	Doc# oneM2M-Template-Change-Request.doc
Change Request
	[image: image3.png]

	

	CHANGE REQUEST

	Group Name:*
	ARC

	Source:*
	Telecom Italia (ETSI)

	Format:*
	Ordinary meeting

	Date:*
	<2014-04-01>

	Contact:*
	Enrico Scarrone

Michele Lupano

Antonella Napolitano

	Reason for Change/s:*
	Need for Guidelines about the use of current mechanisms to extend oneM2M functionalities

	CR against: Release*
	Release 1

	CR against: TS/TR*
	Functional Architecture

	Clauses/Sub Clauses*
	new

	Type of change: *
	 FORMCHECKBOX
 Editorial change
X Bug Fix or Correction
 Change/correction to existing feature or functionality
 New feature or functionality

	Post Freeze checking:*
	This CR contains only essential changes and corrections
 YES X NO FORMCHECKBOX

oneM2M Notice
The document to which this cover statement is attached is submitted to oneM2M. Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.
Annex X
Extending oneM2M functionalities guidelines

OneM2M design provides an horizontal multiservice platform with full interoperability. oneM2M data model is capable to support multiple services with a reduced semantic awareness of the real object represented by the resources, so it is relatively simple, using elementary semantic building blocks (application, containers, groups..) that applications can use and combine to build their specific services.
The interoperability is guaranteed by the principle that CSE does not need to know the specific service semantics, CSE just operate on the oneM2M elementary building blocks-
The oneM2M API themselves are significantly robust, being based of a limited set of verbs, that independent from their resource semantic.

The extended functionalities can be supported via :
1) The definition of the semantic of additional objects based on the existing building blocks (resources)

2) And, when needed, some processing associated to the additional object
x.1 Extending the basic semantic

The additional resources can be build using the normal containers defining resources with specific names. Any application knowing the extended semantic can use these containers properly. The CSE itself does not need to have any awareness of the special semantic

It is enough to know the address where the semantic is published. It can be public or limited to the interested applications. It is therefore recommended to publish such semantic to share it among the interested resources

[image: image1]
x.2 Extending the basic functionalities

Additional functionalities can be built defining application entities that operates se of resources with specific names, and operate on such resources following specific logics.

The plug-in operates an additional set of resources which are built starting form the Container. These extensions to the basic data model may be specified by oneM2M or proprietarily defined, and need to be known by all the interested applications, including the plug-in AE.

[image: image2]
These additional object can be created by the AE or the plug-in AE, and are essentially derived by the basic resources associating defined names (so all the interested AE knows the related semantics, and specific operations). In particular the plug-in AE can process these semantic data/commands, to provide the more sophisticated processing to the platform. Example of plug-ins can be the implementation of transaction managers, higher level APIs, specialized elaboration of semantic dependent data, the elaborations set of coordinated commands, the inclusion of well known basic inbox/outbox for AE applications, etc.

These plug-ins remain independent from the CSE, and all the communication happen trough the standard Mca, avoiding any changes to the Mca and assuring interoperability. They are seen by the CSE as “normal” applications.
x.3 Hard coding extensions in the API and the CSE
Hard coding proprietary extensions in the oneM2M API and CSE imacts negatively interoperability and is against the oneM2M principle as a multiservice, service independentet solution.

Hard coding proprietary extensions in the oneM2M API and CSE is therefore neither supported or reccomendedby the oneM2M specifications. Manifacturer and Service provider adopting this approach needs to be aware that this wil forbit full interoperability and application portability in particular.
Mca

Plug in

AE

Plug in objects

 Basic objects

Extended

Data model

Awareness

Node in the infrastructure domain

Mcc

CSE(s)

Node in the field domain

Mca

 AE

Mca

AE

Mca

 AE

CSE(s)

Plug in objects

 Basic objects

Extended

Data model

Awareness

Node in the infrastructure domain

Mcc

CSE(s)

Node in the fielddomain

Mca

 AE

Mca

AE

Mca

 AE

CSE(s)

© 2014 oneM2M Partners
 Page 4 (of 4)

[image: image3.png]