor

Topology Information

(Obtained though DM Technology)

MN

ADN_0

ADN_1

ADN_2

ADN_3

The Closest to

ADN_0

_1668005628.ppt

AE

CSE

CSE

AE

Location

Requestor

Target M2M Node

(10.213.32.101)

IN

Create <locationPolicy>

Location

Server

<locationPolicy>

locationSource = ‘Network’

locationTargetID = ’10.213.32.101’

locationServer = ‘locserver.lg.org’

Location Response

Performing Location

(e.g., Cell-ID, OTDOA)

Location Request

Ex : OMA API for Terminal Location)

<cont_loc_10.213.32.101>

Content = (x,y)

ADN-AE1
Target
CSE
ADN-AE2
Originator
contentInstance create request representing an updated state to ADN-AE1
REQ1: retrieve request to polllingChannelURI resource
Internal processing for polling channel
RESP1: carrying “REQ2” in content param
②
①
⑤
REQ3: notify request to polllingChannelURI resource, carrying “RESP2” in content param
⑥
⑦
contentInstance create response
RESP3 to ADN-AE3
Internal processing for updating status
<pollingChannelURI>
Hosting CSE
REQ2:Notification triggered by CI create
③
④

oneM2M stores data in case of lack of connectivity

oneM2M can controls the devices usage of connectivity (When, how often communication happens)

Connectivity

oneM2M provides globally standardized interfaces for the Application developers (device and cloud)

oneM2M enables Application portability

Application
area

oneM2M provides services towards the Application (Application –Registration & -Discovery, Subscription & Notifications Services, Secure Communication, Device Management etc…

oneM2M enables Device portability (a Device can be connected to any Infrastructure solution)

Data Interoperability

Building

 Dedicated
devices

Security

 Dedicated
devices

Energy

 Dedicated
devices

Invert the pipe

Building

IoT

devices

Security

IoT

devices

Energy

IoT

devices

oneM2M Service Layer

Without oneM2M

Highly fragmented market with limited vendor-specific applications

Reinventing the wheel: Same services developed again and again

Each silo contains its own technologies without interoperability

With oneM2M

End-to-end platform: common service capabilities layer

Interoperability at the level of data and control exchanges via uniform APIs

Seamless interaction between heterogeneous applications and devices

The following figure illustrates very well the current situation of M2M and where we want to move.

As you can see on the left, each M2M domain is a kind of silo containing its own applications and dedicated devices without interop. The same service capabilities are developed again and again.

We want to invert the pipe and move to a more horizontal approach.

The idea here is to provide an end-to-end service platform offering common service capabilities. This will not only enables reusability of the platform but also sharing data and services between actors of different domains paving the way to new innovatives scenarios and new possibilities.

We studied different studies coming from standards and research projects and compared based on their architecture, extensibility, semantic and self-management capabilities and so on.

We found that there no complete solution. Horizontality requires by definition a global agreement that’s why it requires standards.

OneM2M is a globally agreed standard however it is very recent release in January 2015.

We finally adopted ETSI SmartM2M the most mature one. ETSI M2M will be used as starting point and extend with new capabilities to overcome targeted challenges.

So now let’s take a closer to SmartM2M architecture and data model.

image2.png

image3.png

image4.png

Connectivity

Operating System

Applications

API

Applications control connectivity Layer and built-in sensors via API’s provided by the Operating System
=> Applications are becoming portable

Operating System collects data transfer requests from applications. The OS optimizes & controls use the of the network by the device and provides securtiy

Connectivity Layer provides access to the Internet via the wired and wireless networks

image3.emf

image1.png

 Underlying
 Network

 Underlying
 Network

CSE

AE

NSE

CSE

NSE

CSE

NSE

NSE

Application Service Node

Middle Node

Infrastructure Node

Mca

Mcn

Mca

Mca

Mcn

Mcn

Mcc

Mcc

CSE

Mcc’

Inf. Node

AE

AE

Connectivity Layer

Service Layer

Application Layer

_1611574059.vsd

Target
(AE/CSE)
<pollingChannelURI>
Hosting CSE
(Registrar CSE of the Target)
Originator which initiates a request to the Target
001: Retrieve request (req1)
to <pollingChannelURI> resource
006: Response to "req2" (resp2)
002: A request (req2) to the Target
004: polling response (resp1)
carrying "req2" in Content param.
005: Notify request (req3) to
<polingChannelURI> resource
carrying "resp2" in Content param.
007: Response to "req3"
003: Internal processing for polling channel

_1603202276.vsd

_1603202656.vsd

_1603202710.vsd

_1603202325.vsd

_1603113821.doc

Binding Function

Receiver

Underlying networks

Response

Request

Request

Response

Originator

Primitives

Application/Service layer

Transport layer

Primitives

Transport Messages

Binding Function

Transport Messages

_1603114207.vsd
oneM2M Primitive

Content Part
(Resource Representation/Attributes)

Control Part
(Request or Response Parameters)

_1603112990.vsd
Originator (AE or CSE)

Receiver
(AE or CSE)

1. Request Primitive

2. Response Primitive

Mca/Mcc/Mcc’

