	Doc# ARC-2014-1315-Correction_of_rt_and_rd_request_parameters.doc
Change Request
	[image: image1.png]

	

	CHANGE REQUEST

	Group Name:*
	WG2 Architecture

	Source:*
	Qualcomm Inc. (TIA)

	Format:*
	ARC10.0

	Date:*
	2014-04-01

	Contact:*
	Josef Blanz, jblanz@qti.qualcomm.com

	Reason for Change/s:*
	Requests parameters defined in clause 8.1 include rt (result type) and rd (result destination). Since rd is only relevant when rt is set to a certain value, it is better to only use one parameter as proposed in the present CR. Without this change, the specification contains hidden dependencies of parameters that is not clearly spelled out which may lead to inconsistent interpretation of the specification.

	CR against: Release*
	Release-1

	CR against: TS/TR*
	TS-0001 v0.4.3

	Clauses/Sub Clauses*
	8.1.2

	Type of change: *
	 FORMCHECKBOX
 Editorial change
 FORMCHECKBOX
 Bug Fix or Correction
 Change/correction to existing feature or functionality
 New feature or functionality

	Post Freeze checking:*
	This CR contains only essential changes and corrections
 YES FORMCHECKBOX
 NO FORMCHECKBOX

oneM2M Notice
The document to which this cover statement is attached is submitted to oneM2M. Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.
GUIDELINES for Change Requests:

Provide an informative introduction containing the problem(s) being solved, and a summary list of proposals.

Each CR should contain changes related to only one particular issue/problem.
Follow the principle of completeness, where all changes related to the issue or problem within a deliverable are simultaneously proposed to be made E.g. A change impacting 5 tables should not only include a proposal to change only 3 tables. Includes any changes to references, definitions, and acronyms in the same deliverable.
Follow the drafting rules.
All pictures must be editable.
Check spelling and grammar to the extent practicable.
Use Change bars for modifications.
The change should include the current and surrounding clauses to clearly show where a change is located and to provide technical context of the proposed change. Additions of complete sections need not show surrounding clauses as long as the proposed section number clearly shows where the new section is proposed to be located.
Multiple changes in a single CR shall be clearly separated by horizontal lines with embedded text such as, start of change 1, end of change 1, start of new clause, end of new clause.
When subsequent changes are made to content of a CR, then the accepted version should not show changes over changes. The accepted version of the CR should only show changes relative to the baseline approved text.
Introduction
In Clause 8.1.2 two parameters for requests are defined that have some implicit dependency:
· rt:
Response Type. This parameters defines wheahther a response to a request shall be sent immediately after the request has been accepted, just to acknowledge acceptance of the request, or if the response shall be sent sfter the requested operation has been completed. These two ways of processing a request are called out in TS0001, clause 8.2, as ‘Non-Blockling Requests’ and ‘Blocking Requests’
· rd: Result Destination. This parameter defines – in case a ‘Non-Blocking Request’ was made (rt st to ‘Acknowledgement’) – where to actually send the result of the operation, once the operation is completed. The result could be sent to the local CSE, where the originator can retrieve it later on, or it can be sent to the originator by notification. Therefore, rd is only relevant when rt is set to ‘Acknowledgement’
This relationship between rt and rd is not defined clearly in the specifications. Also it is not clearly defined that in case rt is set to ‘Result’, a ‘Blockin Request’ as defined in clause 8.2.2 is made and in case rt is set to ‘Acknowledgement, a ‘Non-Blocking Request’ as defined in clause 8.2.3 is made. In the latter case (for Non-Blocking Requests), a destination for the results is needed, which was expressed so far by rd.

Therefore, it would make sense to remove the gaps regarding the interdependencies of paramters rt and rt and the blocking versus non-blocking processing by defining just one parameter – rt – which clearly indicated which type of request processing shall be used.
This CR suggests to remove the rd parameter and only use rt with the folloing three possible settings:
· ‘blockingRequest’: In case the request is accepted by the Local CSE, the Local CSE responds with the result of the requested operation after completion of the requested operation. Processing of Blocking Requests is defined in clause 8.2.2

· ‘nonBlockingRequestSynch’: In case the request is accepted by the Local CSE, the Local CSE responds after acceptance with an Acknowledgement confirming that the Local CSE will further process the request. The Local CSE includes in the response to an accepted request a reference that can be used to access the status of the request and the result of the requested operation at a later time. Processing of Non-Blocking Requests is defined in clause 8.2.3 and in particular for the synchronous case in clause 8.2.3.2
· ‘nonBlockingRequestAsynch’: In case the request is accepted by the Local CSE, the Local CSE responds after acceptance with an Acknowledgement confirming that the Local CSE will further process the request. The result of the requested operation needs to be sent as a notification to the Originator. Processing of Non-Blocking Requests is defined in clause 8.2.3 and in particular for the asynchronous case in clause 8.2.3.3
Another issue with rt is the following: So far rt is optional, which means it is not necessarily present in a request. However, in that case, the originator of a request has no means to find out if the receiver of the request (i.e. the local CSE) is proceeding in blocking or non-blocking mode.

Assuming for the sake of example that the originator has not specified any rt setting in a request. Here is what could potentially happen: T he only way the originator can deal with the situation is to wait until a response is coming. If a response takes very long (this could take extremely long depending on CMDH processing), the originator does not really know if this is due to the local CSE doing the processing in blocking mode or due to some error that may have happened. The originator has no particular clue how to decied on a time-out in this situation. Even if the originator just waits until a response comes in, it needs to parse it first to find out if this was an acknowledgement (local CSE decided to do non-blocking processing) or if this was a response which included the result of the requested operation (local CSE decided to use blocking processing). Depending on which mode the local CSE may have chosen, the originator has to behave differently. If it got back an acknowledgement only (non-blocking processing), then the originator would either need to poll the result of the requested operation at a later time or it would need to be able to receive a notification. If the local CSE did decide to use non-blocking operation, then it would probably not even know if the originator is capable of receiving notifications… so how to choose the synchronous versus asynchronous case may not be easy.

For all the reasons given above it would make sense to pick one of the following two options

a) Make rt a mandatory parameter of a request. In that case both the originator and the receiver of a request know precisely what to expect. The following advantages would be obtained:

· The local CSE would exactly know when to send responses with acknowledgements and/or results

· The originator would exactly know whether it needs to wait potentially very long for a response or not, i.e. time-outs for error cases could be defined such that an originator is not forced to wait for very long times in case something goes wrong.
· The local CSE would not have to guess or discover which mode of processing can the originator handle

b) Keep rt as an optional parameter, but define a default setting for rt in the sepcifications. This would have the following advantages:

· The originator could keep the parameters expressed in a request at a minimum.

· Both ends would still precisely know what processing to expect. No guessing / discovery of desired behaviour needed

· Still full flexibility for the orinitaor to pick its preferred mode of processing

In this CR we are proposing to go with option b) above and select ‘nonBlockingRequestSynch’ as the default as it allows for rather quick response times after acceptance/rejection of a request and it makes no assumptions about the capability to receive notifications by the originator.
-----------------------Start of change 1---
8.1.2
Request

Request from an Originator to a Receiver includes the following information:

· op: operation to be executed: Create (C), Retrieve (R), Update (U), Delete (D).

· to: URI of the target resource or the parent of the target resoruce, e.g. /m2m.provider1.com/netBase/temp1.

{8.1.2.a} Editor's Note: This is made under the assumption that the CSE-ID is incorporated in the URI of the target resource or the parent of the target resource.
· fr: ID of the Originator.

NOTE 1:
fr is used for access control of the target resource.

· mi: meta-information about the Request.

{8.1.2.b} Editor's Note: Defaults for meta-information are FFS.
· cn: resource content to be transferred.

NOTE 2:
The to target resource needs to be known by the Originator. It can be known either by pre-provisioning or by discovery.

{8.1.2.c} Editor's Note: How pre-provisioning and discovery are performed is FFS.
The op information shall indicate the operation to be executed at the Receiver:

· Create (C): a new resource addressable with to parameter is created.

· Retrieve (R): an existing to addressable resource is read and provided back to the Originator.

· Update (U): the content of an existing to addressable resource is replaced with cn new content.

· Delete (D): an existing to addressable resource and all its sub-resources are deleted from the Resource Storage.
· Notify (N): information to the Receiver, processing on the Receiver is not indicated by the Originator.

{8.1.2.d} Editor's Note: This is an initial list of the verbs. The need for more verbs is anticipated to cover all use cases, configuration and functions.

The to information shall address the target resource in the Receiver. The to information shall conform to section 9.3.1.The fr information shall be used by the Receiver to check the Originator identity for access permission verification.

The ty information shall be present in Request for the following operations:

· Create: ty is the type of the resource to be created.

The cn information shall be present in Request for the following operations:

· Create: cn is the content of the new resource with the resource type tag as in Table 9.2-1.

· Update: cn is the content to be replaced in an existing resource.

· Retrieve: cn is the filter to be applied for discovery purposes.
· Notify: cn is the notification information.
Note that the cn information can also be empty.

The mi information shall be as follows:

· ot: optional originating timestamp of when the message was built.

Example usage of the originating timestamp includes: to measure and enable operation (e.g. message logging, correlation, message prioritisation/scheduling, accept performance requests, charging, etc.) and to measure performance (distribution and processing latency, closed loop latency, SLAs, analytics, etc.)
· rqet: optional request expiration timestamp.

Example usage of the request expiration timestamp includes to indicate when request messages (including delay-tolerant) should expire due to their staleness being no longer of value, and to inform message scheduling/prioritisation. When a request has set request expiration timestamp to a specific time and the Request demands an operation on a Hosting CSE that is not the CSE currently processing the request, then the current CSE shall keep on trying to deliver the Request to the Hosting CSE until the request expiration timestamp time, in line with provisioned policies.

· rset: optional result expiration timestamp.

Example usage of the result expiration timestamp includes to indicate when result messages (including delay-tolerant) should expire due to expected staleness of the result, being no longer of value, and to inform message scheduling/prioritisation. It can be used to set the maximum allowed total request/result message sequence round trip deadline.
· rt: optional response type: Indicates what the response to the issued request shall contain and when the response is sent to the Originator:

· nonBlockingRequestSynch: In case the request is accepted by the Local CSE, the Local CSE responds after acceptance with an Acknowledgement confirming that the Local CSE will further process the request
. The Local CSE includes in the response to an accepted request a reference that can be used to access the status of the request and the result of the requested operation at a later time
. Processing of Non-Blocking Requests is defined in clause 8.2.3 and in particular for the synchronous case in clause 8.2.3.2
· nonBlockingRequestAsynch: In case the request is accepted by the Local CSE, the Local CSE responds after acceptance with an Acknowledgement confirming that the Local CSE will further process the request.
The result of the requested operation needs to be sent as a notification to the Originator.
Processing of Non-Blocking Requests is defined in clause 8.2.3 and in particular for the asynchronous case in clause 8.2.3.3
· blockingRequest’: In case the request is accepted by the Local CSE, the Local CSE responds with the result of the requested operation after completion of the requested operation. Processing of Blocking Requests is defined in clause 8.2.2
The default setting for rt in case it was not set by the originator is ‘nonBlockingRequestSynch’.
Example usage of the response type set to nonBlockingRequestSynch: An Originator that is optimized to minimize communication time and energy consumption wants to express a Request to the local CSE and get an acknowledgement on whether the Request got accepted. After that the Originator may switch into a less power consuming mode and retrieve a Result of the requested Operation at a later time.

Further example usage of the response type set to nonBlockingRequestSynch includes when the result content is extremely large, or when the result consists of multiple content parts from a target group which are to be aggregated asynchronously over time.

-----------------------End of change 1 ---

�Repeating this text (original text) also for the Asynch non-blocking case.

�This text is an exact copy of what used to be the first item under rd

�Repeated the original text in the first item of this list, see first comment above.

�This text is an exact copy of what used to be the second item under rd

© 2014 oneM2M Partners
 Page 1 (of 6)

[image: image1.png]